# EPA's Plan for MOVES: A Comprehensive Mobile Source Emissions Model

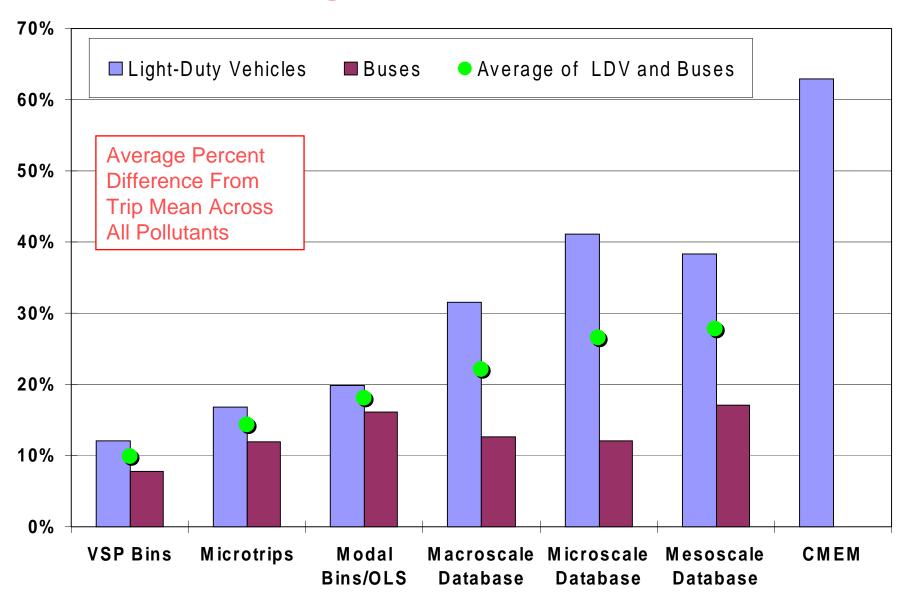
## 12th CRC On-Road Vehicle Emissions Workshop San Diego, California April 15, 2002

John Koupal, Harvey Michaels, Mitch Cumberworth, Chad Bailey, Dave Brzezinski

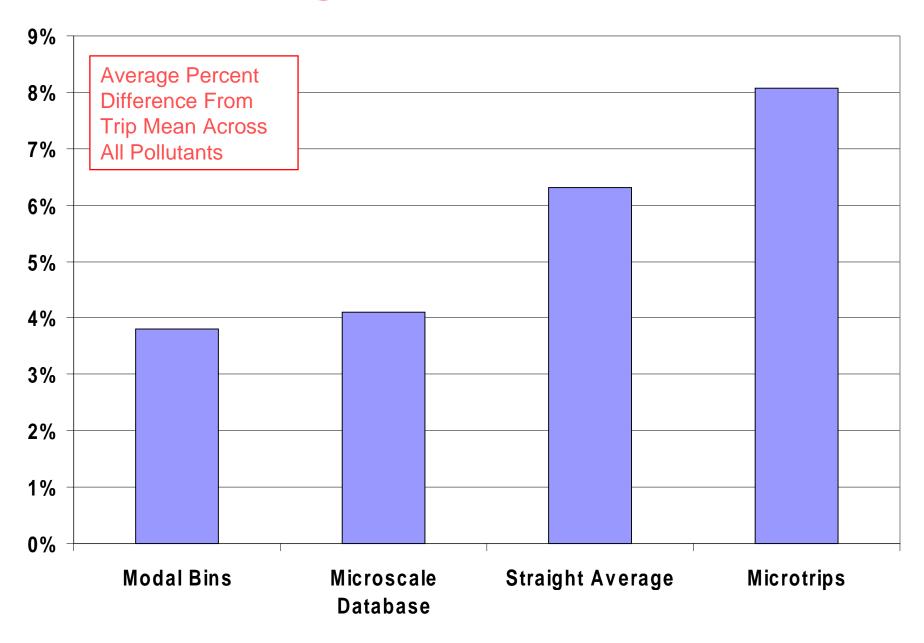
**U.S. EPA Office of Transportation and Air Quality** 

## **MOVES**

- Multiscale
- mOtor
- Vehicle & equipment
- Emission
- System


## **MOVES "Use Cases"**

- Multi-scale analysis
  - Macroscale Inventories (EPA Reports, SIPs)
  - Mesoscale Inventories (SIPs, Conformity)
  - Microscale Analyses (e.g. hot spot / project level)
- Transportation/AQ model linkage
- Policy evaluation
- Model validation and uncertainty
- Model updates and expansion


## **Judging the Shootout**

- Criteria 1: Performance
  - On-Road Validation
    - 3 independent vehicles/ 6 trips each for LD & HD
    - Prediction of trip-average emissions across all pollutants
  - Off-Road Validation
    - Same 3 equipment pieces, 1 additional hour of operation
    - Prediction of total emission across 3 equipment pieces
- Criteria 2: Feasibility of Application

## **Summary Results: On-Road**



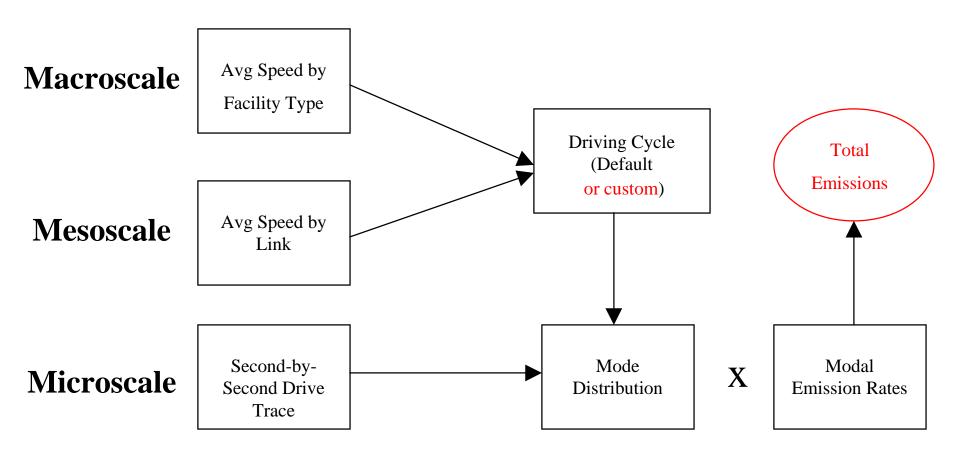
## **Summary Results: Off-Road**



### **Observations**

- VSP is an excellent metric for characterizing emissions
- Empirical modal binning approaches simple & effective
  - VSP Binning
  - Modal Bins / OLS
- Database approach hurt by small dataset
- Aggregate approach may be sufficient for offroad

## **Assessing Feasibility Criteria**


| Feasibility Criteria               | Physical<br>Model | Modal<br>Binning | Database | Microtrip |
|------------------------------------|-------------------|------------------|----------|-----------|
| Consistent Across Scales?          | X                 | X                |          |           |
| Easily Updated?                    |                   | X                | X        | X         |
| Can Incorporate Many Data Sources? |                   | X                | X        |           |
| Software Efficiency?               | X                 | X                |          | X         |

**Preliminary Conclusion:** 

Modal binning shows most overall promise for MOVES

## **Applying Modal Emissions**

#### Running Exhaust Process

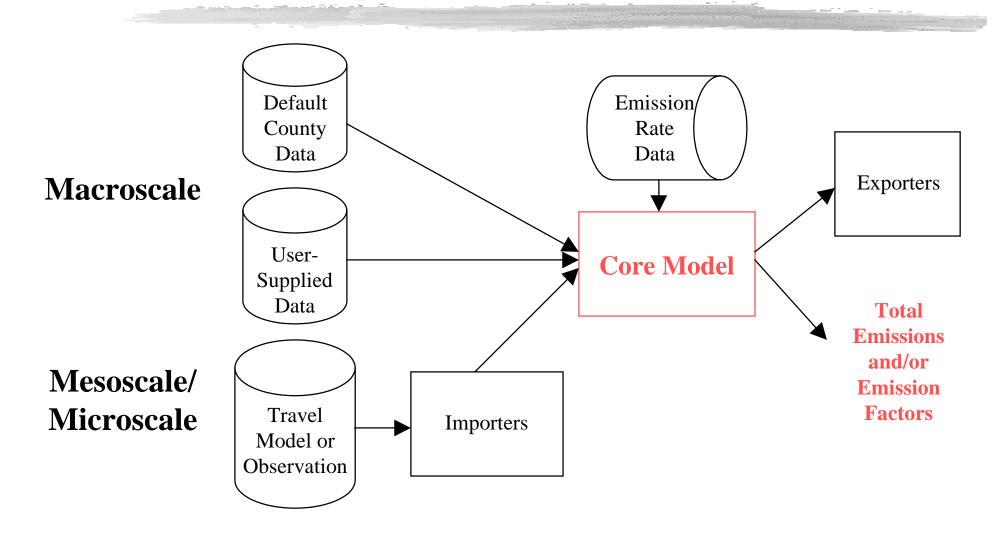


### **Phase 2 Evaluation**

- Competitive contract (one award)
- Evaluate binning methods on several data sources
  - Laboratory second-by-second (EPA MOBILE6 Cycles)
  - On-Board Data (Shootout)
  - IM240 Data (Denver)
  - RSD Data (CRC Denver 2000)
  - Laboratory bag (CMEM Dataset)
- Evaluate uncertainty methodologies
- Validate with independent test results

## **Emission Processes**

| <b>Combustion Products</b> | Hydrocarbon       | Other                   |
|----------------------------|-------------------|-------------------------|
|                            | Evaporation       |                         |
| Tailpipe Running Exhaust   | Diurnal           | A/C Refrigerant Leakage |
| Tailpipe Start Exhaust     | Hot Soak          | Brake Wear              |
| Crankcase                  | Resting Loss      | Tire Wear               |
|                            | Running Loss      |                         |
|                            | Vehicle Refueling |                         |
|                            | Fuel Leakage      |                         |
|                            | Offgassing        |                         |


## **Generic Core Model Design**

Core model steps (apply to any scale/source/process):

Loop By Space & Time

- 1. Estimate total activity
  e.g. Vehicle Hours Operating (VHO)
- 2. Distribute across fleet bins/operating modes e.g. Mileage Bin, VSP Bin
- 3. Get emission rate for each fleet bin/operating mode e.g. Gram/Second emission rate by Mileage Bin, VSP bin
- 4. Aggregate across all fleet bin/operating modes
  - $\sum$  (Total Activity \* Frequency <sub>BIN/MODE</sub> \* Emission Rate <sub>BIN/MODE</sub>)
- Add front & back ends to implement use cases

## **MOVES Data Flow Overview**



## **Model Quality**

- New EPA guidance on model quality planning requires Quality Assurance Project Plan:
  - Model quality objectives and assessment
  - Coding and documentation standards
  - Stakeholder and scientific peer review
- **EPA Peer Review Guidelines** 
  - Recommends Independent Peer Review Panel

## **Implementation Plan**

- Interim Product: Fall 2002
  - Macroscale (county-level) inventory generation w/ MOBILE6.3 and NONROAD
- GHG On-Road Implementation: Fall 2003
  - CO<sub>2</sub>, Air Conditioning HFCs, N<sub>2</sub>0, CH<sub>4</sub>
  - Macroscale only
- Full On-Road Implementation: Fall 2005
  - Adds HC, CO, NOx SOx, PM, NH<sub>3</sub>, air toxics
  - Mesoscale/Microscale capability

## **Next Steps**

## Planning Documents

- Conceptual Design & Theory: Summer 2002
- Emission Analysis Methodology: Fall 2002
- Quality Assurance Project Plan: Fall 2002

#### More Information

- http://www.epa.gov/otaq/ngm.htm
- Posted soon:
  - Shootout Contractor Reports and EPA Overview/Results
  - **EPA-OAQPS** Emission Inventory Conference Paper