.

EPA-AA-TEB-511-81-10A

21

EPA Evaluation of the FUEL-MAX Device Under Section 511 of the Motor Vehicle Information and Cost Savings Act

by

Edward Anthony Barth

June, 1981

Test and Evaluation Branch Emission Control Technology Division Office of Mobile Source Air Pollution Control Environmental Protection Agency

· ·

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

<u> </u>		
TECHNICAL RI (Please read Instructions on the		
I. REPORT NO. 2.	3. BECTIENT'S ACC	ESSIONNO.
EPA-AA-TEB-511-81-10A and B	5. REPORT DATE	866
EPA Evaluation of the FUEL-MAX device under	June 1981	
511 of the Motor Vehicle Information and Co	IS PERFORMING OF	GANIZATION CODE
Act.	B. PERFORMING OF	GANIZATION REPORT NO.
Edward Anthony Barth	10. PROGRAM ELEN	IENT NO.
U.S. Environmental Protection Agency Office of Mobile Source Air Pollution Contr	DI TI. CONTRACT/GR	ANT NO.
Test and Evaluation Branch		
Ann Arbor, MI 48105		•
12. SPONSORING AGENCY NAME AND ADDRESS	13. TYPE OF REPOR	T AND PERIOD COVERED
	Technical 14. SPONSURING A	
Same as box 9	14. SPONSORING A	GENCY CODE
15. SUPPLEMENTARY NOTES		
16. ABSTHACT		
This document announces the conclusions	of the EPA evaluation of	the "FILEL-MAX"
device under provisions of section 511 of the		
Savings Act.		
On January 18, 1980, the EPA received a	request from FIDCO, Fuel	Injection
Development Corporation, for evaluation of a	fuel saving deviced terme	d"FUEL-MAX".
This device is an air bleed device that repla	ices the EGR valve. It is	claimed to
conserve fuel.		
The purpose of the EGR system is to cont		
of the EGR valve to install the "FUEL-MAX" di		
expected to result in a large increase in NOx		
the applicant confirmed this prediction as we		
might improve fuel economy. Although the dat		
amount of this improvement, EPA chose to cond	luct confirmatory testing.	
]		
17. KEY WORDS AND DO		·····
d. DESCRIPTORS	DIDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group
Tests	Gas Saving Devices	
Fuel Consumption	Fuel Economy	· ·
Nitrogen Oxides	Air Bleed Devices	
	EGR Valve	1
· · · · · ·		1
		1
13. DISTRIBUTION STATEMENT	TO SECURITY OF ASS (This fame at	
	19. SECURITY CLASS (This Report)	21. NO. OF PAGES
I F	Unclassified	138
	•	

EPA Form 2220-1 (9-73)

ENVIRONMENTAL PROTECTION AGENCY

[40 CFR Part 610]

[FRL ____]

FUEL ECONOMY RETROFIT DEVICES

Announcement of fuel Economy Retrofit Device Evaluation for "FUEL-MAX"

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice of Fuel Economy Retrofit Device Evaluation.

<u>SUMMARY</u>: This document announces the conclusions of the EPA evaluation of the "FUEL-MAX" device under provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. BACKGROUND INFORMATION: Section 511(b)(1) and Section 511(c) of the Motor Vehicle Information and Cost Savings Act (15 U.S.C. 2011(b)) requires that:

(b)(1) "Upon application of any manufacturer of a retrofit device (or prototype thereof), upon the request of the Federal Trade Commission pursuant to subsection (a), or upon his own motion, the EPA Administrator shall evaluate, in accordance with rules prescribed under subsection (d), any retrofit device to determine whether the retrofit device increases fuel economy and to determine whether the representations (if any) made with respect to such retrofit devices are accurate."

(c) "The EPA Administrator shall publish in the <u>Federal Register</u> a summary of the results of all tests conducted under this section, together with the EPA Administrator's conclusions as to -

- (1) the effect of any retrofit device on fuel economy;
- (2) the effect of any such device on emissions of air pollutants; and
- (3) any other information which the Administrator determines to be relevant in evaluating such device."

EPA published final regulations establishing procedures for conducting fuel economy retrofit device evaluations on March 23, 1979 [44 FR 17946].

ORIGIN OF REQUEST FOR EVALUATION: On January 18, 1980, the EPA received a request from FIDCO, Fuel Injection Development Corporation, for evaluation of a fuel saving device termed "FUEL-MAX". This Device is an air bleed device that replaces the EGR valve. It is claimed to conserve fuel.

<u>Availability of Evaluation Report</u>: An evaluation has been made and the results are described completely in a report entitled; "EPA Evaluation of the FUEL-MAX Device Under Section 511 of the Motor Vehicle Information and Cost Savings Act." This entire report is contained in two volumes. The discussions, conclusions and list of all attachments are listed in EPA-AA-TEB-511-81-10A, which consists of 18 pages. The attachments are contained in EPA-AA-TEB-511-81-10B, which consists of 120 pages. The attachments include correspondence between the Applicant and EPA, all documents submitted in support of the Application and the EPA testing of the Device.

As a part of its evaluation EPA has actually tested the FUEL-MAX device. The EPA testing is described completely in the report "Emissions and Fuel Economy of FUEL-MAX, a Retrofit Device", EPA-AA-TEB-81-15, consisting of 8 pages. This report is contained in the preceding FUEL-MAX 511 Evaluation as an attachment and can be obtained separately or as part of the attachment package.

Copies of these reports may be obtained from the National Technical Information Service by using the above report numbers. Address requests to:

> National Technical Information Service U.S. Department of Commerce Springfield, VA 22161 Phone: Federal Telecommunications System (FTS) 737-4650 Commercial 703-487-4650

Summary of Evaluation

EPA fully considered all of the information submitted by the Device manufacturer in the Application. The evaluation of the "FUEL-MAX" device was based on that information and the results of the EPA test program.

The "FUEL-MAX" is an air bleed device that replaces the Exhaust Gas Recirculation (EGR) value which has been installed on almost all passenger cars since 1973. The purpose of the EGR System is to control oxides of nitrogen (NOX). Removal of the EGR value to install the "FUEL-MAX" disables the EGR system and would be expected to result in a large increase in NOX emissions.

Test data submitted by the Applicant confirmed this prediction as well as indicating that "FUEL-MAX" might improve fuel economy. Although the data did not adequately quantify the amount of this improvement, EPA chose to conduct confirmatory testing.

The ZPA Evaluation of the "FUEL-MAX" system included vehicle testing by the Federal Test Procedure (FTP) and the dighway fuel Economy Test (HFET). These two tests are the basic means for evaluating exhaust emissions and fuel economy. During these tests, measurements were made of the fuel economy (FE) and the regulated emissions of hydrocarbon (HC), carbon monoxide (CO), and oxides of nitrogen (NOx).

EPA tested the "FUEL-MAX" device on a sample of three typical 1979 passenger cars. The findings are summarized below:

- Use of the "FUEL-MAX" resulted in increased NOx emissions of between
 440% to 1070% on the FTP and 280% to 770% on the HFET.
- Use of the "FUEL-MAX" resulted in changes in fuel economy of between +1.6% to +4.1% on the FTP and -0.6% to +0.9% on the HFET.
- 3. Use of the "FUEL-MAX" resulted in a decrease in hydrocarbon emissions of between 15% to 24% on the FTP and 6% to 42% on the HFET.
- 4. Use of the "FUEL-MAX" resulted in a decrease in carbon monoxide emissions of between 7% and 44% on the FTP and 46% to 68% on the HFET.
- 5. On the road evaluations with "JUEL-MAX" showed that heavy knock existed in one car, that light knock occurred in one car and that knock was rarely noticed on the third car.

The Applicant's testing of the "FUEL-MAX" device showed the same emission and fuel economy trends noted in the EPA testing. The differences observed in the magnitude of these effects were due to the differences in the test fleets and the weaknesses noted in the Applicant's control of the vehicle test program.

Because EPA tests showed that use of the "FUEL-MAX" on the vehicles tested, caused emissions to exceed applicable standards, the installation of this Device by a person in the business of servicing, repairing, selling, leasing, or trading motor vehicles, fleet operators, or new car dealers will be considered a violation of Section 203(a)(3) of the Clean Air Act, the Federal prohibition against tampering with emission control systems. That is, there is currently no reasonable basis for believing that the installation or use of this device will not adversely affect emission performance. This determination does not preclude the use of the "FUEL-MAX" device on a different vehicle or vehicles than those tested by EPA if Federal Test Procedure tests performed on such vehicles clearly establish that emission performance on such vehicles is not adversely affected.

Many state laws prohibit the operation or registration for use on public highways of a motor vehicle on which the emission control system has been removed or rendered inoperative. EPA has concluded that this device will render inoperative an element of design of the emission control devices or systems of a motor vehicle on which it is installed. Therefore, the installation or use of this device by individuals may be prohibited under some state laws.

FOR FURTHER INFORMATION CONTACT: Merrill W. Korth, Emission Control Technology Division, Office of Mobile Source Air Pollution Control, Environmental Protection Agency, 2565 Plymouth Road, Ann Arbor, Michigan 48105, 313-668-4299.

Date

Edward F. Tuerk Acting Assistant Administrator for Air, Noise, and Radiation The following is a summary of the information on the device as supplied by the Applicant and the resulting EPA analysis and conclusions.

1. Marketing Identification of the Device:

Trade Name: "FUEL-MAX"

- 2. Inventors of the Device and Patents:
 - A. Inventors

Ervin Leshner 1005 Lowber Drive Cherry Hill, New Jersey 08034

Michael D. Leshner 5 Betsy Court Glendora, New Jersey 08029

B. Patent

"Patent Applied for, 1979"

3. Manufacturer of the Device:

Fuel Injection Development Corp. 110 Harding Ave. Bellmawr, New Jersey 08030 609/931-3168

4. Manufacturing Organization Principals:

Charles Kaney Ervin Leshner Ira Belfer

5. Marketing Organization in U.S. Making Application:

Fuel Injection Development Corp. 110 Harding Ave. Bellmawr, New Jersey 08030 609/931-3168

6. Applying Organization Principals:

Charles Kaney Ervin Leshner Ira Belfer

"Michael Leshner will represent the organization in correspondence."

7. Description of Device:

A. Purpose of the Device (as supplied by Applicant):

"FUEL-MAX is intended to be retrofitted to existing automobiles by the vehicle owner, for the purpose of conserving fuel."

B. Theory of Operation (as supplied by Applicant):

"FUEL-MAX is a direct replacement for the Exhaust Gas Recirculation (EGR) Valve installed on the intake manifold of automobile gasoline engines. The vacuum signal which normally operates the EGR Valve is used to operate FUEL-MAX. Instead of allowing exhaust gas to be drawn into the intake manifold. JUEL-MAX allows filtered, atmospheric air to be drawn into the intake manifold. The flow rate of air admitted to the engine through FUEL-MAX is adjustable, to allow the user to set the optimum fuel consumption. device for The Installation Instructions (Appendix A) give a thorough description of the procedure for setting the air flow rate." The installation instructions are Attachment A of this report.

"It was found by experiment that late model American cars using EGR cannot normally tolerate a leaner air-fuel mixture than the factory calibration. When the EGR system is disabled, however, the engine will tolerate a slightly leaner mixture, and at that leaner mixture a lower specific fuel consumption will result.

"Since the vacuum signal which operates the EGR Valve is not present during cold engine operation, idle, deceleration, and wide-open throttle operation, the FUEL-MAX also does not operate during those modes."

C. Construction and Operation (as supplied by Applicant):

"JUEL-MAX is a vacuum-operated air valve which is similar in construction to an EGR Valve. (without exhaust pressure feedback) The cross sectional area of the valve opening is plotted against input vacuum in figure 1. Figure 2 is a schematic drawing of the JUEL-MAX.

"The air flow rate adjustment is in series with the fresh air inlet, and acts as an upper limit to the air flow through the FUEL-MAX. Figure 3 shows the cross sectional area through the adjusting valve versus the notionation on the front of the FUEL-MAX case." Figures 1, 2, and 3 are Attachment D of this report. 8. Applicability of Device (as supplied by Applicant):

"One kit fits all of the makes, models, and years listed below.

MAKE	YEAR	ENGINE
General Motors	1973-79	All
<i>∂</i> ord	1973-79	A11
Chrysler	1973-79	All 4 cylinder All 6 cylinder
American		

Motors 1975-79 All

"None of the following affects the applicability of FUEL-MAX:

Model, carburetor, transmission type, ignition type.

"Exceptions: FUEL-MAX is not applicable to Diesel engines, or cars equipped with three-way catalysts."

- 9. Device Installation, Tools and Expertise Required (as supplied by Applicant):
 - A. "The Installation Instructions are provided in Appendix A." (Appendix A is Attachment A of this report.)
 - B. "There is only one general set of instructions."
 - C. "The tools required are a 3/8 or 1/2 and/or 9/16 inch open end, box, or socket wrench."
 - D. "No equipment is required to check the accuracy of the installation."
 - E. "No adjustments to the vehicle are required. There is one adjustment on the device. It is annotated from 1 through 5, and the user is instructed to set the pointer to the displacement of the engine, in cubis [sic] inches. For example, when using FUEL-MAX on a 305 C.1.D. engine, the pointer would be set to "3"."
 - f. "Average mechanical skills are required to install FUEL-MAX."

10. Device Operation (as supplied by Applicant):

"Complete instructions are supplied in Appendix A." (Appendix A is Attachment A of this report) 11. Device Maintenance (claimed):

"The only maintainance required is the removal (pinch and pull) washing the filter with soap and water, and re-installation of the filter (stuff it into a recess) once each year."

12. Effects on Vehicle Emissions (non-regulated) (claimed):

"There is no indication that FUEL-MAX has any effect on the vehicle's non-regulated emissions."

13. Effects on Vehicle Safety (claimed):

"The proper installation of FUEL-MAX does not affect the safety of the vehicle on which it is installed. The installation Instructions explicitly caution the installer to "check the throttle linkage to make sure there is no mechanical interference..."

"If a malfunction occurs, it could one of two types: open valve, or closed valve. If the JUEL-MAX air valve should malfunction in the open position, the mixture will be very lean at idle, and the engine will run rough or stall. If the valve malfunctions in the closed position, it will be equivalent to operation without EGR."

14. Test Results - Regulated Emissions and fuel Economy (submitted by Applicant):

"Appendix B and C are reports of tests using the Federal Test Procedure and Highway Fuel Economy Tests. FUEL-MAX was evaluated on ten late model American cars, and compared with the baseline vehicle."

- A. "Appendix B Technical Report on Evaluation of Fuel Economy Device" is Attachment B of this report. Set 1827 Ol 0979; September, 1979 Scott Environmental Technology, Inc., Plumsteadville, PA 18949
- B. Appendix C, "Technical Report, Two Exhaust Emission Tests" is Attachment C of this report. 1975 Federal Cold-Start with Urban & Highway Fuel Economy; Set 1796 01 0379; March 27, 1979 Scott Environmental Technology, Inc. Plumsteadville, PA 189499
- 15. Testing by EPA:

Because the test data submitted by the Applicant suggested the Device showed a fuel economy improvement, EPA conducted confirmatory testing. EPA developed a Test Plan/Test Agreement (Attachment Ξ) which was sent to the Applicant for review and concurrence (Attachment $\tilde{\epsilon}$).

The Applicant concurred that this test plan (Attachments E and G) would accurately reflect the effectiveness of the Device. The Device

testing was conducted in accordance with this test plan/testing agreement.

A detailed description of the testing conducted by the EPA in support of this evaluation is reflected in EPA report, EPA-AA-TEB-81-15, provided as Attachment H. A brief description of this testing effort is provided below:

Three production 1979 model year vehicles (Ford Pinto with a 2.3 litre engine, Mercury Zephyr with 302 CID engine, and an Oldsmobile Cutlass with a 231 CID) were tested for emissions and fuel economy. Tests were conducted according to the Federal Test Procedur (FTP) and Highway Suel Economy Test (HFET). The test program consisted of baseline tests and "FUEL-MAX" tests. The "FUEL-MAX" tests consisted of a standard test procedure (FTP or HSET) with the Device installed on the vehicle.

Road tests were conducted on each of the preceding three vehicles to evaluate each vehicle's sensitivity to engine knock, since some vehicles are knock sensitive to EGR deactivation.

Additional tests were conducted on the Oldsmobile Cutlass as an evaluation tool. The tests consisted of hot start LA-4 cycles. The LA-4 driving cycle is the basic FTP driving cycle. The results of these hot start LA-4 tests are somewhat similar to bags 2 and 3 of the FTP.

16. Analysis

A. Description of the Device:

The Device is judged to be adequately described in Section 7.

B. Applicability of the Device:

The applicability of the device, as stated in the application, covers most American gasoline fueled vehicles including 1979 Fords. However, even though the instructions, Attachment A, make specific reference to Ford installations, the installation instructions/hardware did not adequately cover the installation in either Ford 2.3 litre or 302 CID vehicle (see Section 16 D.).

C. Costs:

FUEL-MAX is advertised at \$29.95 postpaid from distributors (see Attachment I).

D. Device Installation - Tools and Expertise Required:

The Applicants claim that only simple tools and average mechanical skills are required for installation is judged to be true for some cases. However, numerous problems were encountered.

- (1) On the Pinto, the installation instructions call for the EGR valve to be disconnected from the intake manifold, but to be left connected to the exhaust gas transfer pipe so as to close the end of the transfer pipe. On the test vehicle, the EGR valve and the exhaust gas transfer pipe had to be removed because the EGR valve configuration was different than that shown in the "FUEL-MAX" installation instructions and this configuration permitted an exhaust leak to occur under the hood when the EGR valve was disconnected from the intake manifold.
- (2) On the Zephyr, the "JUEL-MAX" caused an exhaust leak at the manifold where the EGR valve is normally installed because the adapter specified for this application did not cover the EGR exhaust opening in the manifold. A sealing plate and additional gaskets had to be employed to prevent this underhood exhaust leak.
- (3) The gasket sealer provided with the kit rapidly deteriorated and had to be replaced with a high temperature sealant.
- (4) Replacement of the EGR valve gasket was impractical since automotive parts suppliers normally sell the gasket only with a new EGR valve.
- (5) A prospective purchaser of the Device would be required to install the Device himself. Since this Device violates the anti-tampering provisions of the Clean Air Act, it is illegal for many automotive businesses to install this Device (see Section 17).
- (6) If disabling the EGR causes the engine to knock, retarding the ignition may be required to correct engine knock. The Applicant was aware of this potential problem (see Question no. 3 in Attachment J), and offers two solutions:
 - (a) switch to higher octane fuel
 - (b) retarding ignition timing

Either solution will tend to alleviate the problem, although the Applicant makes no mention of this problem or potential solutions in the Installation Instructions (Attachment A). The Applicant states in Section 10 that the Installation Instructions are also the complete operating instructions. Note that:

- (a) a higher octane fuel may not be readily available and will cost more,
- (b) retarding the timing will require a timing light, hand tools, average mechanical skills, plus knowing how to time the vehicle.

E. Device Operation:

The operating instructions referred to in Section 10 consist only of the Installation Instructions - no mention is made to vehicle operation other than setting the air bleed to correctly correspond with an engine's displacement. However, as noted in 16 D (6), no mention is made of the potential knock problem or the remedy for it.

F. Device Maintenance:

In addition to the yearly cleaning of the Device's air filter, the vacuum lines attached to the Device Would require the same periodic, albeit infrequent, maintenance accorded similar components in a vehicle's engine compartment.

G. Effects on Vehicle Emissions (non-regulated):

As claimed, the Device is judged to be unlikely to affect non-regulated emissions.

H. Effects on Vehicle Safety:

If use of the Device does not cause engine knock, the Device is judged to be unlikely to affect vehicle safety as claimed.

If use of the Device causes engine knock, the Device could lead to serious engine damage if the knock problem is not soon corrected.

If the Device malfunctions in the open position, the Applicant is judged to have correctly identified the potential problems, i.e., rough engine or stalling.

However, if the Device malfunctions in the closed position, the Device could again lead to engine knock problems.

I. Test Results Supplied by Applicant:

Applicant did submit test data per the Federal Test Procedure or Highway Fuel Economy Test. These are the only EPA recognized test procedures (1). This requirement for test data following these procedures is stated in the application test policy documents that EPA sends to potential applicants. The test data submitted by the Applicant are listed below and evaluated.

- (1) The data submitted by the Applicant in Attachment B was for single test sequences (both FTP and HFET) with and without the "FUEL-MAX" device installed.
 - (a) A review of this data shows the following weaknesses in the test data:
 - Vehicles were tested "as received". They were not checked for agreement with the manufacturer's engine design parameter settings (ignition timing, idle speed, idle mixture, etc.) (see EPA's request, Attachment K, and Applicant's response, Attachment L).

The Applicant stated that the vehicles were assumed to be set at manufacturer's specifications when originally leased new (Attachment L). Since these vehicles had accumulated between 7,000 and 48,000 miles, there may have been some need for readjustment.

However, a review of the emissions and fuel economy data submitted suggests that these vehicles were not greatly, if at all, out of specification.

- (ii) The tires were not fully inflated for the dynamometer tests. For dynamometer testing, the tires are normally inflated to 45 psi to minimize
- (1) From EPA 511 Application test policy documents:

Test Results (Regulated Emissions and Fuel Economy): Provide all test information which is available on the effects of the device on vehicle emissions and fuel economy.

The Federal Test Procedure (40 CFR Part 86) is the only test which is recognized by the U.S. Environmental Protection Agency for the evaluation of vehicle emissions. The Federal Test Procedure and the Highway Fuel Economy Test (40 CFR Part 600) are the only tests which are normally recognized by the U.S. EPA for evaluating vehicle fuel economy. Data which have been collected in accordance with other standardized fuel economy measuring procedures (e.g. Society of Automotive Engineers) are acceptable as supplemental data to the Federal Test Procedure and Highway Fuel Economy Data will be used, if provided, in the preliminary evaluation of the device. Data are required from the test vehicle(s) in both baseline (all parameters set to manufacturer's specifications) and modified forms (with device installed). the heat buildup and added rolling resistance created by the dynamometer rolls. The tire pressures for these tests were 10 to 15 psi low.

- (iii) Six of the nine vehicles in this nine vehicle study were not in compliance with the emission standards in baseline conditions. These vehicles failed HC or CO or both HC and CO. Only one vehicle failed to meet the NOx standard.
- (iv) A review of the dynamometer horsepower loadings shows that the settings used were probably higher than should have been used. Erroneous dynamometer horsepower loadings would affect both emissions and fuel economy.
- (v) The data does not address driveability. As noted in EPA test report, Attachment H, some vehicles are sensitive to EGR deactivation. (FUEL-MAX replaces the EGR valve, thus, deactivating it).
- (b) A review of this data showed that:
 - (i) FTP HC and CO emissions decreased.
 - (11) FTP NOx emissions increased substantially.
 - (iii) FTP fuel economy increased.
 - (iv) HFET fuel economy increased.

However, due to the weakness in the data noted above (Section 16 I (1)(a)), the data does not confirm these conclusions.

- (2) The data submitted by the Applicant in Attachment C was for single test sequences (both FTP and HFET) with and without the "FUEL-MAX" device installed. In addition to having the data weakness noted for the nine vehicle test fleet, it appears the Device was improperly set for the engine's displacement. FUEL-MAX was set at 2 rather than 3 as required by the Device Installation Instructions.
- J. Test Results Obtained by EPA:

The tests conducted by EPA are discussed in detail in Attachment H, therefore a duplicate presentation is not provided.

17. Conclusions

EPA fully considered all of the information submitted by the device manufacturer in the application. The evaluation of the FUEL-MAX device was based on that information and the results of the EPA test program. The purpose of the EGR System is the control of NOx emissions. Removal of the EGR control valve to install the "FUEL-MAX" deactivates the EGR System and would be expected to result in a large increase in NOx emissions.

EPA tested the "FUEL-MAX" device on a sample of three typical 1979 passenger cars. The findings are summarized below:

- 1. Use of the JUEL-MAX resulted in increased NOx emissions of between 440% to 1070% on the FTP and 280% to 770% on the HFET.
- 2. Use of the SUEL-MAX resulted in changes in fuel economy of between +1.6% to +4.1% on the STP and -0.6% to +0.9% on the HFET.
- 3. Use of the FUEL-MAX resulted in a decrease in hydrocarbon emissions of between 15% to 24% on the FTP and 6% to 42% on the HFET.
- 4. Use of the FUEL-MAX resulted in a decrease in carbon monoxide emissions of between 7% and 44% on the FTP and 46% to 68% on the HFET.
- 5. On the road evaluations with FUEL-MAX showed that heavy knock existed in one car, that light knock occurred in one car and that knock was rarely noticed on the third car.

The Applicant's testing of the "FUEL-MAX" device showed the same emission and fuel economy trends. The differences observed in the magnitute of these effects were due to the differences in the test fleets and the weaknesses noted in the control of the Applicant's vehicle test program.

Because EPA tests showed that use of the "FUEL-MAX" on the vehicles tested, caused emissions to exceed applicable standards, the installation of this Device by a person in the business of servicing, repairing, selling, leasing, or trading motor vehicles, fleet operators, or new car dealers will be considered a violation of Section 203(a)(3) of the Clean Air Act, the Federal prohibition against tampering with emission control systems. That is, there is currently no reasonable basis for believing that the installation or use of this device will not adversely affect emission performance. This determination does not preclude the use of the "FUEL-MAX" device on a different vehicle or vehicles than those tested by EPA if Federal Test Procedure tests performed on such vehicles clearly establish that emission performance on such vehicles is not adversely affected.

Many state laws prohibit the operation or registration for use on public highways of a motor vehicle on which the emission control system has been removed or rendered inoperative. EPA has concluded that this device will render inoperative an element of design of the emission control devices or systems of a motor vehicle on which it is installed. Therefore, the installation or use of this device by individuals may be prohibited under some state laws.

List of Attachments

.

Attachment	A	Installation Instructions for JUEL-MAX (provided with 511 Application)
Attachment	В	"Technical Report on Evaluation of Fuel Economy Device" Set 1827 01 0979; September 1979, Scott Environmental Technology, Inc., Plumsteadville, PA 18949 (specified as an Attachment B to 511, but not provided with 511 until January 5, 1981).
At tachment	С	"Technical Report, Two Exhaust Emission Tests, 1975 Federal Cold Start With Urban & Highway Fuel Economy" Set 1796 01 00379; March 27, 1979 Scott Environmental Technology, Inc., Plumsteadville, PA 18949 (specified as an Attachment B to 511, but not provided 511 with until January 5, 1981).
Attachment	D	Figures 1, 2, 3 for FUEL-MAX.
Attachment	E	Test Plan/Test Agreement for FUEL-MAX.
Attachment	ł	Copy of letter dated January 23, 1981 from EPA to Juel Injection Development Corporation transmitting Test Plan/ Test Agreement for their review and concurrence.
Attachment	G	Copy of letter dated February 2, 1981 from Fuel Injection Development Corporation acknowledging their concurrence with the Test Plan/Test Agreement.
Attachemnt	Н	TEB Report EPA-AA-TEB-81-15, "Emissions and fuel Economy of FUEL-MAX, a Retrofit Device".
Attachment	I	Sales advertisement for "FUEL-MAX".
Attachment	1	"FUEL-MAX Gasoline Conservation for Cars and Trucks" includes fuel conserving driving tips plus 20 questions and answers.
Attachment	К	Copy of letter dated November 7, 1980 from EPA to Fuel Injection Development Corporation requesting vehicle test information.
Attachment	L	Copy of letter dated December 29, 1980 from Fuel Injection Development Corporation providing test data and vehicle test settings.

EPA-AA-TEB-511-81-10B

Attachments to

EPA Evaluation of the "FUEL-MAX" Device Under Section 511 of the Motor Vehicle Information and Cost Savings Act

June, 1981

Test and Evaluation Branch Emission Control Technology Division Office of Mobile Source Air Pollution Control Environmental Protection Agency

.

6.51 JUDIAd00

Attachment A 0.0 Hox 200 SEIRTEUGNI XAM-JEUF

.noispedan

Puel-Max will not affect the exhaust pollution measured at State OU HIS OAND AGUICIE"

xeM-leu? liszzni oz nerrer stolicki edit zimneg zwel. (A.9.3 tistebe? hower

Fuel-Max does not operate when the engine is cold, idling, or at full

Trianiquipa sult of toopsay drive ybildernerforam

to ALLELLERA OU SOMELL SOLITSOPHIE AREY DO & ALLELLERA DIBORADIE There are no other warantee, expressed or multiple, other than the aprice asserbling the second features and asserbling the second s

SI ATURIJEM SIGT JODE HOMESUODIUMUNARIU JUL POR SODEUNO Fuch Max Industries shall not be liable tor incidental or consequences -prinquits to tracione, seasing most

modified, repaired, or aftered in any way, or if defects have resulted ad or brinding in the warrand with the or view of the state warrand in the state of the state of

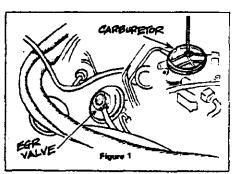
reprint esergand ent

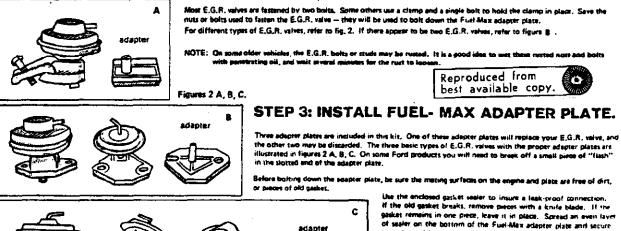
one year from the date of purchase, to the seller, for a full refund of pletely series they may return it with proof of purchase, within If for any reason, the original purchaser of this Fuel-Max is not com-**YTNAARAW**

INSTALLATION INSTRUCTIONS

FUEL-MAX IMPROVES FUEL ECONOMY AND DRIVEABILITY OF AMERICAN MADE CARS AND TRUCKS BUILT SINCE 1973. THIS KIT WILL MODIFY YOUR CAR'S POLLUTION CONTROL SYSTEM TO GIVE MAXIMUM FUEL ECONOMY AND PERFORMANCE.

INSTALLATION INSTRUCTIONS


Your Fuel-Max Kit contains all the parts necessary to: remove the E.G.H. valve, replace it with one of the three Fuel-Max adapter plates, and hook up the nylon air valve


STEP 1: REMOVE AIR CLEANER.

Removal of the air cleaner will simplify the Fuel-Mex installation. Be sure to note all the connecting tubus and ducts on the air cleaner so that you will be able to raplate it properly.

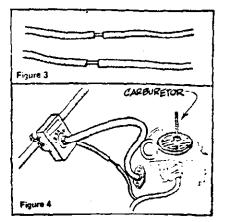
STEP 2: REMOVE E.G.R. VALVE.

The E.G.R. (Exhaust Gas Recirculation) Valve is located on the intake manifold close to the carburetor. Keep track of the small rubber hose attached to the E.G.R. Valve – it will be used to activate the Fuel-Max. If the vector have has been disconnected from the E.G.R. Valve, check the vector hose diagram for your cer to find the proper hose. (See figure 1)

of sealer on the bottom of the Fuel-Max adapter plate and secure it in place with the same nuts, bolts, or clamp that was used to seconthe E.G.R. value. If the Study or bolts are too long, for the Foel Minadapter, use the molecul states valuations.

On a few Chrysler 400 and 440 engines, none of the three adapted places will fit. If this is the case, mail a brief note to Furt-Max, and we will ship you the proper adapter,

STEP 4: INSTALL LARGE RUZBER HOSE.


2. Construction of the exception provides the same real term to the structure of the lot. During the out here the noise of the structure of kink.

STEP 5: INSTALL SMALL RUBBER HOSE.

Connect the small rubber hase that was previously connected to the E.G.A. valve to the back of the Fuel Max. An extension hole and two couplers — are provided in the kar. Use the coupling connector which best fits into the old E.G.R. hole. (see figure 3).

STEP 6: MOUNT FUEL-MAX.

Find a convenient location in the engine compartment to mount the Fuel-Max. There are two plastic strap fasteners in the kit which may be used to secure the Fuel-Max in place. We suggest that the Fuel-Max be strepped to a heater or air conditioner hose, at a location where there will be no mechanical interference with the air clearer or throttle linkager. Avoid mounting the Fuel-Max in hot spots near the exhaust menifold. The large and small rubber tubes may be shortened if necessary. (see figure 4).

This is How Your Fuel-Max Installation Should Look.

3

Fuel-Max Dial Set for Use with a 350 C.I.D. Engly

Figure 5

Figure 6

Connect Lines Shape The Ver-

STEP 7: SET FUEL-MAX TO THE CORRECT NUMBER FOR YOUR CAR

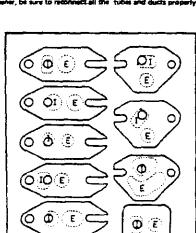
The following table will give you the correct Fuel-Max setting based on the size of your engine. 🖈

22

Set the Fuel-Max by turning the obstar tube (by hand or with a 1/2 inch wrench).	Engine Displacement (cubic inches)		Fuel-Max Setting
You will not need to readjust the	100		1
Fuel-Max unless:	200	4 cylinder	2
 The installation causes a heartablon where you want to accelerate. 	. 300	6 cylinder 8 cylinder	3
2. If you want to experiment to find	400	e cimon	4
the most efficient Fuel-Max setting tor your engine.	500		5

 In general, you will want to set the Fuel-Max to the highest number your engine will tolerate without introducing hesitation. The highest setting is "5", Advancing the pointer beyond 5 is equivalent to a setting of zero. If the Fuel-Max causes hesitation, set it to a lower number and try again. The Fuel-Max does not operate until the engine is werened up, so it will not have any effect when the engine is dold.

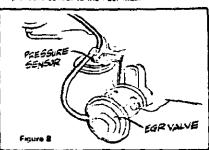
STEP 9: MAINTENANCE.

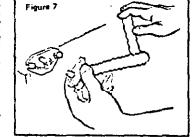

Clean the Fuel-Max filter once a year with soap and water. Pinch the filter in the middle and pull it out of the Fuel-Max case. After cleaning, allow the filter to dry, and insert it book into the case.

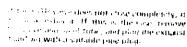
STEP 10: FINAL CHECK LIST.

a. Be sure Fuel-Max and case are clear of all moving carburetor parts or hot exhaust pipes. After installation, start engine and depress accelerator padal. Be sure that the accelerator returns back to idle.

b. Do not drive away until you check that the adapter plate is installed property. With the engine idling, pull the fat tubber hose off the Fuel-Max. There should be suction in the hose, and when air is let into the engine, the idle speed should change - or even stall. If there is no suction in the hose, check that the six come searer has not blocked whe air passage through the adapter plate, or that the passages into the engine are not blocked with carbon. If there is should change of the hose, the adapter plate is installed packwards. If you hear a "popping" exhaust noise at the adapter plate, the plate is not sealed or "inter door completely."


Be sure to push the large and small rubber tubes onto both parts as far as they will go.


Note: Some EGR Systems are equipped with an exhaust pressure sensor as shown below.


a Part Can

If your vehicle uses this type of sensor, leave it in place, and install the Fuel-Max adapter plate in place of the EGR Valve. The same small rubber hose that went from the pressure sensor to the EGR Valve will now go from the pressure sensor to the Fuel-Max.

Special Instructions For Unusual EGR Valves

SET 1827 01 0979

23

TECHNICAL REPORT

ON

EVALUATION OF

FUEL ECONOMY DEVICE

Prepared For:

Prepared by

D. R. Gulick Manager, Automotive Test Group

September 1979

SCOTT ENVIRONMENTAL TECHNOLOGY, INC. Plumsteadville, Pennsylvania 18949

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	TEST FLEET DESCRIPTION	2
3.0	DEVICE DESCRIPTION	4
4.0	DESCRIPTION OF TEST PROCEDURES	6
	4.1 1975 FEDERAL TEST PROCEDURE (FTP)	6
•	4.2 1976 (FEDERAL) HIGHWAY FUEL ECONOMY TEST (HFET)	9
5.0	STATISTICAL ANALYSIS	14
APPE	NDIX A - VEHICLE INFORMATION, DYNAMOMETER INFORMATION, TEST DATE/	TIME
APPE	NDIX B - EXHAUST EMISSION DATA, 1975 FEDERAL TEST PROCEDURE	
APPE	NDIX C - HIGHWAY FUEL ECONOMY, EXHAUST EMISSION DATA	

24

Scott Environmental Technology Inc.

1.0 INTRODUCTION

During the month of August 1979, Scott Environmental Technology, Inc. performed a series of exhaust emission and fuel economy tests for Sherman Industries, Inc. (Sponsor). The tests were performed on a fleet of nine (9) late model domestic automobiles provided by the Sponsor. The objective of the test program was to determine the potential fuel saving and emission reducing capabilities of the Sponsor's Fuel-Max device. Each vehicle was tested first in the stock configuration to provide "baseline" exhaust emission and fuel economy data. The vehicles were then "retrofitted" with the "Fuel-Max" device and retested for exhaust emissions and fuel economy for a direct comparison of the resultant data between the "before and after" device tests.

In addition to the above mentioned tests, three (3) of the nine test vehicles received continuous measurements of the exhaust pipe temperature, to determine the effect on the exhaust temperature of the Sponsor's device. The remaining sections of this report describe the test fleet, device, test procedures, and the final results obtained.

This report does not constitute a "listing", "certification" or "approval" by Scott or any government regulatory agency, and makes no representations or claims other than as they appear in the complete report.

SET 1827 01 0979

2.0 TEST FLEET DESCRIPTION

The test vehicles utilized for this program were all late model (1977, 1978 and 1979), light duty, domestic vehicles with both four and eight cylinder engine sizes. A general description of each vehicle is provided in Table 1.0. Additional descriptive information is included in the tables attached as Appendix A. All test vehicles were received in stock condition and were equipped with the manufacturer's standard emission control systems.

26

÷

÷

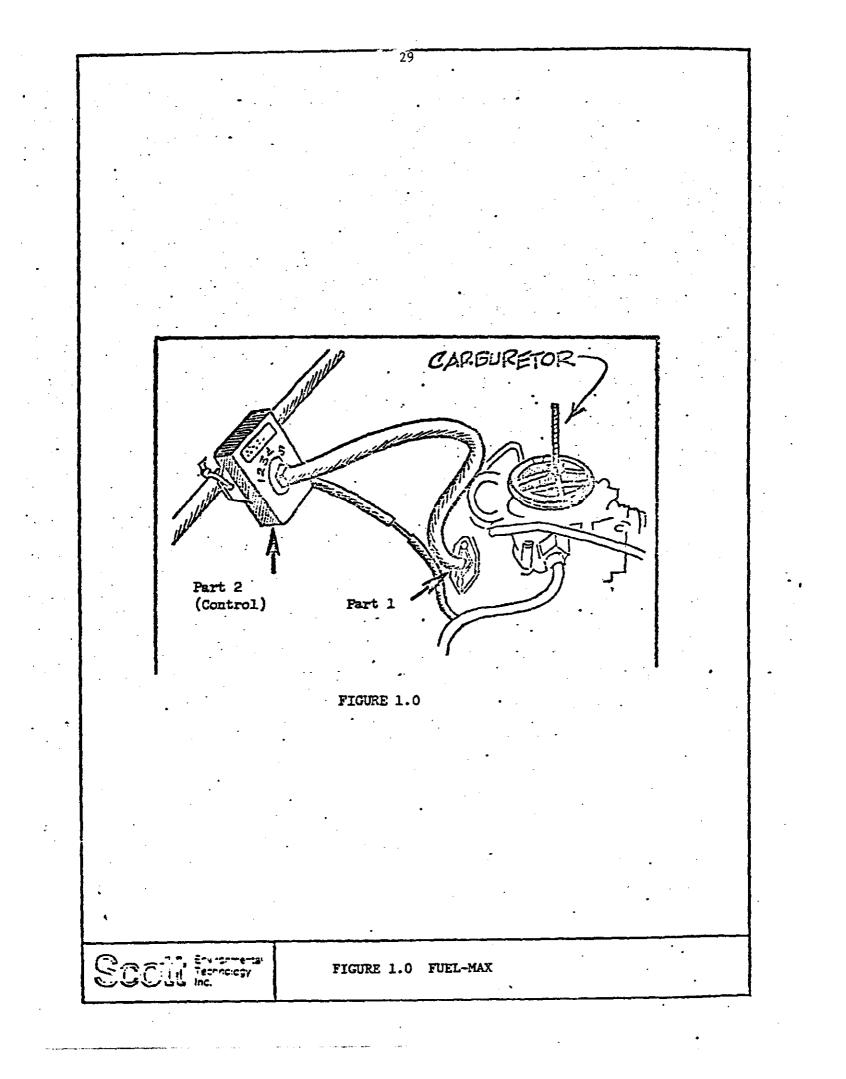
Scott Environmental Technology Inc.

TABLE 1.0 TEST FLEET VEHICLE DESCRIPTION

Model Year	Make	Model	Vehicle ID Number	Engine Size/Displacement	Initial Mileage	
1978	Lincoln	Continental	8Y82A881792	V-8/460	07509.0	
1979	Oldsmobile	Cutlass Salon	3G09н9G427788	V-8/305	07955.1	
1977	Dodge	Aspen (Wagon)	NH45G7F252970	v-8/318	11393.0*	
1979	Mercury	Wagon	9274F649208	V-8 (305)	06752.6*	
1977	Mercury	Monarch	7W37F539757	V-8/302	31285,2	
1978	Oldsmobile	Cutlass Cruiser	3H35H8G404 2 50	v-8/305	48592.2*	
1979	Oldsmobile	Cutlass Cruiser	3G35H92434400	V-8/305	20892.0	
1979	Ford	Pinto	9T117158158	4 cy1/140	11379.5	
1979	Chevrolet	Chevette	1B5809Y118162	4 cy1/98	07044.9	

*Exhaust pipe (outside) temperature measured.

Scott Environmental Technology Inc.


27

SET 1827 01 0979

3.0 DEVICE DESCRIPTION

The Sponsor's device, called Fuel-Max, consists of two parts. Part one is a molded metal "adapter" plate (see Figure 1.0) which was designed to replace the Exhaust Gas Recirculation (EGR) valve. The EGR valve normally allows a portion of the exhaust gases (under certain engine temperature/manifold vacuum conditions) to be returned to the intake manifold, and subsequently into the combustion chamber of an engine whereby that portion of the exhaust gases are re-burned. The Fuel-Max plate (part one) blocks off the exhaust port normally utilized by the EGR system and leaves the intake port open via a vacuum hose fitting on the plate. Part two (see Figure 1.0) is the main control portion of the Fuel-Max device. It is simply a vacuum operated valve housed in a non-metalic case utilizing a spring loaded object to maintain an open position until closed by manifold vacuum. The vacuum source utilized to operate the device is the same as that which would normally operate the EGR valve. When installed and operational, at a manifold vacuum that would operate the EGR valve, the valve opens and allows fresh filtered air in part two, through part one (via a length of flexible vacuum tubing) and into the intake manifold where it mixes with and further leans the normal air/fuel (A/F) mixture of the vehicle's engine.

The control portion of the device (part two, Figure 1.0) has an adjustment knob, graduated in increments of one to five (1-5) which allows it to be adjusted to a setting corresponding to the engine size, e.g. on 200 cubic inch engine, the selected setting should be -2-. On a 250 cubic inch engine it should be set mid-way between -2- and -3-, etc. This adjustment knob simply applies more tension to the spring which in turn will require a higher manifold vacuum to open the valve since different engine sizes produce different amounts of vacuum at identical power or acceleration rates.

SET 1827 01 0979

4.0 DESCRIPTION OF TEST PROCEDURES

The test procedures used for determining the exhaust emissions and fuel economy data are as follows:

4.1 1975 FEDERAL TEST PROCEDURE (FTP)

The test procedure used by the Environmental Protection Agency to measure exhaust emissions from passenger cars, light trucks, and motorcycles is the 1975 Federal Test Procedure ('75 FTP). This procedure may also be referred to as the Federal Driving Schedule, CVS C/H Test, the Cold Start CVS Test, Urban Dynamometer Driving Schedule (UDDS), or LA-4.

The '75 FTP is the procedure used in the certification tests of new cars beginning with the 1975 model year. It is also the procedure EPA has been using since 1971 to evaluate prototype engines and emissions control systems. The '75 FTP provides the most representative characterization available of exhaust emissions and urban fuel economy.

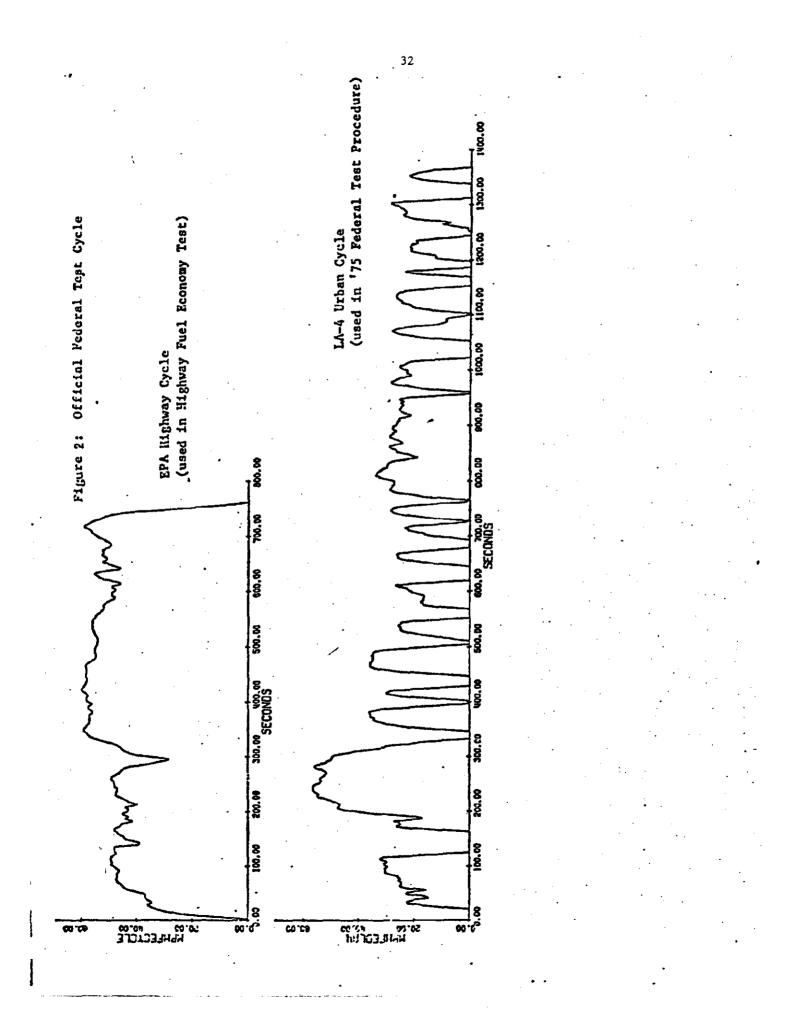
The test is run in a controlled ambient cell where temperature and humidity conditions can be maintained within specified limits. During the '75 FTP, the vehicle is driven on a chassis dynamometer over a stop-and-go driving schedule having an average speed of 21.6 mph.

The Urban Dynamometer Driving Schedule or LA-4 is the result of more than 10 years of effort by various groups to translate the Los Angeles smog-producing driving conditions to dynamometer operations. It is a nonrepetitive driving cycle covering 7.5 miles in 1372 seconds with an average speed of 19.7 mph. During the '75 FTP, the first 505 seconds of the LA-4 are rerun after the hot start so the distance traveled during a full '75 FTP is 11.1 miles and the average speed is 21.6 mph. The maximum speed attained during the LA-4 cycle (or '75 FTP) is 56.7 miles per hour. The LA-4 is derived from data taken from a vehicle driving under actual city traffic conditions, so it is typical of a vehicle operating in an urban environment.

Through the use of flywheels and a water brake, the loads that the vehicle would actually encounter on the road are reproduced. The vehicle's

SET 1827 01 0979

exhaust is collected, diluted and thoroughly mixed with filtered background air, and a known constant volume flow is obtained by the use of a positive displacement pump. This procedure is known as Constant Volume Sampling (CVS). The '75 FTP captures the emissions generated during a "cold" start and includes a "hot" start after a ten minute shut-down following the first 7.5 miles of driving.


A chassis dynamometer reproduces vehicle inertia with flywheels, and road load. For each inertia weight class, a road load which takes into account rolling resistance and aerodynamic drag for an average vehicle in each class is specified.

The vehicle must be parked for at least 12 hours prior to the exhaust emission test in an area where the temperature is maintained between 68°F and 86°F. This period is referred to as the "cold soak".

The '75 FTP is a cold start test, so the test vehicle is pushed onto the dynamometer without starting the engine. After placement of the vehicle on the dynamometer, the emission collection system is attached to the tailpipe, and a cooling fan is placed in front of the vehicle. The emission test is run with the engine compartment hood open.

The emission sampling system and test vehicle are started simultaneously, so that emissions are collected during engine cranking. After starting the engine, the driver follows a controlled driving schedule known as the Urban Dynamometer Driving Schedule (UDDS) or LA-4, which is patterned to represent average urban driving. The driving schedule is displayed to the driver of the test vehicle, who matches the vehicle speed to that displayed on the schedule. (A copy of the LA-4 driving schedule can be found in Figure 2). The LA-4 driving cycle is 1372 seconds long and covers a distance of 7.5 miles. At the end of the driving cycle, the engine is stopped, the cooling fan and sample collection system shut off, and the hood closed. The vehicle remains on the dynamometer and soaks for 10 minutes. This is the "hot soak" preceding the hot start portion of the test. At the end of ten minutes, the vehicle and CVS are again restarted and the vehicle is driven through the first 505 seconds (3.59 miles) of the LA-4 cycle.

Scott Environmental Technology Inc.

Exhaust emissions measured during the '75 FTP cover 3 regimes of engine operation. The exhaust emissions during the first 505 seconds of the test are the "cold transient" emissions. During this time period, the vehicle gradually warms up as it is driven over the LA-4 cycle. The emissions during this period will show the effects of choke operation and vehicle warm-up characteristics. When the vehicle enters into the remaining 867 seconds of the LA-4 cycle, it is considered to be fully warmed up. The emissions during this portion of the test are the "stabilized" emissions. The final period of the test, following the hot soak, is the "hot transient" section, and shows the effect of the hot start. The emissions from each of the three portions of the test are collected in separate bags.

4.2 1976 (FEDERAL) HIGHWAY FUEL ECONOMY TEST (HFET)

Since the '75 FTP does not represent the type of driving done in rural areas, especially on highways, a driving cycle to assess highway fuel economy was developed by the EPA. The EPA Highway Cycle was constructed from actual speed-versus-time traces generated by an instrumented test car driven over a variety of non-urban roads, and preserves the non-steady-state characteristics of real-world driving. The average speed of the cycle is 48.2 mph and the cycle length is 10.2 miles, approximating the average nonurban trip length. For this procedure the vehicle is fully warmed up and running at the start of the HFET. If the vehicle is shut off at the end of the '75 FTP and allowed to cool for an apprecialbe amount of time, a warmup Highway Cycle (See Figure 2) is run before the actual HFET. This insures that the vehicle drivetrain is at full operating temperature.

A complete description of the procedures (Vol. 27, No. 221, Part II, Nov. 15, 1972) that are followed during a '75 FTP and '76 HFET can be found in the Federal Register.

Each of the above described procedures was performed on the test automobile, one each before device installation and one each after device installation.

33

In addition to the exhaust gas and fuel economy measurements, exhaust pipe temperature was also measured on three vehicles in the test fleet. The measurements were obtained by clamping a type "K" (chromelalumel) thermocouple to the exhaust pipe immediately after the "Y" junction from each cylinder bank. The temperature was measured continuously during each test series and recorded on strip chart paper to determine the effect of installation of the Fuel-Max device on the exhaust temperature.

The CVS is used to collect the exhaust emissions during the tests. A portion of the exhaust gas mixture is collected in Tedlar bags for subsequent analysis. After the sample has been collected, it is transferred to analyzers where the concentrations of hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO₂) and oxides of nitrogen (NO_x) in the sample bag are determined. The analyzers provide for the determination of HC concentrations by flame ionization detector (FID), CO and CO₂ concentrations by non-dispersive infrared (NDIR) analysis and NO_x concentrations by chemi-luminescence (CL) analysis. These concentrations are then converted to grams per mile (pgm) for each of the pollutants measured by calculating the mass (average, diluted) emission rates collected during each portion of the tests using the total volume flow of the CVS. Once the mass emissions for each test, or test phase are known, the emissions in grams per mile are calculated using the following formula:

$$Y_{wm} = (0.43 Y_{ct} + 0.57 Y_{ht} + Y_s) + 7.5$$

where

- Y_{wm} = Weighted mass emissions of each pollutant, i.e., HC, CO or NO_x in grams per vehicle mile.
- Y_{ct} = Mass emissions as calculated from the "transient" phase of the cold start test, in grams per test phase.
- Yht = Mass emissions as calculated from the "transient" phase of the hot start test, in grams per test phase.

Y_s = Mass emissions as calculated from the "stabilized" phase of the cold start test, in grams per test phase.

The cold start and hot start bags are weighted 0.43 and 0.57 respectively. (Detailed explanations of the calculations can be found in the Federal Register.)

Fuel economy is usually measured by either the carbon balance method or by using a remote source of fuel (such as a can) which is weighed before and after the test. Unless a special test requires the use of the weight method, the carbon balance method is used to determine fuel economy.

The carbon balance procedure for measuring fuel economy correlates the carbon products in the vehicle exhaust to the amount of fuel burned during the test. The major assumptions in using this technique are:

1. The carbon present in the HC, CO and CO₂ exhaust is the only carbon found in the emissions. This means that other carbon containing compounds, such as oxygenated hydrocarbons that are not detected by a flame ionization detector and carbonaceous particulates, are ignored.

2. All of the carbon that is measured in the exhaust in the form of HC, CO and CO₂ came from the fuel; there are no other sources of carbon.

3. All of the fuel consumed during the test can be accounted for by the carbon in the exhaust. This assumption implies that all of the fuel that leaves the tank passes through the engine, and that no carbon leaks from the exhaust system or evaporates from the vehicle before being analyzed.

Since the carbon weight fraction of the fuel is known, it is a simple matter to calculate the amount of fuel consumed during the test. Agreement between the carbon balance method and direct fuel consumption measurement is normally within 22.

Exhaust emission concentrations as collected in the integrated bag samples, were calculated using appropriate instrument calibration factors. This "raw" concentration data was then converted to grams of pollutant per test mile (based on a 7.5 mile test) using the procedure outlined above. This data, including all measured parameters used in the mass emission computations, is included in the tables attached as Appendix B. Exhaust emissions collected during the Highway Fuel Economy tests were reduced in the same manner as described above, with mass emissions (grams per mile) based on a test of 10.242 miles. The tables attached as Appendix C summarize the exhaust emission data for these tests.

Scott Environmental Technology Inc.

35

Urban and Highway Fuel Economy for each test sequence was calculated using the procedure outlined in Federal Register Volume 41, Number 218, Part 600 "Fuel Economy of Motor Vehicles", November 10, 1976. The basic equation used to calculate the fuel economy of a vehicle, in miles per gallon, from the mass emissions data is as follows:

> MPG = grams of carbon/gallon of fuel grams of carbon in exhaust/mile

or:

$$MPG = \frac{0.866 \text{ (mean density of fuel - gpg)}}{0.866 \text{ (gpm HC)} + 0.429 \text{ (gpm CO)} + 0.273 \text{ (gpm CO}_{7})}$$

The three constants represent the carbon weight fractions of the fuel (HC, CO and CO₂). The urban and highway fuel consumption rates for each test are included at the bottom of the tables in Appendices B and C.

Table 2.0 gives the maximum temperature achieved during the test series on the three vehicles that were monitored for that purpose. This data indicates that there is no significant change in exhaust temperature with installation of the Fuel-Max device.

36

TABLE 2.0

MAXIMUM TEMPERATURE ACHIEVED

		FTP	HE
-1977 Dodge Aspen Wagon	Baseline	533°F	730°F
	Device	540°F	625°F
1979 Mercury Station Wagon	Baseline	552°F	650°F
	Device	500°F	600°F
1978 Oldsmobile Cutlass Cruiser (Wgn)	Baseline	570°F	660°F
	. Device	486°F	690°F

•

Scott Environmental Technology Inc.

KS.

5.0 STATISTICAL ANALYSIS

The prime objective of this study was to determine what effect the Fuel-Max device had on certain exhaust emission and fuel economy characteristics of late model automobiles. An evaluation of this objective was accomplished by selecting a typical sample of automobiles and subjecting them to identical tests before and after installation of the device.

A well known statistical test for determining device effects on a set of data is to perform a t-test on the differences of the test measurements before and after device installation. By taking differences, extraneous effects which might influence both members of a pair tend to cancel out, thus leaving only the effect (if any) of the device. The t-value is calculated as:

$$T_{calc} = \frac{\overline{x}}{SD/\sqrt{n}}$$

Where:

x = Mean of the paired difference

SD = Estimate of the standard deviation of the differences
n = Sample size

The test is carried out by considering the Null Hypothesis, $H_0: \mu_1 = \mu_2$. That is, the "before" and "after" treatment observations came from a universal population with equal means. In other words, there is no effect of treatment on the two sets of observations. The assertion of this hypothesis is stated with a certain degree of risk termed the level of significance (α). Standardized t-values for various levels of significance are available in statistical tables. Thus, if the calculated t-value is greater than the tabulated t-value, we can reject our Null Hypothesis and probably accept an Alternate Hypothesis, $H_1(\mu_1 > \mu_2 \text{ or } \mu_1 < \mu_2)$ at an a level of significance. For the purposes of this study, a 952 level was considered 'significant' and a 992 level as 'very significant'.

Table 3.0 summarizes the paired differences of the mass emission and fuel economy characteristics of the test fleet with the HC, CO and NO_X expressed in grams per mile (gpm) and fuel economy in miles per gallon (mpg).

Scott Environmental Technology Inc.

TABLE 3.0

					Fuel Economy	
Vehicle	Device	HC (GPM)	CO (GPM)	NO _X (GPM)	Urban (MPG)	Highway (MPG)
1978 Lincoln Continental	None	0.53	6.0	1.56	11,48	16.11
	Fuel-Max	0.47	2.0 '	7.17	12.07	17.14
1979 Oldsmobile Cutlass Salon	None	1,55	18.8	1.15	16.76	24.12
· · · · · · · · · · · · · · · · · · ·	Fuel-Max	1.10	9.6	3.33	17.18	24.72
1977 Dodge Aspen Wagon	None	2.98	35.0	1.73	15.02	21.81
	Fuel-Max	2.56	33.2	3.69	14.65	23.25
1979 Mercury Station Wagon	None	1.00	7.6	1.28	13.52	21.90
	Fuel-Max	0.77	4.1	8.23	15.14	22.37
1977 Mercury Monarch	None	2,38	28.4	2.46	15.43	23.69
	Fuel-Max	1.72	17.8	7.12	17.12	22.17
1978 Oldsmobile Cutlass Cruiser (Wgn)	None	1.36	20.8	1.20	15.55	23.91
	Fuel-Max	0.60	10.2	3.48	16.56	25.18
1979 Oldsmobile Cutlass Cruiser (Wgn)	None	1.56	13.8	1.33	14.43	21.15
	Fuel-Max	0.86	8.2	3.75	14.77	21.87
1979 Ford Pinto	None	1.04	25.3	2.04	18.47	28.80
	Fuel-Max	1.39	30.7	5.62	18.03	28.67
1979 Chevrolet Chevette	None	1.58	17.7	1.43	21.41	32.45
	Fuel-Max	1.03	10.0	5,17	22.20	33.58

SUMMARY OF EXHAUST EMISSIONS AND FUEL ECONOMY

.

C

ς θΕ

۱

1. Analysis on Reduction in HC Emissions

H₀: $\mu_1 = \mu_2$ Null Hypothesis that there is no effect H₀: $\mu_1 < \mu_2$ Alternate Hypothesis that emissions after device installation are lower

Calculated t = $\frac{0.38667}{0.33632/\sqrt{9}}$ = 3.449

t.90, $\phi = 8 = 1.397$ t.95, $\phi = 8 = 1.860$ t.99, $\phi = 8 = 2.896$ t.995, $\phi = 8 = 3.355$

Standard t values

Since the calculated t is greater than the tabulated t at a 997 (or even a 99.52) level, there is, statistically, a very significant difference in exhaust hydrocarbons as a result of installing the Fuel-Max device. The mean HC emission reduction is 24.5%. $H_0: \mu_1 = \mu_2$ Null Hypothesis that there is no effect

 $H_0: \mu_1 > \mu_2$ Alternate Hypothesis that emissions after device installation are lower

Calculated t =
$$\frac{5.28889}{4.81789/\sqrt{9}}$$
 = 3.293

^t.90, $\phi = 8 = 1.397$ ^t.95, $\phi = 8 = 1.860$ ^t.99, $\phi = 8 = 2.896$ ^t.995, $\phi = 8 = 3.355$

Standard t values

Since the calculated t is greater than the tabulated t at a 997 level, there is, statistically, a very significant difference in exhaust carbon monoxide as a result of installing the Fuel Max device. The mean CO emission reduction is 27.5%.

 \odot

3. Analysis on Increase in NO_x Emissions

42

 $H_0: \mu_1 = \mu_2$ Null Hypothesis that there is no effect

 $H_0: \mu_1 < \mu_2$ Alternate Hypothesis that emissions after device installation are higher

Calculated t =
$$\frac{-3.70889}{1.63776/\sqrt{9}} = -6.794$$

^t.90, $\phi = 8 = -1.397$ ^t.95, $\phi = 8 = -1.860$ ^t.99, $\phi = 8 = -2.896$ ^t.995, $\phi = 8 = -3.355$

Standard t values

Since the calculated t is greater than the tabulated t at a 99.5% level, there is, statistically, a very significant difference in exhaust nitric oxides as a result of installing the Fuel-Max device. The mean NO_x emission increase is 234%.

4. Analysis on Increase in Urban Fuel Economy

 $H_0: \mu_1 = \mu_2$ Null Hypothesis that there is no effect

 $H_0: \mu_1 < \mu_2$ Alternate Hypothesis that urban fuel economy after device installation is higher

Calculated t = $\frac{-0.62778}{0.7109/\sqrt{9}}$ = -2.649

t.90, $\phi = 8 = -1.397$ t.90, $\phi = 8 = -1.860$ t.95, $\phi = 8 = -1.860$ Standard t values

Since the calculated t is greater than the tabulated t at a 95% level, there is, statistically, a significant difference in urban fuel economy as a result of installing the Fuel-Max device. The mean urban fuel economy increase is 4.5%. $H_0: \mu_1 = \mu_2$ Null Hypothesis that there is no effect $H_0: \mu_1 < \mu_2$ Alternate Hypothesis that highway fuel economy after device installation is higher

Calculated t = $\frac{-0.55667}{0.8604/\sqrt{9}}$ = -1.941

t.90, $\phi = 8 = -1.397$ t.95, $\phi = 8 = -1.860$, Standard t values

• Since the calculated t is greater than the tabulated t at a 95% level, there is, statistically, a significant difference in highwav fuel economy as a result of installing the Fuel-Max device. The mean increase in highway fuel economy is 2.4%.

Scott Environmental Technology Inc.

APPENDIX A

VEHICLE INFORMATION

DYNAMOMETER INFORMATION

TEST DATE/TIMES

ł

45

FS	- N.	5
37	ĽÇ,	<u>چ</u>
	زني.	<u> </u>
	2	-

PLUMSTEADVILLE, PA. 18949

.

PHONE: 215-766-8861

TWX: 510-665-9344

.

TABLE A-1

VEHICLE INFORMATION						•
Make: Lincoln		Model:	Contine	ental	Year:	1978
Engine Serial No	<u> </u>	Ch	assis Se	erial No.		2
Transmission <u>Autom</u>	atic			• •	NJ 845-I4J	
Cdometer	0.0		-			
Engine Disp. <u>460</u>	7-8			•	•	· .
Idle RPM			- ,			
Fuel System <u>1-4</u>	<u>barrel</u> c	arb				•
Tank Capacity24	.2					
Tank Location Left	ear					
Curb Weight 4880]	bs.		 .	-		
Drive Wheel Tire Press.	<u>32 ps</u>	1 4				
Device <u>Baseline - ne</u>	<u>device</u>				·	
DYNAMOMETER INFORMATION Serial NoClayton 1	-				NFORMATION	
Inertia 5000 lbs	·		_ Fina	11 Wt. (g)	#*	
Road Horsepower @ 50 MI	PH I	•	İnit	ial Wt. (g)	
Actual 14.7			Net	Wt. (g) _	<u></u>	
Indicated 10.5				•		•
TEST SEQUENCE:		Tes	st No	1	Project No.	1827
•	Date	Star	: Time	Odcmeter Start	End Time	Odometer End
Road Precondition:					. <u></u>	<u>``</u>
Dyno Precondition:						
Cold Soak:	.8/6/79_	17	00		1338	
Fuel Transfer:					·	· · · ·
Heat Build:		• • ····		•		
CVS Test:	8/7/79	13	38	<u>07509 0</u>		07520_1
Hot Soak:	8/7/70	- <u></u>		17572 7	1660	07533 0
Highway Fuel Economy:	8/7/79	14	41	07523.2	1440	07533.2

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-3

VEHICLE INFORMATION

Highway Fuel Economy:

Make: Lincoln		Model:	<u>Conti</u>	nental	Year:	1978
Engine Serial No.		Chas	sis S	erial No.	<u>8¥82A881</u>	792
TransmissionAutomati	ic	•			NJ 845-1	4J
Odometer07534.5						•
Engine Disp. 460 V-8	3			•	·	
Idle RPM						•
Fuel System 1 - 4 bl	ol. carb.					
Tank Capacity 24	4.2					
Tank LocationLei	ft rear				,	· .
Curb Weight 4						
Drive Wheel Tire Press.					· ·	
Device Fuel-Max	k (4.6 set	: point)			• .	·
DYNAMOMETER INFORMATION	Ŧ		CAR	BON TRAP I	NFORMATION	•
	-		•			· · ·
Serial No. Clayton]						
Inertia <u>5000</u> #						
Road Horsepower @ 50 ME		•			g) <u>-</u>	
Actual 14.7		<u>.</u>	Net	WE. (g) _		· · ·
Indicated 10.5	<u> </u>		·	•		
TEST SEQUENCE:		Test	No.	3	Project No.	1827-01
•		•		Odometer		Odometer
	Date	Start]	ime		End Time	
Road Precondition:		, <u></u>				
Dyno Precondition:	<u></u>				بى مەر سى مەر سەر س	•
Cold Soak:	8/7/79	1700			1425	
Fuel Transfer:				-		•
Reat Build:		. <u></u>		·		•
CVS Test:	8/8/79	1425		07534		07544.1
Hot Soak:				•		·
Highway Fuel Economy:	8/879	1.514		07548 ()1527	07558_8

TROY, MICHIGAN / SAN BERNARDING CALLEDRALA

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-2

VEHICLE INFORMATION

Make: Oldsmobile	Model:	Cutlass Salon	Year:1979
Engine Serial No	Ch	assis Serial No.	3G09H9G427788
Transmission <u>Automatic</u>	. <u> </u>	- -	PA 951-309
Odometer07955.1		_	
Engine Disp. 305 V-8			
Idle RPM		_	
Fuel System <u>1 - 4 bbl.</u>		_	
Tank Capacity 18.2		_	
Tank Location Rear			
Curb Weight 3298#			
Drive Wheel Tire Press. 30 psi .	Ľ	_ .	
Device Baseline (no device)			
· · ·	· .		
DYNAMOMETER INFORMATION		CARBON TRAP II	NFORMATION
Serial No. Clayton 1289P		_ Serial No	· · ·
Inertia		Final Wt. (g)	

Road Horsepower @ 50 MPH Actual <u>12.3</u>

9.0

Final Wt. (g)	
[nitial Wt. (g)	
iet Wt. (g)	

TEST SEQUENCE:

Indicated

2 Project No. <u>1827-01</u>

	Date	Start Time	Odometer _ <u>Start</u>	End Time	Odometer <u>End</u>
Road Precondition:		<u></u>			· · · · · · · · · · · · · · · · · · ·
Dyno Precondition:	<u></u>		_ <u></u>		
Cold Soak:	8/6/79	1800		1505	• '
Fuel Transfer:			•		
Heat Build:	•		•	<u></u>	•
CVS Test:	8/7/79	1505	07955.1	1546	07965.2
Hot Soak:	· .	<u></u>	·		
Highway Fuel Economy:	8/7/79	1552	07967.8	1605	07977.3

E	2	۲.
5		-
	أيمر	

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-4

VEHICLE INFORMATION

Make: <u>Oldsmobile</u>	· · · · · · · · · · · · · · · · · · ·	Model: <u>C</u> u	tlass Sal	on	Year:	1979
Engine Serial No.	-	Chass	is Serial	No3	G0989G4277	88
Transmission Automati	lc			r	۶	
Odometer07977.	5					
Engine Disp 305 V	/-8	·	•			
Idle RPM		-			• ·	
Fuel System <u>1-4</u>	bbl.					
Tank Capacity 18.2	·	· •			·	· .
Tank Location Rear						
Curb Weight 3298#				•		· ·
Drive Wheel Tire Press.		<u> </u>	·			• '
Device Fuel-Max			·			
						•
DYNAMOMETER INFORMATION	•		CARBON TH	RAP INF	DRMATION	•
Serial NoClayton 1	289P	•	Serial No		-	• •
Inertia 3500#			Final Wt.			
Road Horsepower @ 50 MP			Initial V			
Actual 12.3			Net Wc. (-
Indicated 9.0						
TEST SEQUENCE:		Test	No. 4	Pro	ject No.	1827-01
			Odom	eter		Odometar
• •	Date	Start T	ize <u>Sta</u>	rt	End Time	End
Road Precondition:						<u></u>
Dyno Precondition:					<u> </u>	. <u></u>
Cold Soak:	8/8/79	1630		-	0808	
Fuel Transfer:						
Heat Build:	·					• . •
CVS Test:	8/7/79	0808	07	277.5	0849	07987.6
Hot Soak:						•
Highway Fuel Economy:	8/9/79	0854	07	<u>989.4</u>		0799.0

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-5

VEHICLE INFORMATION

Make: Dodge		Model: <u>Aspen Wagon</u>	Year:
Engine Serial No		Chassis Serial No.	NH4 5G7 F2 52970
Transmission	Automatic		
Odometer	11393.0		•
Engine Disp.	<u>318 V-8</u>	· · · · · · · · · · · · · · · · · · ·	
Idle RPM			
Fuel System	<u>1 - 2 bbl.</u>		· .
Tank Capacity	20 gallon		
Tank Location	Left rear	_	
Curb Weight	3585#		
Drive Wheel Tire Pr	ess36	ipsi -	· · · · · · ·
Device	Baseline		

DYNAMOMETER INFORMATION

Serial No.	Clayton 1289P				
Inertia	4000#				
Road Horsepo	wer @ 50 MPH				
Actual	13.2				
Indicated	9-8				

CARBON TRAP INFORMATION

Serial No	-
Final Wt. (g)	
Initial Wt. (g)	
Net Wt. (g)	<u> </u>

TEST SEQUENCE:

Test No. 5 Project No. 1827-01

	Date	Start Time	Odometer Start	End Time	Odometer End
Road Precondition:	<u></u>				
Dyno Precondition:					
Cold Soak:	<u>8/12/79</u>			1358	
Fuel Transfer:	<u></u>		-	·	
Heat Build:				·	
CV5 Test:	<u> </u>	1358	<u>11393.0</u>	<u>1340</u>	11403.7
Hot Soak:				·	• .
Highway Fuel Economy:	8/13/79	1354	_11409.8	1507	_11419.7

51

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-6

VEHICLE INFORMATION

Make: <u>Dodge</u>		Model	:Aspe	Nagon	Year: _	1977
Engine Serial No.		(Chassis	Serial No	•	52970
Transmission <u>A</u>	utomatic		<u> </u>		•	
Odometer	41418.3				- ·	
Engine Disp.	<u>318 V-8</u>					
Idle RPM		·	<u> </u>		•	
Fuel System	<u>1 - 2 bb1,</u>					•
Tank Capacity	20 gallons					
Tank Location	Left rear					
Curb Weight	3585₽			,		
Drive Wheel Tire P	ress. <u>36</u>	psi	-		•	
Device	Fuel Max (se	et arour	ad 2.25)			
						-
DYNAMOMETER INFORM	ATION		CA	RBON TRAP	INFORMATION	-
Serial No. Clay	ton 1289P		Se	rial No.	-	
Inertia					g)	-
Road Horsepower @ !	•				(g)	
Actual	•		•			
	9.8		· .			,
TEST SEQUENCE:		T	est No.	6	Project No.	1827-01
	•			Odomete		Odonete
÷.	Date	Sta	rt Time	Start	End Time	End
Road Precondition:	· • • • • • • • • • • • • • • • • • • •		<u></u>			
Dyno Precondition:				· `		•
Cold Soak:	_8/13/7	<u>19 15</u>	122		1339	•
Fuel Transfer:				• ·		
Heat Build:				•		•
CVS Test:	8/14/7	9 13	139		1421	41428
Hot Soak:						
Highway Fuel Econo	my: <u>8/14/7</u>	<u>14</u>	29	4143;	2.1 _1441	41442

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

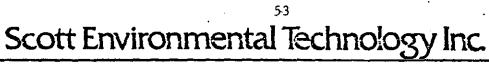
TWX: 510-665-9344

TABLE A-7

VEHICLE INFORMATION

Highway Fuel Economy:

Make: Mercury	Model: Station Wagon	Year: <u>1979</u>
Engine Serial No	Chassis Serial No. <u>9</u> 2	<u>.74F649208</u>
Transmission <u>Automatic</u>	•	:• •
Odometer 06752.6		
Engine Disp. 302 V-8		· ·
Idle RPM	۵ مرب <u>محافظ میں معامل میں م</u>	
Fuel System 1 2 bbl.		
Tank Capacity 19 gallons	<u> </u>	
Tank Location Left rear	· · · · · · · · · · · · · · · · · · ·	
Curb Weight 3990#	•	
Drive Wheel Tire Press. 3	4 psi	
Device Baseline		ement
		······································
DYNAMOMETER INFORMATION	CARBON TRAP INH	ORMATION
Serial No. <u>Clayton 1289P</u>	Serial No.	
Inertia <u>4500</u> #		
Road Horsepower @ 50 MPH		
Actual 14.0		·
	Net HC. (g)	· · ·
Indicated		•
TEST SEQUENCE:	Test No. 7 Pr	oject No. <u>1827</u>
Date	Odometer Start Time Start	•
Road Precondition:		·
Dyno Precondition:		
Cold Soak: _ <u>8/14</u>	/791610	0946
Fuel Transfer:		
Heat Build:	•	· · · ·
CVS Test:	<u>/790946067526</u>	<u></u>
Hot Soak:	· · · · · · · · · · · · · · · · · · ·	


TROY, MICHIGAN / SAN BERNARDING, CALIFORNIA

1034

8/15/79

06766.5 1046

06776.2

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

2

TABLE A-11

VEHICLE INFORMATION

Make: <u>Mercury</u>		Model:_	Stati	lon Wagon	Year:	1979
Engine Serial No		Ch	assis S	Serial No.	9274F64	9208
Transmission <u>Au</u>	itomatic	·			NJ 414-	K HO
Odometer	06776.4		`			
Engine Disp.	<u>302 V-8</u>			•		
Idle RPM			_			
Fuel System	<u>1 - 2 bb1.</u>				•	
Tank Capacity	19 gallons				-	
Tank Location	Left rear					
Curb Weight	3990#					
Drive Wheel Tire Pr	ess. <u>35 p</u>	si				
Device	Fuel-Max (a	round 3	2)	·		
DYNAMOMETER INFORMA	TION		CAR	BON TRAP I	NFORMATION	
Serial NoClayt	on 1289P		_ Ser	ial No	<u> </u>	
Inertia	4500#		_ Fin	al Wt. (g)	<u> </u>	
Road Horsepower @ 5			Ini	tial Wt. (g) <u> </u>	
Actual	14.0		Net	Wt. (g)		·····
Indicated	10.5	• 				
TEST SEQUENCE:		Te	st No.	11 1	Project No.	1827-01
•	Date	Star	t Time	Odometer Start	End Time	Odometer End
Road Precondition:	·····				<u> </u>	- <u></u>
Dyno Precondition:					·	
Cold Sozk:	8/16/	79	\$50		0839	•
Fuel Transfer:						
Heat Build:				•		•
CVS Test:	8/17/	790	339	06776.	4 <u>0920</u>	06787.
Hot Soak:					- 	•
Highway Fuel Econor	ny: <u>8/17/</u>	79 09	24	6789.5	0938	06799.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-8

VEHICLE INFORMATION

Make: Mercury		Model:	Monarch	Year: <u>1977</u>
Engine Serial No.		Chas	sis Serial No.	7W37F539957
Transmission	Automatic			
Odometer	31285.2			
Engine Disp			•	
Idle RPM				
Fuel System	<u>1 - 2 bbl.</u>			
Tank Capacity	19.2			
Tank Location	Rear			
Curb Weight	3459#		•	
Drive Wheel Tire P	ress. <u>34</u>	psi .		
Device	Baseline		· · ·	
1			•	

DYNAMOMETER INFORMATION

Serial No.	Clayton 1289P			
Inertia	4000#			
Road Horsep	wer @ 50 MPH			
Actual	13.2	·		
Indicated	9.8			

CARBON TRAP INFORMATION

Serial No.	
Final Wt. (g)	
Initial Wt. (g) _	
Net Wt. (g)	

TEST SEQUENCE:

Test	No.	-	Project	No.	1827-01
****	****	Ö		110.0	102/-01

•	Date	Start Time	Odometer Start	End Time	Odometer End
Road Precondition:			<u></u>		
Dyno Precondition:			<u></u>	<u></u>	
Cold Soak:	8/14/79			1059	
Fuel Transfer:		·			
Heat Build:					
CVS Test:	<u>8/15/79</u>		31285.2	1139	
Hot Soak:		·			
Highway Fuel Economy:	8/15/79	1146	<u></u>	1159	31308_6

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A- 12

VEHICLE INFORMATION

Make: Merc	ury	Model:_	Monar	ch	Year: _	1977
Engine Serial No		Ch	assis S	erial No.	_ <u>7W37F53975</u>	7
Transmission	utomatic				•	
Odometer	31338.4		_		• .	
Engine Disp. 🔄	302 V-8		_			
Idle RPM	-		_			
Fuel System			<u> </u>			
Tank Capacity	19.2 gallons		-			
Tank Location	Rear	<u> </u>	_			
Curb Weight	3459#		_	•		·
Drive Wheel Tire	Press. 34	psi	·			•
Device Fuel-Ma	x (setting arou	md 3.02)			•	
•						
DYNAMOMETER INFO	RMATION		CAR	BON TRAP	INFORMATION	-
Serial NoC1	avton 1289P					
Inertia)	
Road Horsepower	•				(g)	
Actual						
Indicated			-			
TEST SEQUENCE:	<u>.</u>	Tes	- t No.	12	Project No.	1827-01
	•		. –			
	Date	Start	Time	Start	End Time	Odometer End
Road Preconditio		······································	·		· · · ·	•
Dyno Preconditio		-	,		-	•
Cold Soak:	8/20/7	9 170	0		0923	•
Fuel Transfer:					·	
Heat Build:						* <u>.</u>
CVS Test:	8/21/7	9 082:	3	31338.	4 0903	<u> </u>
Hot Soak:						
Highway Fuel Eco	DECEMPT 8/21/7	9 091	3	31354.	0 0931	<u>_31363.8</u>

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-13

VEHICLE INFORMATION

Hot Soak:

Highway Fuel Economy:

Make: Oldsmobile	1	fodel:_Cu	itlass	Cruiser	(Wgn) Year:	1979
Engine Serial No		Chas	ssis S	erial No	. <u>3G35H9</u>	2434400
Transmission Auto	omatic		÷		,	•
Odometer2089	¥2.0					•
Engine Disp.				• •		
Idle RPM -						
Fuel System	L – 2 bbl					
Tank Capacity	18.2	•	-			
Tank Location		·				
Curb Weight			ŗ			
Drive Wheel Tire Pres		si 🤸				
Device <u>Baseline</u>						
•		-				· · · · · · · · · · · · · · · · · · ·
DYNAMOMETER INFORMATI	LON		CAR	BON TRAP	INFORMATIO	s -
Serial No. Claytor	1 1289P	•	Ser	ial No.	£	•
Inertia 4000)#				;) <u> </u>	
Road Horsepower @ 50					(g) <u>-</u>	
Actual	13.2					
Indicated					· · · · · · · · · · · ·	<u> </u>
TEST SEQUENCE:		Test	No	13	Project No	- 1827-01
· · ·	Date	Start_	<u>Time</u>	Odomete Start	r End Tim	Odomete End
Road Precondition:				<u></u>		· · · · · · · · · · · · · · · · · · ·
Dyno Precondition:				·		
Cold Soak:	8/20/79	1645			1004	-
Fuel Transfer:				· ·		
Heat Build:						. .
CVS Test.	8/21/29	1004		20802	0 10/5	20002

1055

20906.5

1109

20916.6

8/21/79

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-15

VEHICLE INFORMATION	-		Cutla	ass Cruiser		•
Make: <u>Oldsmobile</u>	<u></u>	Model:	(Way	gon)	Year:	1979
Engine Serial No		Cha	assis :	Serial No.	3G35H9243	4400
Transmission Au	tomatic		-		•	
Odometer209	916.8		-			·
Engine Disp. <u>30</u>	5 V-8		_			
Idle RPM			-			. •
Fuel System <u>1</u> -	-2 bbl.		_			
Tank Capacity 18						
Tank Location Lea	ar Rear		• ·		•	• .
Curb Weight34	75#		-			
Drive Wheel Tire Pre		si 🦯	-			•
Device Fuel-Ma			-		•	
•				<u> </u>	· · · · · · · · · · · · · · · · · · ·	· ·
DYNAMOMETER_INFORMAT	TION		CAF	BON TRAP I	NFORMATION	
Serial No. <u>Clayto</u>	n 1289P		Sei	ial No.		•
Inertia 400					•	
Road Horsepower @ 50	1	•			g)	
Actual 13.	•				·	
Indicated9.			•	· · · · · ·	, ,	
TEST SEQUENCE:		Test	- L No.	15 1	roject No.	1927-01
	•					
	Date	Start	Time	Odometer Start	End Time	Odometer Fnd
Read Precondition:			<u>,,,,,,</u>			
Dyno Precondition:				· <u> </u>		
Cold Soak:		1611			·································	•
Fuel Transfer:	8/23/79	_1644			0849	
Heat Build:	8/24/79	0849		20016 0	0020	
CVS Test:	0/24//9		<u> </u>	20916.8	0929	20927.6
Hot Soak:					·	
Highway Feel Economy	y: <u>8/24/79</u>	0937		20931.2	<u>0950</u>	20940.0
					• •	

58

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-14

VEHICLE INFORMATION

Make: <u>Ford</u>	Model:	Pinto	Year:	1979
Engine Serial No.	Chas	ssis Serial No.	<u>971171581</u>	58
Transmission <u>Automatic</u>				
Odometer 11253.8				
Engine Disp. <u>140</u> 4-cy	1			
Idle RPM				
Fuel System <u>1 - 2 b</u>	bl		-	
Tank Capacity <u>11.7</u>		-		
Tank Location Left Rear				
Curb Weight 2449#				
Drive Wheel Tire Press.	-			•
Device Baseline				
		· ·		
DYNAMOMETER INFORMATION		CARBON TRAP_I	NFORMATION .	•
		Serial No.	· ·	
Serial No. <u>Clayton 1289P</u>		•		
Inertia 2500#				
Road Horsepower @ 50 MPH		Initial Wt. (
Actual 9.4	-	Net Wt. (g) _	<u> </u>	······································
Indicated <u>6.4</u>				•. •
TEST SEQUENCE:	Test	No. <u>14</u> I	Project No.	1827-01
	•	Odometer		Odometer
Dat	e Start	Time Start		
Road Precondition:				· · · · · · · · · · · · · · · · · · ·
Dyno Precondition:				
Cold Soak: 8/	<u>22/7</u> 9 <u>1618</u>	3	0919	•
Fuel Transfer:		-		
Heat Build:		·		•
· · · · · · · · · · · · · · · · · · ·	23/79 091	11253.8	1000	11265.0
Hot Soak:		·		
	23/79 1010	11269 4	1023	11278.6

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-16

VEHICLE INFORMATION

Make: Ford	Mode	el:P	nto	_ Year: _	<u>1979</u>
Engine Serial No.	-	Chassis	Serial Nc.	9 <u>711715815</u>	3
Transmission <u>Automa</u>	tic	·	-		
Odometer 11279.	5				
Engine Disp. 140	4-cy1		• •		
Idle RPM		, 			
Fuel System <u>1</u> -	2 bb1.	····			
Tank Capacity	11.7				. • •
Tank LocationLeft	rear				
Curb Weight2449	#		-		-
Drive Wheel Tire Press.	28 psi (<u></u>	•		•
Device Fuel-Max - No	exhaust back	-pressure	valve		
DYNAMOMETER INFORMATION		CA	RBON TRAP IN	FORMATION	•
Serial No. Clayton 1	289P	· Se	rial No.		• • •
Inertia 2500#					
Road Horsepower @ 50 MP			itial Wt. (g		
Actual9.4		•			
Indicated 6.4	· · · · · · · · · · · · · · · · · · ·			·	
TEST SEQUENCE:		Test No.	16P1	oject No.	1827-01
	Date St	tart Time	Odometer Start	End Time	
Road Precondition:					
Dyno Precondition:	·	<u></u>	······································	<u></u>	
Cold Soak:	8/26/79	1610	-	1346	•
Fuel Transfer:			· .	· 	
Heat Build:				<u></u>	•
CVS Test:	8/27/79	1346	11279.5	<u>1427</u>	11289.5
Hot Soak:				·	
Highway Fuel Economy:	8/27/79	1434	11293.5	1447	11303.5

PLUMSTEADVILLE, PA	18949 Pi	IONE: 215-76	6-88614 TWX	: 510-665-9344	
	TABLE	A-17	۰ ۰		-
VEHICLE INFORMATION					
Make: Chevrolet		Model:	hevette	Year:	1979
Engine Serial No.					
Transmission Autom	atic				
Odometer 7044.					
Engine Disp. 98					
Idle RPM		· · · · · · · · · · · · · · · · · · ·			
Fuel System 1 - 2	bbl				
Tank Capacity 12.5					
Tank Location Left		d			•
Curb Weight 2109					
Drive Wheel Tire Press		SI >			
Device Basel		,			
DYNAMOLETER INFORMATIC	•		CARBON TRAP	INFORMATION	
	<u>2N</u> 1289P		Serial No. Final Wt. (- -
DYNAMOLETER INFORMATIO Serial No. <u>Clayton</u> Inertia 2500# Read Horsepower @ 50 h	<u>2N</u> 1289P		Serial No. Final Wt. (Initial Wt.	 g) (g)	
DYNAMOLETER INFORMATIC Serial No. <u>Clayton</u> Inertia <u>2500</u> #	<u>2N</u> 1289P		Serial No. Final Wt. (Initial Wt.		
DYNAMOLETER INFORMATIC Serial No. <u>Clayton</u> Inertia 2500# Read Horsepower @ 50 H Actual 9.4	<u>2N</u> 1289P	 Test N	Serial No. Final Wt. (Initial Wt. Net Wt. (g)	 g) (g)	
DYNAMOLETER INFORMATIC Serial No. <u>Clayton</u> Inertia <u>2500</u> Read Horsepower @ 50 H Actual <u>9.4</u> Indicated <u>6.4</u>	<u>2N</u> 1289P	Test N Start Ti	Serial No. Final Wt. (Initial Wt. Net Wt. (g) No. <u>17</u> Odomete		 1827-0 Odome
DYNAMOLETER INFORMATIC Serial No. <u>Clayton</u> Inertia 2500# Read Horsepower @ 50 H Actual 9.4 Indicated 6.4	<u>DN</u> <u>1289P</u> IPH		Serial No. Final Wt. (Initial Wt. Net Wt. (g) No. <u>17</u> Odomete		 1827-0 Odome
DYNAMOLETER INFORMATIC Serial No. <u>Clayton</u> Inertia 2500# Rcad Horsepower @ 50 H Actual 9.4 Indicated 6.4 <u>TEST SEQUENCE</u> :	<u>DN</u> <u>1289P</u> IPH		Serial No. Final Wt. (Initial Wt. Net Wt. (g) No. <u>17</u> Odomete		
DYNAMONIZTER INFORMATION Serial No. <u>Clayton</u> Inertia <u>2500</u> Road Horsepower @ 50 H Actual <u>9.4</u> Indicated <u>6.4</u> <u>TEST SEQUENCE</u> : Road Precondition:	<u>DN</u> <u>1289P</u> IPH		Serial No. Final Wt. (Initial Wt. Net Wt. (g) No. <u>17</u> Odomete		 1827-0 Odome
DYNAMONIZTER INFORMATIC Serial No. <u>Clayton</u> Inertia <u>2500</u> Read Horsepower @ 50 k Actual <u>9.4</u> Indicated <u>6.4</u> <u>TEST SEQUENCE</u> : Road Precondition: Dyno Frecondition:	<u>DN</u> 1289P (PH <u>Date</u>	Start Ti	Serial No. Final Wt. (Initial Wt. Net Wt. (g) No. <u>17</u> Odomete		<u>1827-0</u> Odome
DYNAMOLETER INFORMATION Serial No. <u>Clayton</u> Inertia 2500# Road Horsepower @ 50 H Actual 9.4 Indicated 6.4 <u>TEST SEQUENCE</u> : Road Precondition: Dyno Frecondition: Cold Soak:	<u>DN</u> 1289P (PH <u>Date</u>	Start Ti	Serial No. Final Wt. (Initial Wt. Net Wt. (g) No. <u>17</u> Odomete		<u>1827-0</u> Odome
DYNAMOLETER INFORMATION Serial No. Clayton Inertia 2500# Road Horsepower @ 50 H Actual Actual 9.4 Indicated 6.4 TEST SEQUENCE: Road Precondition: Dyno Precondition: Cold Soak: Fuel Transfer:	<u>DN</u> 1289P (PH <u>Date</u>	Start Ti	Serial No. Final Wt. (Initial Wt. Net Wt. (g) No. <u>17</u> Odomete	g) (g) (g) Project No. er End Time 1426	1827-0 Odome

60

TROY, MICHIGAN / SAN BERNARDINO, CALIFORNIA .

1511

.

1524

07066.8

07057.2

Highway Fuel Economy: 8/29/79

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE A-18

VEHICLE INFORMATION

Make: Chevrol	et	Mo	odel:	Ch	levette		Year:	1979
Engine Serial No			Chas	ssis	Serial	No.	1B6809Y	18162
Transmission	Automatic					_		
Odometer	07074.3							
Engine Disp.	98						•	
Idle RPM								
Fuel System	1 - 2 bbl				-			
Tank Capacity	12.5							
Tank Location	Left Rear							•
Curb Weight	21.09#		<u> </u>			•		
Drive Wheel Tire		39 PSI						
Device	Fuel-Max			•				

··	MPONTAL (SOM	CAREON TRAP INFORMATION
Serial No.	Clayton 1289P	Serial No
Inertia	2500#	Final Wt. (g)
Road Horsepow	er @ 50 MPH	Initial Wt. (g)
Actual	9.4	Net Wt. (g)
Indicated	6.4	•

TEST SEQUENCE:	•	Test No.	<u>18</u> P	roject No	1827-01
•	Date	Start Time	Odometer Start	End Time	Cdoneter End
Road Precondition:	· · · · · · · · · · · · · · · · · · ·				<u></u> _
Dyno Precondition:	<u></u>		<u> </u>		•
Cold Soak:	8/30/79	1750		0901	
Fuel Transfer:			-		•
Heat Build:		<u> </u>			•.
CVS Test:	8/31/79	0901	07074.3	<u> 0942 </u> .	07085.1
Hot Soak:	<u></u>	·		·	
Highway Fuel Economy:	8/31/79	0949	07088.1	1001	07097.7

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE A-9

VEHICLE INFORMATION

Make: Oldsmobile Model: Cutlass Cruiser Year: Engine Serial No. - Chassis Serial No. 3H3548G4042 Transmission Automatic NJ 415-HRA Odometer 48592.2 Engine Disp. 305 V-8 Idle RPM - Fuel System 1 - 2 bbl.	250
Odometer 48592.2 Engine Disp. 305 V-8 Idle RPM -	
Engine Disp	•
Idle RPM	
Fuel System 1 - 2 hbl	
Tank Capacity 18.25	
Tank Location Left rear	
Curb Weight 3402#	
Drive Wheel Tire Press. 37 psi.	•
Device Baseline	
DYNAMOMETER INFORMATION CARBON TRAP INFORMATION	
Serial No. <u>Clayton 1289P</u> Serial No. <u>-</u>	
Inertia 3500 Final Wt. (g) - Road Horsepower @ 50 MPH Initial Wt. (g) -	
Road Horsepower @ 50 MPH Initial Wt. (g)	
Actual 12.3 Net Wt. (g) -	
Indicated 9.0	
TEST SEQUENCE: Test No. 9 Project No.	1827-01
Odometer	Odomete
Date Start Time Start End Time	
Road Precondition:	
Dyno Precondition:	•
Cold Soak: <u>8/14/79 1630 1400</u>	٠
Fuel Transfer:	
Heat Build:	•
CVS Test: <u>8/15/79 1400 48592 2 1442</u>	48607
Hot Soak:	
Highway Fuel Economy: 8/15/79 1448 48605.3 1501	48615.

APPENDIX B

EXHAUST EMISSION DATA

1975 FEDERAL TEST PROCEDURE

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861

TABLE B-1

TWX: 510-665-9344

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1978 Lind	coln						
Veh. Continent	tal Odometer R	eading;			<u>3/7/79</u>		
Vin: 8Y82A8817	<u>/92</u> Finish				1827.01		
Trans. Automatic		07509.0	F	lun #			
Carbs. 1 bbls. 4	Miles/Kms	-)ev	<u>Baseline</u>		
Eng. <u>CID: 460</u>)yno RHP		and the second	50 MPH
Idle RPM	Timing)yno Inert			
Analyst <u>D. Gulick</u>	Driver <u>S.</u>	<u>Stranick</u>	C	alculator		<u>ick</u>	
Dry Bulb Temp.	80.0	°F	Barometric	Press.		749.27	mm Hg
Wet Bulb Temp.	67.0	°F	CVS Pump P	ress.		15.80	-
Relative Himidity	54	z.	(P) Sample			733.47	-
Specific Humidity	78	gr/lb	(T) Sample			572.0	°R –
ĸ _H	1,0143		(V) CVS Pu			.3105	CFR
-H							
EXHAUST BAG	DILUTION AIR	1	CORRECTED	EXH.	WEIGH	TED MAS	5
ANALYSIS	ANALYSTS		CONCENTRAT	TONS	EMI	SSIONS	_
		1			· · · · ·		_
Cold Transient Mode WI	<u> </u>	•			•		•
N 9148 Revs		1			· ·	. •	
CO_2 2.40 %	CO2 .04	7	CO ₂ 2.3	16 Z	C02	1335.6	gms
CO 1073.0 ppm	CO 9.0			5 ppm	co	35.7	gms
HC 140.69 ppm	HC 5.61	ррш		13ppm	нс	2.41	gms
	NO _x .0	ppmc		о ррш С	NO _x	2.35	gms
NO _x 39.4 ppm	X.	bòm	NOX 33.4	, ppm	, max		Rma
Cold Stabalized Mode W	$\mathbf{F} = 1.0$	· ·					
N 15625 Revs		1			1		
CO ₂ 1.38 Z	CO2 .04	z	CO ₂ 1.3	14 7	C02	3012.1	gms
CO 52.0 ppm	CO 7.0	ррт	<u> </u>	5 ppm	CO ²	6.2	gms
HC 18.34 ppmc	HC 5.57	ppmc		4 ppmc	HC	.94	gms
NO _x 22.9 ppm	NO _x .0	ррш		3 ppm	NOx	5,44	gms
		1	-			•	
Hot Transient Mode WF	<u>= .5/</u>						
N 9118 Revs	-	1					
CO ₂ 1.86 Z	.04 CO ₂	z	co, 1.8	32 Z	C02	1360.8	gms
СО 82.0 ррт	CO 8.0	ppm		8 ppm	co	3.3	gms
HC 30.79 ppm	HC 4.26	ppmc		2 Ppmc	НС	.63	gms
NO _x 50.2 ppm	NO _x .3	ppm		9 ppm	NOx	3.94	gms
1		. 1			I		
						•	·
Results:	CO₂ 5708	grams/te			co ₂	761.1	gpm
١	CO 45.3	grams/te			co -	6.0	gpm
	HC 3.99	grams/te	est		HC	.53	gpm
•	NO _x 11.74	grams/te	est		NOx	1.56	gpm
				Tuel I		11 / 9	MPC

Urban Fuel Economy

11.48 MPG

65

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE B-3

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1978 Lincoln					
Veh. <u>Continental</u>	Odometer Ra	eading:	Date	8/8/79	······································
Vin: 8782A881792	Finish	07544.1	Proj.#	1827.01	
Trans. Automatic	Start	07534.5	Run #	3	
Carbs. 1 bbls. 4	Miles/Kms		Dev	Fuel-Max	
Eng. V-8 Disp. 460			Dyno RHP	14.7	<u>@</u> 50 MPH
Idle RPM	Timing	<u> </u>	Dyno Inert:		
Analyst <u>D. Gulick</u>	Driver S.	Stranick	Calculator	D. Gulick	·
Den Bulk Torn	0 ¢ 0	°F B	arometric Press.	-	5.05 tent Hg
Dry Bulb Temp.	93.0		VS Pump Press.		-
Wet Bulb Temp. Relative Himidity	68.0		(P) Sample Press.		
Specific Humidity	26 69		T) Sample Temp.		· · · · · · · · · · · · · · · · · · ·
			(V) CVS Pump Disp.		
K _H	.9725	.`	(a) can romb prab.	• -	105 CFR
EXHAUST -BAG	DILUTION AIR	0	CORRECTED EXH.	WEIGHTE	DMASS
ANALYSIS	ANALYSTS		ONCENTRATIONS	EMISS	IONS
	· · ·	-	·		
Cold Transient Mode WF	<u> </u>	•	·		
N 9362 Revs		1			
CO ₂ 2.09 %	co ₂ .04	z 0	:0 ₂ 2,05 %	CO ₂ 11	.82.0 gms
	CO 12.0	ррт С	0 253.5 ppm		.2 gus
CO 277.0 ppm HC 110.58 ppm _c	HC 3.99	(C 107.22 ppm	•	.94 gms
NO _X 190.5 ppm	NO _x .0	bōm N	0x 190.50 ppm	10 X 11	12 gms
Cold Stabalized Mode W	TF = 1.0			e	
N 15578 Revs	•	i i		1	
CO ₂ 1:36 Z	CO2 .04	z	∞ ₂ 1.32 %	CO ₂ 29	45.3 gms
CO 37.0 ppm	CO 10.0		0 26.8 ppm	**	.7 gms
HC 17.27 ppmc	HC 3.65	- T T 1	IC 13.99 ppmc	· · ·	98 2003
NO _x 116.5 ppm	NO _x .5		10x 116.05 ppm		.22 8005
TID:J PPL	X • 5		X 110,05 FF-	X L	.22 0
Hot Transfent Mode WF	= .57			•	
N 9114 Revs		I			
CO ₂ 1.85 Z	co ₂ .04	z c	0 ₂ 1.81 7	C0 ₂ 1	46.7 gms
CO 62.0 ppm	CO 9.0	ppm C	20 ² 51.5 ppm		4 gms
НС 30.22 ррш	HC 1.68	•••	IC 28.77 Ppmc	-	67 gms
NO _x 213.0 ppm	NO _X .0		0 218.00 ppm	-	.42 gms
			X LIGIUS FF-		
		•			
Results:	CO ₂ 5474	grams/test		CO ₂ 72	9.8 gpm
l.	CO 15.4	grams/test	:		.0 gpm
	HC 3.59	grams/test			47 gpm
	NO _x 53,77	grans/test	•	NOx 7	.17 gpm
			Urban Fuel E	conomy 12	.07 HPG

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344 TABLE B-2

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1979 Oldsmobile						
Veh. Cutlass Salon	Odometer Re	eading:		Date	8/7/79	
Vin: 3G09H9G27788	Finish 079	65.2		Proj.#	1827-01	
Trans. Automatic				Run #	2	
Carbs. 1 bbls. 4	Miles/Kms			Dev	Baseline	
Eng. V-8 CID: 305	_			Dyno RHP	12.3	<u>@</u> 50 MPH
Idle RPM -	Timing			Dyno Inerti		
Analyst <u>D. Gulick</u>	Driver S.	Stranick		Calculator	D. Gulick	
Dry Bulb Temp.	85.0	°F	Barometr	ic Press.	7/	9.70 mm Hg
Wet Bulb Temp.	69.0	٥F	CVS Pump			.80 mm Hg
Relative Himidity	44	x		le Press.		3.90 mm Hg
Specific Humidity	81	gr/1b		le Temp.		0.0 OR
K _R	1.0290	G -1		Pump Disp.	÷ ·	105 CFR
-8			())		• •	
EXHAUST BAG	DILUTION AIR	1	CORRECTE	DEXH.	WEIGHTED	MASS
ANALYSIS	ANALYSIS		CONCENTR	ATIONS	EMISSI	ONS
		1		[
Cold Transient Mode WF	<u>= .43</u>	,		•		
		1		ł		
N 9213 Revs	<u> </u>	z	<u> </u>		CO	
CO ₂ 1.37 % CO 1354.0 ppm	CO ₂ .04 CO 6.0	1		.33 %		L.3 gms
CO 1354.0 ppm HC 226.93 ppm _c	EC 4.93	ppm DDD		3.8 ppm		5.9 gms
NO ₄ 45.8 ppm		ppm _c		2.56 ppm _c 54 ppm		.99 gms .79 gms
NO _x 45.8 ppm	NO _x .3	ppm	NO _x 45,	.34 PPm	NO _x 2	.79 gms
Cold Stabalized Mode W	F = 1.0	•		•	- ·	
N JECZY Dame		1		1	-	•
N 15674 Revs CO ₂ .93 %	CO ₂ ,04	z	CO ₂ .8	39 Z	CO _{2 201}	
• · · · ·		ļ		1		15.5 8 ^{mas}
		ppm		6 ppm		/**
		ppmc				.51 8 ^{ms}
NO _X 13.6 ppm	NO _x .0	ррш	$NO_{\mathbf{x}}$ 13.	.64 ppm		.30 gms
Hot Transient Mode WF	<u>57</u>			•		
N 9126 Revs		. 1		I		
CO ₂ 1.28 Z	CO ₂ .04	z	co, 1.	.24 🛪	CO ₂ 93	L.9 gms
CO 572.0 ppm	CO 11.0	рра		0.0 ppm		5.7 gms
HC 92.85 ppm	HC 3.65	ppmc		56 Ppm		11 gms
NO _x 32.0 ppm	NO _x .0	ppm		.07 ppm		58 gms
	X +0			· · ·		
·		•		•		
Results:	CO ₂ 3708	grams/te	at		C D - 494	4.5 gpm
	CO ₂ 3708 CO 141.0	grams/te		•		4.5 gpm 3.8 gpm
	HC 11.62	grams/te				,55 gpm
	NO _x 8.68	grams/te				.15 gpm
	X 0100	Q		•	x	
	•		U	rban Fuel Ec	олошу 16.	.76 MPG

TROY, MICHIGAN / SAN BERNARDINO, CALIFORNIA

.

-

67

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344 TABLE B-4

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1979 Oldsmobile							
Veh. Cutlass Salon	Odometer Reading:			Date	8/9/79		
Vin: 3G09H9G427788	Finish 07987.6			Proj.#	1827-01		
Trans. Automatic	Start	Start 07977.5			4		
Carbs. 1 bbls. 4	Miles/Kms -			Dev.	Fuel-Max		
Eng. V-8 Disp1, 305				Dyno RHP	12.3	(@50 MPH
Idle RPM	Timing			Dyno Inertia	3500#		
Analyst <u>D. Gulick</u>	Driver <u>s</u>	<u>Stranic</u>	k	Calculator	D. Guli	ck	
Dry Bulb Temp.	75.0	°F	Baromet	ric Press.	74	9.96	mm Hg
Wet Bulb Temp.	67.0	°F	CVS Put	p Press.		5.80	
Relative Himidity	66	Z	(P) Sam	ple Press.			na Hg
Specific Humidity	87	gr/lb	(T) Sam	ple Temp.		5.0	OR
' K _R	1.0597		(V) CVS	Pump Disp.	-	3105	CFR
EXHAUST BAG	DILUTION AIR	1	COPPECT		LIET CUME	N MAGI	-
						GHTED MASS	
			CONCENT	ATTONS		LUIIA	-
Cold Transient Mode WF	. <u>.</u>			I			
N. 9336 Revs	•	1		I			
	CO ₂ .04	z	CO2	1.31 %	CO ₂ 76	56.8	
CO ₂ 1.35 % (CO 850.0 ppm	CO 7.0	ppm		03.6 ppm		29 . 8	gms gms
HC 206.12 PPmc	HC 4.12	ppm_		02.44ppm_		3.71	gns
NO _x 108.5 ppm	NO _x .0	ppm		08,50ppm		7.00	gms
10 ² 100.2 bbm	X	ppm	wox r	10*2015m	""X	.00	Rune .
Cold Stabalized Mode WF	= 1.0	•	•			· ·	
N 15653 Revs		5		1			
CO ₂ .94 Z	CO2 .04	z	CO ₂	.90 · Z	CO-20	154.6	ems
CO 254.0 ppm	CO 11.0	рра		34.0 ppm		33.8	
НС 50.48 рртс	HC 3.54	ppmc	-	7.19 ppmc		3.38	gms
NO _x 36.7 ppm	NO _x 0	ррш	-	6.72 ppm).24	gas
			X		x		6
Hot Transient Mode WF =	.57						
N 9124 Revs	-	1		J			
CO ₂ 1.24 %	co ₂ .04	z	co,	1 20 7	CO o 0/	10 3	0 1 88
-	.			1,20 %	. –	9.3	gas mo
		ppm	· · ·	78.1 ppm	-	3.5	gas
		·· C 1		0.42 Ppmc 04.96ppm		1.20	Suz Suz
NO _X 104.9 ppm	NO x .0	ррт	NO _x 1	04.46ppm	DOX (3.78	<u>gms</u>
•		ł		1			
Beenland	60 . 6 .	· · · · ·	•	•			
Results:						97.5	gpm
· -	CO 72.2	grams/te				9.6	gpm .
	HC 8.30	grams/te				1.10	gpm
· · · · · ·	NO _x 25.03	grams/te	LSI		NOX	3.33	gpm
		Urban Fuel Econ				7.18	HPG ·

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE B-5

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1977 Dodge						-		
Veh. Aspen Wagon	0do	ometer R	eading:		Date		8/13/79	
Vin: NH45G7F252970	Fir	nish	·11403.7	•	Proj.#		1827-01	
Trans. Automatic	Sta	irt	11393.0)	Run #		5	
Carbs. 1 bbls. 2	MT]	les/Kms_	_		Dev		Baseline	3
Eng. V-8 Displ. 3	8	-			Dyno RHP	13.2		050 MPH
Idle RPM -	Tie	ing	-		Dyno Inert		4000#	
Analyst <u>D. Gulick</u>	Dri	lver <u>S</u> .	Stranick	د	Calculator	D. Gu	lick	
Dry Bulb Temp.		77.0	۰ _F	Baron	netric Press.		747.8	4 mm Hg
Wet Bulb Temp.		63.0	°F	CVS 1	Pump Press.			mm Hg
Relative Himidity		45	z		Sample Press.			5 mm Hg
Specific Humidity		64	gr/lb		Sample Temp.		567.5	OR
ĸ _H		-9508	•		CVS Pump Disp.		.3103	CFR
EXHAUST BAG	DILIT	TON AIR	1 -	CORRI	ECTED EXH.	WETCH	TED MAS	is
ANALYSIS		LYSIS	1		ENTRATIONS		SSIONS	-
								~~
Cold Transient Mode W	F = .43		I			i i		
N 9107 Revs			1	a.				
CO ₂ 1.46 %	C0-2	.04	z	C02	1.42 %	C02	804.7	gas
CO 3900.0 ppm	co	5.0	ppm	coź	3729, фрш	co	133.8	
НС 599.18 ррш	RC	3.98	ppmc	HC	595.70pm	HC	10.59	
NO _x 34.8 ppm	NOx	.0	ppm	NOx	34.81 ppm	NOT		gms
· · · · · · · · · · · · · · · · · · ·	-		fr-		54662 222	X	±•33	0
Cold Stabalized Mode	WF = 1.0	<u>)</u>			· • '			
N 15669 Revs							•	
CO ₂ 1.00 %	C02	.04	z	C02 '	.96 %	C0 ₂	2175.	5 gms
CO 680.0 ppm	CO	13.0	ppm	co	645.2 ppm	. co		gms
HC 116.41 ppmc	HC	4.97	PPBc	EC	111.8Ppmc	HC	7.95	
NO _x 30.9 ppm	NOx	•0	ppm	NO _x	30.91 ppm	NOx	6.93	
						~		•
Hot Transient Mode WF	57	•				1		
N 9127 Revs								
CO ₂ 1.32 %	C02	.04	x	co,	1.28 %	C0 ₂	963.0	gms
CO 812.0 ppm	co	12.0	ррш	co ²	768.9 ppm	CO	36.6	
HC 165.17 ppm _c	HC	3.00	ppm _c	HC	162.48 pmc	HC	3.83	
NO _x 55.4 ppm	NOx	.0	ppm	NO _x	55.42 ppm	NO _x	4:12	
	-			-	. 1			-
			·					
Results:	C02	3943	grams/t		· .	^{co} 2	525.7	gpm
	CO	263.1	grams/t			CO_	35.0	gpm
	HC	22.38	grams/t			HC	2,98	gpm
	NOx	13.01	grams/t	est	•	NOX	1.73	gpm
					Urhan Fuel Ed	COROTTY	15.02	MPG

Urban Fuel Economy

15.02 MPG

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861 TWX: 510-665-9344 TABLE B-6

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1977 Dodge		•						
Veh. Aspen Wagor	n 04	ometer R	eading:		Date		8/14/	79
Vin: WH45G7F252970		nish	41428.9		Proj.#	· · · · · · · · · · · · · · · · · · ·	1827-	
Trans. Automatic	Se	art	41418.3		Run #		6	
Carbs. 1 bbls. 2		les/Kms_	-		Dev.		Fuel-	Max
Eng. V-8 Displ. 318					Dyno RHP	13	.2	@50 MPH
Idle RPM -		ming		·	Dyno Inerti		4000#	
Analyst D. Gulick	Dr	iver <u>S</u>	. Stranio	ek	Calculator_	D. Gu	lick	
Dry Bulb Temp.		82.0	۰ _F	Baro	metric Press.		746.60	ma Hg
Wet Bulb Temp.		69.0	٥ _F	CVS 1	Pump Press.		15.99	mm Hg
Relative Himidity		52	z		Sample Press.		730.61	
Specific Humidity		85	gr/lb	(T) :	Sample Temp.		562.0	• _R
к _н		1.0493		(7)	CVS Pump Disp.		.3103	CFR
EXHAUST BAG	DILU	TION AIR		CORRI	ECTED EXH.	WEIG	HTED MAS	s
ANALYSIS		ALYSIS			ENTRATIONS		ISSIONS	-
		•			· ·			
Cold Transient Mode WF	= .43			•	· · ·			
N 9100 Revs		•	1					
CO ₂ 1.40 Z	C02	.04	z	CO2	1.36 %	C0 ₂	776.2	ġus
CO 3070.0 ppm	co	12.0	ppm	co	2925.4ppm	co	105.7	gns
НС 424.32 рртс	нC	6.21	ppm_	HC	418.91ppm	HC	7.50	gms ``
NO _x 77.5 ppm	NOX	.0	ppm	NOX	77.50 ppm	NOx	4.82	gus
	X	• -				X		0
Cold Stabalized Mode W	F = 1.(<u>0</u>				•		
N 15642 Revs	•				1			
CO ₂ 1.03 %	C02	· .04	z	CO2	.99 %	C02	2257.8	gus
CO 762.0 ppm	c 0	10.0	ppm	co	725.0 ppm	ເວົ	104.7	gms
HC 117.44 ppmc	HC	5.53	Ppmc	HC	112.37ppmc	HC	8.04	gms
NO _X 44.8 ppm	NOX	.2	bbw	NOX	44.70 ppm	NOX	11.13	gms
Hot Transient Mode WF	. 57		4		I			
N 0116 7			1		1		-	
N 9116 Revs CO ₂ 1.43 Z	C C	~				6 0 -	1050 0	
	со ₂ со	•.04 9.0	2	co ₂	1.39 %	со ₂ со	1052.9	gms
	-	_	ppm DDD		801.6 ppm		38.4	gms
HC 159.95 ppm _c NO _x 141.5 ppm	HC NO _X	4_87 _0	ppm _C	hc No _x	155.63Ppmc 141.50ppm	hc No _x	3,70 11,70	gms gms
X TATTO NAM	~~X		5.5-m		*********	• X		مسح
			-					
Results:	C02	4087	grams/t	est		C0,	544.9	gpm
•	co	249.0	grams/t		. · ·	co ²	33.2	gpm
	HC	19.24	grams/t			BC	2.56	gpm
	NOx	27.67	grams/t			NOx	3.69	gpm
					Urban Fuel Ec	COLOMY	14.65	MPG

.#

70

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344 TABLE B-9

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1978 Oldsmobile

19/8 Ulasmo					
Veh. Cutlass Cruise	C Odometer R	eading:	Date		L5/79
Vin: 3H35H8G404250	Finish	48602.8	Proj.#	18	27-01
Trans. Automatic		1592.2	Run #	9_	- <u></u>
Carbs.1 bbls. 2	Miles/Kms_	-	Dev	Baseline	
Eng. V-8 Displ.	305		Dyno RHP	12	3 @50 MPH
Idle RPM -	Timing	-	Dyno Inert	ia 35	00#
Analyst D. Gulick	Driver	S. Strani	Ick Calculator	D. Gu	lick
	(A. A.	0-			
Dry Bulb Temp.	69.0	°F	Barometric Press.		747.91 mm Hg
Wet Bulb Temp.	53,0	°F	CVS Pump Press.		15.71 mm Hg
Relative Himidity	49	7	(P) Sample Press.		732.20 mm Hg
Specific Humidity	54	gr/lb	(T) Sample Temp.		568.0 °R
к _н	.9101		(V) CVS Pump Disp.		.3105 CFR
TWO ATTEM BAC	DILUTION AIR		CORRECTED EXH.		ED MASS
EXHAUST BAG		·			
ANALYSIS	ANALYSIS	·	CONCENTRATIONS		SIONS
Cold Transient Mode V	ਸ ≓ 	l		ł	
COLU ILENSIENC INGE				•	
N 9155 Revs		- 1		1	
CO ₂ 1.50 Z	CO ₇ .04	z I	CO ₂ 1.46 Z	C07	831.8 gms
CO ² 3565.0 ppm	CO 9.0	ppm	CO ² 3398.0 ppm		122.6 gms
HC 342.52 ppm	HC 3.26	ppmc	HC 339.71 ppm	нс	6.07 gms
	NO _x ,0	ppm	NO_x 34.34 ppm	NOX	1.85 gms
NO _x 34.3 ppm	x •0		MOX 24.34 PPm	x	1.02 500
Cold Stabalized Mode	WF = 1.0			-	
N 15677 Revs		1		1	
CO ₂ 1.00 %	CO ₂ .04	z	CO ₂ .96 %	C02	2176.8 gms
CO 185.0 ppm	C0 12,0	ррш	CO 167.6 ppm	co ²	24.0 gms
HC 41.16 ppmc	HC 2.94	ppmc	НС 38.44 ррш	EC	2.73 gms
	NO _x 3	- 1	NO _x 21.27 ppm	NOx	4.57 gms
NO _X 21.5 ppm	10X • 3	ppm	NOX 21.27 PPE	×	4.57 640
Hot Transient Mode W	<u> </u>			-	
N 9148 Revs		1		}	
CO ₂ 1.35 %	CO ₂ .04	z	CO ₂ 1.31 %	C02	937.9 gms
CO 212.0 ppm	CO 8.0		CO ² 1.51 ² CO ² 196.0 ppm	CO	9.3 gms
	RC 2.62	ppm ppm	HC 61.84 Ppm	HC	1.46 gms
		ppmc			
NO _x 37.1 ppm	NOx .4	ppm	NO _x 36.75 ppm	NO _X	2.62 gms
•		(-	•	-
Results:	CO ₂ 3996	grams/t	est	c02	532.8 gpm
	CO 156.0	grams/t		co	20.8 gpm
	HC 10.27	grams/t		HC	1.36 gpm
	NO _x 9.05	grams/t		NOx	1.20 gpm
	X 2.1.12	••••••••••••••••••••••••••••••••••••••		X	
	•		Urban Fuel E	сопошу	15.55 MPG

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE B-10

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1978 Oldsm Veh. Cutlass Cr	nobile ruiser Odometer R	eading:	Date		8/16/79
Vin: 3H35H8G404	250 Finish		Proj.#		1827-01
Trans. Automatic		48615.1	Run #		10
Carbs. 1 bbls. 2	Miles/Kms		Dev.		Fuel-Max
Eng. V-8 Displ.			Dyno RHP	12.3	<u>@50</u> MPH
Idle RPM -	Timing		Dyno Iner		
Analyst D. Gulick		. Stranic			k
Dry Bulb Temp.	72.0	°F	Barometric Press.	752	.25 mm Hg
Wet Bulb Temp.	59.0	°F	CVS Pump Press.	15.	71 mm Hg
Relative Himidity	45	z	(P) Sample Press.	736	54 mm Eg
Specific Humidity	54	gr/lb	(T) Sample Temp.	567	0 °R
ĸ _H	.9101		(V) CVS Pump Disp.	310	3 CFR
EXHAUST BAG ANALYSIS	DILUTION AIR ANALYSIS		CORRECTED EXH. CONCENTRATIONS	WEICHTED EMISSIC	
Cold Transient Mode	WF = .43	1			
N 9141 Revs		1		1	
	CO ₂ .04	z	co ₂ 1.50 %	CO2 859	0 gms
CO ₂ 1.54 % CO 2068.0 ppm	$co_2 .04$ co 10.0	ppm	CO 1968.0 ppm	C0 71	
EC 131.74 ppm	HC 4.00	1	EC 128.26 ppm	HC Z.	
	NO _x .0	ppm _c	NO _x 124.41 ppm	NO _x 6.	-
NO _x 124.4 ppm		ppm	YOX II4.41 bbt		مسع ر /
Cold Stabalized Mode	WF = 1.0				
N 15654 Revs	1 '	. 1		1	
CO ₂ .96 %	CO ₂ .04	x	CO ₂ , .92 %	CO ₂ 209	7.6 gms
	CO 8.0	ppm	СО 14.9 ррш	CO 2.	
	HC 3.96		HC 18.75 ppm		34 gms
HC 22.43 ppm _c NO _x 53.6 ppm	NO _x 0	ppm _c ppm	NO _x 53.64 ppm	NO _x 11.	
-		}			
Hot Transient Mode W	<u>r = .5/</u> I	1		1 ⁻¹ -1	•
N 9119 Revs		_ (
CO ₂ 1.26 %	CO ₂ .04	z	CO ₂ 1.22 Z	CO2 923	
CO 82.0 ppm	CO 12.0	ppm	CO ⁻ 68.1 ppm	CO 3.	
HC 39.79 ppmc	HC 2.98	PPmc	HC 37.09 Ppmc	HC .8	
NO _x 108.7 ppm	NO _X .0	ррш	NOx 108.79 ppm	$NO_{\mathbf{x}}$ 7.	80 gmg .
	•	-	- -		
Results:	CO2 3880	grams/te	est	CO ₂ 517	.3 gpm
	CO 76.8	grams/to		C0 10	
·	HC 4.52	grads/t		HC .6	
	NO _x 26.14	grams/to		NO. 3.	
	-	-	: .	•	 -`
-			Urban Fuel	Economy 16.	56 MPG

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861

TWX: 510-665-9344

TABLE B-8.

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1977 Mercury

1977 Mercury								
Veh. Monarch	Odo	meter Re			Date		5/79	
Vin: 7W37F539757	Fin:		31295.5		Proj.#	<u> </u>	27-01	
Trans. Automatic	Sta		31285.2		Run #	8		
Carbs. 1 bbls. 2	Mila	es/Kms_	-		Dev		seline	
Eng. V-8 Displ. 30	2				Dyno RHP	13.		250 MPH
Idle RPM -	Tim		-		Dyno Inertia	a <u>40(</u>)0#	
Analyst D. Gulick	Dri	ver <u>S</u> .	<u>Stranic</u>	k.	Calculator	D.	Gulick	
		•	0	_	- <u> </u>			_
Dry Bulb Temp.		77.0	°F		netric Press.		747.96	
Wet Bulb Temp.		67.0	°F		ump Press.		15.99	um Hg
Relative Himidity		59	2		Sample Press.		731.97	
Specific Humidity		83	gr/lb		Sample Temp.		567.0	R
. К _Н		1.0390		. (V) (WS Pump Disp.		.3103	CFR
					· · ·	·····		-
EXHAUST BAG		ION AIR			ECTED EXH.		ITED MAS	S
ANALYSIS	ANA	LYSIS	l	CONCE	ENTRATIONS	EMI	SSIONS	_
	· · · ·						•	
Cold Transient Mode W	<u>F = .43</u>							
N 9164 Revs			1	Ì	I			
N 9164 Revs	CO	• • /	- I	C02	1.43 Z	C07	816.0	gms
CO ₂ 1.47 Z	C02	. 04	2		2111.9ppm	COZ	76.3	gms
CO 2225.0 ppm	CO	9.0	ppm	HC.		HC	6.57	gms .
HC 369.55 ppmc	HC	2.62	ppmc		367.26ppmc		5.77	gms
NO _x 93.5 ppm	NOx	•0	рря	NOx	93.53 ppm	NOx	2.11	8m3
Cold Stabalized Mode	UTF = 1 0	•	-	·	•			
tore preparized mate			•					•
N 15655 Revs			I		ł			
CO ₂ .99 %	C02	.04	z	C02	.95 Z	C02	2153.2	<u>eme</u>
CO 694.0 ppm	C0 2	10.0	ppm	co	658.5 ppm	co	94.5	gms
HC 110.10 ppmc	HC	3.26	ppnc	HC	107.09ppmc	EC	7.61	gus
NO _x 34.3 ppm	NOx	.3	ppm	NOx	34.07 ppm	NOx	8.35	gms
10X 34.3 PPm	TOX.		PPm	NOX.	Darot bbw	x		<u> </u>
Hot Transient Mode WF	= .57		•		•	:	•	
me stangeunt inder "i				1	•			
N 9119 Revs	•							
CO ₂ 1.30 %	C02	.04	z	co,	1.26 %	C02	948.2	gns
CO 943.0 ppm	co	10.0	рры	co ²	892.6 ppm	co	42.5	gms
НС 158.20 ррт	HC	3.26	ppm	HC	155.28Ppm_	HC	3.66	223
	NOX	.3		NOx	53.55 ppm	NOx	4.35	2005
NO _x 53.3 ppm	X	• -	ppm					-
•			•		-			
								•
Results:	C02	3917	grams/t	est		CO_2	522.3	gpm
	ເວົ	213.5	grams/t			ເວົ	28.4	gpm
1	HC	17.86	grams/t			HC	2.38	gpa
	NOx	18.48	grams/t	:est		NOX	2.46	8bæ
-	~	•	-					
					Urban Fuel Ec	onomy	15.43	MPG
								-

TROY, MICHIGAN / SAN BERNARDINO, CALIFORNIA

.

.....

73

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344 TABLE B-12

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1977 Mercury					
Veh. Monarch	Odometer R		Date	8/21/79	
Vin: 7W37F539757	Finish		Proj.#	1827-01	
Trans- <u>Automatic</u>		31338.4	Run #	12	
Carbs. 1 bbls. 2	Miles/Kms	<u></u>	Dev	Fuel-Max	
Eng. V-8 Displ.	302_		Dyno RHP	<u>13.2 @</u> 50 ;	mph
Idle RPM	Timing	-	Dyno Inertia		
Analyst <u>D. Gulick</u>	Driver <u>B</u>	. Markley	Calculator	D. Gulick	
Dry Bulb Temp.	73.0	°F	Barometric Press.	749.93 mm 1	Eg
Wet Bulb Temp.	67.0	°F	CVS Pump Press.	15.80 mm	
Relative Himidity	73	z	(P) Sample Press.	• 734.13 mm	Hg
Specific Humidity	90	gr/lb	(T) Sample Temp.	566.0 ^o r	_
K _H	1.0758		(V) CVS Pump Disp.	.3105 CFR	,
		ł	CORRECTED EXH.	TET CETED MACE	
EXHAUST BAG	DILUTION AIR ANALYSIS		CONCENTRATIONS	WEIGHTED MASS EMISSIONS	
ANALYSIS	ANALISIS		CONCENTRATIONS	ERI13310M3	
Cold Transient Mode	WF = .43	1			
N 9154 Revs	· ·	1			
CO ₂ 1.40 %	CO ₂ .04	z	CO ₂ 1.36 %	CO ₂ 779.2 gms	
CO 1446.0 ppm	CO ² 12.0	ppm	CO ² 1362.5 ppm	CO 49.4 gms	
HC 252.58 ppm	HC 5,92	ppm	НС 247.35 рртс	HC 4.44 gms	
NO _x 194.5 ppm	NO _x .0	ppm	NO _x 194.51 ppm	NOx 12.48 gms	
	X				
Cold Stabalized Mode	WF = 1.0		•		
N 15659 Revs			•		
CO ₂ .91 %	CO ₂ .04	z	CO ₂ .87 Z	CO ₂ 1982.9 gms	
CO 510.0 ppm	CO 14.0	ppm	СО 476.3 ррт .	CO 68.8 gms	
HC 96.11 ppmc	HC 9,72	ppmc	НС 87.09 ррлс	HC 6.23 gms	
NO _x 97.2 ppm	NO _x .3	ppm	NO _x 96.97 ppm	NO _x 24.75 gms	
Hot Transient Mode W		1			
	·		•		
N 9167 Revs		l		•	
CO ₂ 1.19 Z	co ₂ .04	z	co ₂ 1.15 %	CO2 874.5 gms	
CO 351.0 ppm	CO 12.0	ррт	CO ⁺ 324.0 ppm	CO 15.6 gms	
HC 100.13 ppmc	HC 6.70	pp≖c	HC 94.04 Ppmc	HC 2.24 gms	
NO _x 190.5 ppm	NO _x .6	ррш	NO _x 189.98 ppm	NO _x 16.18 gms	
	l	.	•		
Results:	00- 2626	·		CO ₂ 484.9 gpm	
KESULES:	CO ₂ 3636	grams/te			
	CO 133.8 HC 12.92	grams/te grams/te			
		grams/te			
	NO _x 53.41	grams/ Ct		NO _X 7.12 gpm	•
			Urban Fuel Eco	nomy 17,10 MPG	1

•

. . . .

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344 TABLE B-13

EXHAUST EMISSION. DATA SHEET 1975 FEDERAL TEST PROCEDURE

1979 Oldsmobi	. · ·				
Veh. Cutlass Cruis		Reading:	Date	8/21/79	
Vin: 3G35H92434400		20902.6		1927-01	· · · · · · · · · · · · · · · · · · ·
Trans, Automatic	Start	20892.0		13	
Carbs. 1 bbls. 2	Miles/Km		Dev.	Baseline	
Eng. V-8 Displ.		~	Dyno RHP	13.2	@50 MPH
Idle RPM -	Timing	-	Dyno Ineri		
Analyst D. Gulick	Driver	B. Markl		r D. Gulick	
Dry Bulb Temp.	69.0		Barometric Press.	74	49.93 mm Hg
Wet Bulb Temp.	66.0	°F	CVS Pump Press.	i!	5.80 mm Hg
Relative Himidity	81	z	(P) Sample Press.		34.13 mm Hg
Specific Humidity	90	gr/1b	(T) Sample Temp.	56	58.0 °R
K _H	1.07	58	(V) CVS Pump Disp.	•:	3105 CFR
EXHAUST BAG	DILUTION A	סז	CORRECTED EXH.	WEIGHTEN	N MACC
ANALYSIS	ANALYSIS		CONCENTRATIONS	EMISS	
ANALISIS			CONCENTRATIONS	. <u>EMI35</u> .	
Cold Transient Mode	WF = .43		8	ł	
N 9158 Revs			1	1	
		•			
	CO ₂ .04	7	CO_2 1.54 Z	· · · ·	79.7 gms
СО 2045.0 ррт НС 399.20 ррт.	CO 9.0		CO 1921.7ppm	4	59.5 gms
	HC 5.3		HC 394.61ppmc	HC	7.07 gras
NO _x 62.0 ppm	NO _x .5	ррш	NO _X 61.56 ppm	NO _x	3.93 gas
Cold Stabalized Mode	WF = 1.0		•	• •	
	•			1	
N 15658 Revs					
CO ₂ 1.13 Z	CO2 .04	z	CO2 1.09 %		75.0 gms
CO 117.0 ppm	CO 8.0	ppm	CO 104.2 ppm		15.0 gms
HC 45.00 ppmc	HC 6.5		HC 38.99 ppmc		2.77 gma
NO _X 15.6 ppm	NO _X .3	p p m	NO _X 15.36 ppm	NOx	3.90 gms
Hot Transient Mode W	F = .57	· 1		1	
N 01/0 D		•	ľ	1.	
N 9149 Revs	00				
CO_2 1.43 Z	CO2 .04	Z	$\begin{array}{c} co_2 & 1.39 \\ co_2 & (28 \\ co_3 \\ co_$		51.2 gms
CO 440.0 ppm	CO 9.0	ррт	CO 408.5 ppm		.9.5 gms
HC 83.35 ppm _c NO _x 26.1 ppm	HC 5.9	-	HC 78.03 Ppm _c	HC 1	.85 gms
NO _x 26.1 ppm	NO _x .3	ррт	NO _X 25.92 ppm	NO _x 2	.19 gma
		. •			
Results:	CO2 4406	grams/1		CO ₂ 58	37.4 gpm
•	CO 104.3		test		3.8 gpm
	HC 11.70	· · · ·	test		.56 gpm
	NO _x 10.04	4 grams/1	test		.33 gpm
			Urban Fuel I		A3 HPG

Urban Fuel Economy

14.43 MPG

75

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE B-15

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1979 Oldsmobile Veh._ Cutlass Cruiser **Odometer Reading:** Date 8/24/79 Vin: 20927.6 3G35H92434400 Finish Proj.# 1827-01 20916.8 Trans._Automatic Start Run 🦸 15 Miles/Kms Carbs. 1 bbls. 2 Dev. Fuel-Max V-8 Displ. 305 Dyno RHP Eng. 13.2 620 MPH Idle RPM Timing Dyno Inertia 4000# Driver_ Analyst D. Gulick в. Markley Calculator D. Gulick OF 76.0 Dry Bulb Temp. Barometric Press. 748.74 mm Hg 71.0 °F 1.80 mm Hg Wet Bulb Temp. CVS Pump Press. 78 7 746.94 mm Hg Relative Himidity (P) Sample Press. 107 gr/1b 567.0 °R Specific Humidity (T) Sample Temp. 1.1770 (V) CVS Pump Disp. .3105 CFR K_H DILUTION AIR EXHAUST BAG CORRECTED EXH. WEIGHTED MASS ANALYSIS ANALYSIS CONCENTRATIONS EMISSIONS Cold Transient Mode WF = .43 N 9133 Revs co₂ Ċ02 CO_2 7 1.60 % ¢02 .04 1.56 % 905.7 gms CO CO **CO** 1562.0 PPm 12.0 ррш 1464.3 PPm CO 53.8 gms HC HC ĦC ppmc HC 257.22 PPmc 13.85 245.20 PPmc 4.46 gms NOx NO_x NOx NOx ppm 117.60 PPm 117.6 PPm .0 8.36 gms Cold Stabalized Mode WF = 1.0 N 15643 Revs C02 C02 co2 . C02 1.09 % Z 1.05 7 .04 2427.7 805 CO CO CO 56.0 ppm CO ppm 12.0 42.6 PPm gms 6.2 ppmc HC HC HC ĦĊ 30.21 PPmc 12,02 19.17 PPmc 1.39 gms NOX NOx NOX NOx 39.6 Ppm .5 ррш 39.23 PPm 11.11 gms Hot Transient Mode WF = .57 9161 Revs N C02 co_2 C02 CO2 1.40 % 2 1.36 % .04 1049.6 888 CO CO CO CO 41.0 ppm 12.0 ppm 28.3 PPm 1.3 gms HC ppm_c 34.86 ppmc HC HC HC 11.73 24.36 Ppmc gms .59 NOx NOx NOT NOr 91.7 ppm ppm .4 91.43 ppm 8.64 gms co2 Results: C02 grams/test 4383 584.4 SP# CO grams/test CO 61.5 8.2 gpul HC BC grams/test 6.45 gpm .86 NOx grams/test NO. 28.13 3.75 SPM 14.77 MPG Urban Fuel Economy

____·

Scott Environmental Technology Inc.

76

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE B-14

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

Veh. 1979 Ford Pinto	Odometer Re	ading:	Date	8/23/79	
Vin: 9711Y158158	Finish	11265.0	Proj.#	1827-01	
Trans. Automatic	Start	11253.8	Run #	14	
Carbs. 1 bbls. 2	Miles/Kms	_	Dev.	Baselíne	
Eng. 4-cyl. Displ. 14			Dyno RHP		@50 MPH
Idle RPM -	Timing		Dyno Inertia	2500#	
AnalystD. Gulick	Driver B.	Markley	Calculator	D. Gulick	
	· ·	~			
Dry Bulb Temp.	76.0	°F	Barometric Press.		2 mm Hg
Wet Bulb Temp.	69.0	°F	CVS Pump Press.		mm Hg
Relative Himidity	70	Z	(P) Sample Press.		2 mm Hg
Specific Humidity	95	gr/lb	(T) Sample Temp.	566.0	
• K _H	1.1037	•	(V) CVS Pump Disp.	.3105	CFR
			,		
	DILUTION AIR		CORRECTED EXH.	WEIGHTED MAS	S
ANALYSIS	ANALYSIS		CONCENTRATIONS	EMISSIONS	
			· · · · · ·		
Cold Transient Mode WF =	.43				
		t	1		
N 9209 Revs	· .				_
	.04	z	^{CO} ₂ 1.32 Z		7 gms
	CO 10.0	b b m	CO 1130.8pm	CO 41.4	-
	HC 5.90	ppmc	EC 158.19pm	EC 2.86	
NO _x 72.3 ppm	NO _x .2	bbw	NO _x 72.20 ppm	NO _x 4.79	ens
Cold Stabalized Mode WF	- 1.0	1	4		
N 15610 Revs			1		
	CO ₂ .04	7	co ₂ .74 %	CO ₂ 1685.7	
	CO 9.0	p pm	CO 774.1 ppm	CO 111.7	
1	HC 8.76	PPmc	HC 46.95 ppm _c	HC 3.35	
NO _X 21.1 ppm	NO _x .4	bbæ	NO _x 20.76 ppm	NO _x 5.43	gma 👘
Hot Transient Mode WF =	.57		I		
		1	t		
N 9141 Revs	•		1		
CO ₂ 1.13 %	co ₂ .04	z i	co ₂ 1.0 [z	CO ₂ 828,6	ġms.
	CO 10.0	ppm	CO ⁴ 769.0 ppm	CO 37.0	gms
HC 72.05 ppm	HC 3,88	ppm	HC 68.52 Ppmc	EC 1.63	gms
	NO _x .3	ppm	NO _x 58.14 ppm	NOx 5.07	gms
				-	
B	no				
	CO ₂ 3277	grams/te		CO ₂ 436.9	
	CO 190.2	grams/te		CO 25.3	
	HC 7.86	grams/te		HC 1.04	
· · ·	NO _x 15.30	grams/te	31	NO _X 2,04	2.hm
		-	Urban Fuel Econ	юшу 18.47	₩₽G

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE B-16

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

Veh. <u>1979 Ford Pir</u>	odometer	Reading:	Date 8	/27/79	
Vin: 0711V159159	Finish	11289 5		1927-01	
Trans. <u>Automatic</u>	Start	11279.5	Run #	16	
Carbs. 1 bbls. 2	Miles/Kms			Fuel-Max	
	. 140		Dyno RHP	9.4	620 MPH
Idle RPM -	Timing	_	Dyno Inert:		
Analyst <u>D. Gulick</u>		. Stranic		D. Gulick	
Den Duith Ware		°F			
Dry Bulb Temp.	82.0	-	Barometric Press.		.17 mm Hg
Wet Bulb Temp.	71.0	°F	CVS Pump Press.	15.	
Relative Himidity	58	7.	(P) Sample Press.		.56 mm Hg
Specific Humidity	97	gr/lb	(T) Sample Temp.	579	
к _н	1.1153		(V) CVS Pump Disp.	. 31	.06 CFR
EXHAUST BAG	DILUTION AI	R [CORRECTED EXH.	WEIGHTED	MASS
ANALYSIS	ANALYSIS	_ [CONCENTRATIONS	EMISSI	ONS
Cold Trensions Mode I	· · ·		· · · · ·		
Cold Transient Mode N	<u>n. – .4J</u>	-			
N 9218 Revs	•	1			
CO ₂ 1.36 %	CO ₂ .04	z	CO ₂ 1.32 X	CO ₂ 741	.4 gms
CO 905.0 ppm	CO 12.0	ppm	CO ² 853.8 ppm	<u> </u>	.3 gms
HC 200.06 ppm	HC 9.11	PPm_	HC 191.94 ppm		38 gms `
NO _x 146.0 ppm	NO _x .0	ppm	NO _x 146.00 ppm		52 gms
Cold Stabalized Mode	WF = 1.0	1	· 1	•	
N 15614 Revs	•	1	1		
	CO2 .04	~	200 77 7		
	CO ₂ .04 CO 14.0	2	CO ₂ .77 Z CO 1056.2 ppm	CO2 170	• •
		ppm		CO 148	
	HC 9.65	PPmc	HC 67.60 ppm _c		69 gms
NO _x 82.6 ppm	NO _x .1	ppm	NO _x 82.54 ppm	NO _x 21.	20 gms
Hot Transient Mode W	F = .57	•	•		
N 9110 Revs				•	
CO ₂ 1, 19 Z	CO ₂ .04	z	CO ₂ 1.15 Z	CO ₂ 846	.3 gms
CO 1178.0 ppm	CO 15.0	ppm	CO ² 1115.6 ppm	CO 52	
HC 110.87 ppm	HC 9.00	ppmc	HC 102.75 Ppm	HC 2.	
NO _x 134.3 ppm	NO _x .1	ppm	NO. 134.21 ppm	NO _x 11.	-
		PP.	X 134.21 bbm	MOX II.	40 8 ms
		•			
Results:	CO ₂ 3292	grams/t	• •	CO ₂ 438	.9 gpm
•	CO 230.5	grams/t		CO 30	
	HC 10.45	grams/t		HC 1.	
• •	NO _x 42.19	grams/t	est	NO _x 5.	62 gpm
			Urban Fuel Ec	conomy 18.	03 MPG

Scott Environmental⁷⁸Technology Inc.

1976 Chevrolet

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE B-17

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

Veh. Chevette	Odometer Read	ine:	Date 8/29/79	
Vin: 186809Y118162			Proj.# 1827-01	
Trans. Automatic			Run # 17	
Carbs. 1 bbls. 2	Miles/Kms		Dev. None (Base	line)
Eng. <u>L-4 Disp. 98</u>			Dyno RHP 9.4	eso mph
Idle RPM	Timing			.4
Analyst D. Gulick			Calculator D, Gi	
Dry Bulb Temp.		F Barometri		746.88 mm Hg
Wet Bulb Temp.		F CVS Pump		15.80 mm Hg
Relative Himidity	70 2			731.08 mm Hg
Specific Humidity		r/lb (T) Sample		573.4 °R
• K _H	1.3317	(V) CVS P	ump Disp.	.3105 CFR
EXHAUST BAG	DILUTION AIR			
ANALYSIS		CORRECTED		GHTED MASS
ANALISIS	ANALYSIS	CONCENTRA		MISSIONS
Cold Transient Mode WF	- .43	I I		
N		t	4	
N 9172 Revs	<u> </u>			503 /
CO ₂ 1.07 %	CO ₂ .04 %			
CO 1980.0 ppm	•	pm CO 1885.		67.4 gms
HC 382.26 ppmc	HC 8.53 P	рт _с НС 374.5	5 ррт _с НС	6.63 gms
NO _X 35.5 ppm	NO _x .0 p	pm NO _x 35.54	ppm NO _x	2.78 gms
Cold Stabalized Mode WF	= 1.0	•	•	
N 15663 Revs	•	1	Ľ	
CO ₂ .74 Z	CO ₂ .04 7	CO ₂ .70	I CO ₂	1569.2 gms
CO 309.0 ppm		pm CO 284.7	L 2	40.4 gms
HC 51.56 ppmc		pm _c HC 43.82		3.08 gms
NO _x 16.0 ppm	· · · · ·	Pm NO _x 15.97		
Hot Transient Mode WF =			1 1	
	<u> </u>		,	
N 9133 Revs	•	1	1	
CO ₂ .99 %	CO ₂ .04 %	CO ₂ .95	X CO ₂	707.6 gms
CO 572.0 ppm		pm CO ² 539.1		25.4 gms
HC 100.94 ppm		РЩ. НС 94.36	Рртс ИС	2.20 gas
NO _x 29.7 ppm		pm NO _x 29.57		
. 1			1	-
Results:	CO ₂ 2858 g	rams/test	C0 ₂	381.1 gpm
		rams/test	C0 ²	
• •		rams/test	EC	17.7 gpm 1.58 gpm
		rams/test	NO _x	
		-	· · · · · · · · · · · · · · · · · · ·	
•		Urt	oan Fuel Economy	21.41 MPG

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE B-18

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1979 Chevrolet					
Veh. Chevette	Odometer R		Date	8/31/79	
Vin: 186809Y118162		07085.1		827-01	· · · · · · · · · · · · · · · · · · ·
Trans. Automatic		07074.3	Run #18		
Carbs. 1 bbls. 2	Miles/Kms		DevFuel		
Eng. L-4 Disp. 98			. Dyno RHP		<u>@</u> 50 MPH
Idle RPM	Timing		Dyno Inerti		
Analyst D. Gulick	Driver	S. Stranio	ck Calculator	D. Guli	.ck
Dry Bulb Temp.	75.0	°F	Barometric Press.	74	49.77 mm Hg
Wet Bulb Temp.	67.0	°F	CVS Pump Press.	1	5.80 mm Hg
Relative Himidity	66	z	(P) Sample Press.	7:	33.97 mm Hg
Specific Humidity	87	gr/lb	(T) Sample Temp.	56	57.2 °R
ĸ _H	1.0597		(V) CVS Pump Disp.		3105 CFR
n		-			
EXHAUST BAG	DILUTION AIR	[CORRECTED EXH.	WEIGHTE	,
ANALYSIS	ANALYSIS		CONCENTRATIONS	EMISS	IONS
Cold Transient Mode W	F = .43	•	•		
N 9383 Revs		1			
CO ₂ 1.08 %	CO2 .04	x	co, 1.04 %	CO2 60)9.7 gms
CO 825.0 ppm	co 11.0	. ppm	CO 780.4 ppm		28.9 gms
НС 238.85 рртс	HC 5.97	ppm _c	нс 233.40 ррт		
	NO _x .0		NO _x 167.80 ppm).85 gms
NO _x 167.8 ppm	X	ppm	MOX TOLLOO PPM	THO X I	
Cold Stabalized Mode	WF = 1.0	•	•		
N 15667 Revs	•	5	•	· ·	•
CO ₂ .72 Z	c02 .04	. 7	CO ₂ .68 Z	CO2 15	47.0 gms .
CO 265.0 ppm	CO 12.0	ppm	СО 244.5 ррш		35.2 gms
HC 36.05 ppmc	HC 3.46	ppm _c	НС 32.78 рршс		.34 gms
NO _x 67.8 ppm	NOx 0	ppm	NO _x 67.83 ppm		02 gms
	••• X	rr-	X 07.05 FF-	····X 1/	•02 a
Hot Transient Mode WF	= .57	•	·		
N 9127 Revs		l			
	<u> </u>	- -	CO 03 7	<u> </u>	• •
CO ₂ .96 Z	CO ₂ .04	Z	CO ₂ ,92 %		4.9 gms
CO 254.0 ppm	CO 13.0 HC 3.28	ppm DDD	CO ⁻ 232.1 ppm HC 47.87 Ppm _c		1.1 gms
EC 50.91 ppmc		ppm _c			.13 gms
NO _x 131.0 ppm	NO _x .0	p pm	NO _x 131.00 ppm	TOX TO).91 gms
			•		
Results:	- CO ₂ 2851	grams/t	est	C02 38	0.2 gpm
	CO 75.3	grams/t			0.0 892
;	HC 7,77	grams/t		-	.03 gpm
	NO 38.79	grams/t			17 gpm
•	•				
			Urban Fuel E	22 concernent 22	2.20 MPG

80

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344 TABLE B-11

EXHAUST EMISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE

1070 Nomerow					
1979 Mercury Veh. Station Wago		eading.	Date	8/17/79	
Veh. <u>Station Wago</u> Vin: 9274F649208	Finish 06		Proj.#	1827-01	
Trans. Automatic		776.4	Run #	1827-01	
Carbs. 1 bbls. 2	Miles/Kms-		Dev		
	1. 302		Dyno RHP		@50 MPH
Idle RPM -	<u>1. 30</u> 2 Timing -			<u>14.0</u> tia4500#	
Analyst D. Gulick		. Stranic		r D. Gulic	
milligat <u>o: outrus</u>	Di 2002	<u>- Jeranze</u>		L_D. Guille	<u></u>
Dry Bulb Temp.	70.0	°F	Barometric Press.		754.49 mm Hg
Wet Bulb Temp.	58.0	oF	CVS Pump Press.		15.80 mm Hg
Relative Himidity	48	z	(P) Sample Press.		738.69 mm Hg
Specific Humidity	53	gr/1b	(T) Sample Temp.		565.5 ^O R
K _H	.9062	- ,	(V) CVS Pump Disp.		.3105 CFR
A			• • • • • • • • • • • • • • • • • • • •		
EXHAUST BAG	DILUTION AIR	1	CORRECTED EXH.	WEIGH	ED HASS
ANALYSIS	ANALYSIS	[CONCENTRATIONS	EMIS	SSIONS
	· · · · · · · · · · · · · · · · · · ·	1			· · ·
Cold Transient Mode	WF = .43	•		•	
	1	•		1	*
N 9126 Revs	· ·				
CO ₂ 1.62 %	CO ₂ .04	z	CO ₂ 1,58 7	C02	908.7 gms
CO 727.0 ppm	CC 10.0	ррш	CO ⁻ 684,4 ppm	C 0	24.9 gms
HC 176.21 ppmc	HC 3.00	ppmc	HC 173,59ppm	HC	3.13 gms
NO_{x} 227.2 ppm	NO _x .0	ррш	NO _x 227.25ppm	NO	12.33 gms
)	Į.		L -	
Cold Stabalized Mode	eWF = 1.0	-		•	•
	1	· · 1		4	•
N 15658 Revs		~			
CO ₂ 1.06 %	CO ₂ .04	Z I	CO ₂ 1.02%	C02	2340.7 gms
CO 27.0 ppm	CO 8.0	bbw	CO 18.7 ppm	CO	2.7 gms
HC 26.90 ppmc	HC 3.36	PPmc	HC 23.80 ppm _c	HC	1.71 gms
NO _x 133.4 ppm	NO _x .0	ppm	NO _x 133.42ppm	NOx	28.89 gms
TT . M	1	1	•	1	•
Hot Transient Mode W	<u> 11 = .57</u>				
N 011/ Deve	•	1		1	
N 9114 Revs	co. 0/	z	∩ ∩ 1 / 1 ♥		1073 E
CO ₂ 1.45 Z CO 85.0 ppm	CO ₂ .04 CO 9.0		CO ₂ 1.41 % CO ² 73.4 ppm		1073.5 gms
	EC 3.36	ppm	· · · · · · · · · · · · · · · · · · ·	HC	3.5 gms
· · · · · · · · · · · · · · · · · · ·		ppm _c			.98 gms
NO _x 286.5 ppm	NO _x .5	ppm	NO_x 286.08ppm	NOx	20.55 gms
		+	-	6 · · ·	•
	×				•
Results:	CO ₂ 4323	grams/te	est	C0,	576.4 gpm
1	CO 31.2	grams/te		co ²	4.1 gpm
	HC 5,83	grams/te		HC	.77 gpm
	NO _x 61.78	grams/te		NO.	8.23 gpm
		U		T	
			Urban Fuel	Economy	15.14 MPG .
				-	

TROY, MICHIGAN / SAN BERNARDINO, CALIFORNIA

.

APPENDIX C HIGHWAY FUEL ECONOMY EXHAUST EMISSION DATA

Scott Environmental Technology Inc.

82

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-1

HIGHWAY FUEL ECONOMY EXHAUST EXISSION DATA SHEET

1978 Lincoln		
Vehicle Continental	Odometer:	Date <u>8/7/79</u>
VIN8Y82A881792	Finish 07533.3	Project <u>1827.01</u>
License NJ 845-14J	Start07523.2	Run1
Trans. Automatic	Niles	Device <u>Baseline</u>
Carb. 1 bbls. 4	Idle rpm	Dyn. Load <u>14.7</u>
Engine V8 CID 460	BIT	Dyn. Inertia 5000#
Analyst D. Gulick	Driver S. Stranick	Calculator <u>D. Gulick</u>
· · ·		
Dry Bulb Temp., F 91	Barometric Pres	ss., m Hg749_27
Wet Bulb Temp., F 72	CVS Pump Press.	, mm Hg15.80
Gr. Water/Lb. Dry Air <u>87</u>	(P) Sample Pres	55., mm Hg7 <u>33.47</u>
(K) Factor 1.0598	(V) CVS Pump Di	lsp., CFR3105
(T) Sample Temp., R 582.5	(N) CVS Pump Re	volutions <u>13782</u>
	- .	•
DT1	ITE EXHAUST MEASUREMENTS	•
	PVN/IM · FA	ACTOR GRAMS/MILE
ppm HC dfl16.05		•
pp= HC Air3.93_	•	
pp= HC exh52	<u>6.10869 11.34</u>	8×10^{-6}
ppus CO exh5352	<u>6.10369</u> <u>22.90</u>	5×10^{-6} 0.64 CO
% CO ₂ exh 2.9052	<u>6.10869</u> <u>36.02</u>	2×10^{-2} 549.59 CO_2
рра NO		
Ppm NO2		·
Ppm NO _x 78.96	•	
(ppm NO _x) (K) 83.68 520	6.10869 37.62	8×10^{-6} <u>1.66</u> 30_{x}
HPG 16.11	· ·	· · · · · · · · · · · · · · · · · · ·

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-3

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

1978 Lincoln Vehicle <u>Continental</u>	Odometer:	Date	8/8/79
VIN 8Y82A381792	Finish	Project	1827-01
License NJ 845-14J	Start07548.0	Run	3
Trans. Automatic	Miles	Device	Fuel-Max
Carb. 1 bbls. 4	Idle rpm	Dyn. Load _	14.7
Engine V-8 CID 460	BIT	Dyn. Inerti	a5000 <i>≇ ·</i>
Analyst D. Gulick	Driver S. Stranick	Calculator	D. Gulick
•	•	•	
Dry Bulb Temp., F 93	Barometric Pres	s., mm Hg	746.05
Wet Bulb Temp., F68	CVS Pump Press.	, ma Hg	15.80
Gr. Water/Lb. Dry Air 69	(P) Sample Pres	s., mm Hg	730.25
(K) Factor 0.9726	(V) CVS Pump Di	sp., CFR	.3105
(T) Sample Temp., R 579.0	(N) CVS Pump Re	volutions	13646

DILUTE EXHAUST MEASUREMENTS

COMPONENT	PVN/IM	FACTOR	GRAMS/MILE	•
ррт HC dil. <u>17.10</u>	· · ·	,	•	
ppm HC Air 3.29	•		•	
ppm HC exh13.81_	521.76528	11.348×10^{-6}	0.08	HC
ppm CO exh41	521.76528	22.905×10^{-6}	0.49	
7 CO ₂ exh2.75	521.76528	36.022×10^{-2}	516.86	_ CO ₂
ppa NO				L
pp= NO2	•		•	
ppm NO _x 385.13	• .	·	•	
(ppm NO _x) (K) <u>374.58</u>	521.76528	37.628×10^{-6}	7.35	_ NO_
MPG17.14	•	· · · ·	_	Ē.

Scott Environmental³⁴ lecnnology Inc.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-786-8861

TWX: 510-665-9344

TABLE C-2

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

1979 Oldsmobile Vehicle <u>Cutlass Salon</u>	Odometer:	Date
VIN3G09H9G427785	Finish 07977.3	
License PA 951-309	Start07967.8	Run2
Traus. Automatic	Miles	Device <u>Baseline</u>
Carb. 1 bbls. 4	Idle rpm	Dyn. Load <u>12.3</u>
Engine V-8 CID 305	BIT	Dyn. Inertia <u>3500</u>
Analyst D. Gulick	Driver <u>S. Stranick</u>	Calculator D. Gulick
Dry Eulb Temp., F <u>85</u> Wet Bulb Temp., F <u>71</u> Gr. Water/Lb. Dry Air <u>92</u> (K) Factor <u>1.0868</u> (T) Sauple Temp., R <u>576.5</u>	CVS Pump Press. (P) Sample Press (V) CVS Pump Dis	s., um Hg <u>749.70</u> , um Hg <u>15.80</u> s., um Hg <u>733.90</u> sp., CFR <u>.3105</u> volutions <u>13574</u>

DILUTE EXHAUST MEASUREMENTS

COMPONE	NT	PVN/TM	FACTOR	GRAMS/MILE	
ppm HC dil	12.98				
ppm HC Air	3.95	· · ·			• •
ppm BC exh	9.03	523.86845	11.348×10^{-5}	0.05	_ HC
ppm CO exh.	. 190 .	523.86845	22.905×10^{-6}	2.28	_ C O
X CO ₂ exh	1.93	523.86845	36.022×10^{-2}	364.21	_ ^{C0} 2
ppm NO	<u> </u>			. .	•
Ppm NO2	÷-			-	
ppm NO _X	79.0				
(ppn NO _x) (K)	85.86	523.86845	37.628×10^{-6}	1.69	_ ¹¹⁰ x
MPG24.12					

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-4

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

1979 Ol VehicleCutlass	dsmobile Saler	Odometer	•	Date	8/9/79	
VIN 3G09H0G427788			07999.0			
		_			1827-01	
License PA 9S1-309			07989.4		4	
Trans. Automatic				•	Fuel-Max	
Carb. 1 bbls.	-					
Engine CID					ia <u>3500</u>	
Analyst		Driver _		Calculator	•	
	•					
Dry Bulb Temp., F	76	•	Barometric Pr	ess., mm Hg	749.96	·
Wet Bulb Temp., F	64 .		CVS Pump Pres	s., mm Hg	15.80	
Gr. Water/Lb. Dry Air	70		(P) Sample Pr	ess., mm Hg	734.16	
(K) Factor	0.9770		(V) CVS Pump	Disp., CFR	. 3105	
(T) Sample Temp., R	573		(N) CVS Pump	Revolutions	, 13765	- - -
				. •		
•	DILL	JTE EXHAUSI	MEASUREMENTS	. •		
COMFONENT		PVN/TM	•	FACTOR	. GRAMS/MILE	•
ppn HC dil. 14.76						-
ppm HC Air 3.54					· •	- •
ppm HC exh	53	4.67409	<u> </u>	48 x 10 ⁻⁶	0.07	HC
ррд CO exh27	•		22.9	0.05×10^{-6}	0.33	_ ໝ
Z CO ₂ exh. 1.86			36.0	22×10^{-2}	358.24	_ C0,
ppm NO	_			· · ·		- 1
ppa 1102	-		•		· •	
ppm NO _x 209.92	-		-			•
(ppm NO_) (K) 205.09			37.6	528 x 10 ⁻⁶	4:13	_ ¹⁷⁰ x
MPG24.72	· · ·			· · · ·		- X

PLUMSTEADVILLE, PA. 18949 P

PHONE: 215-766-8861

86

TWX: 510-665-9344

TABLE C-5

HIGHWAY FUEL ECONOMY EXHAUST EMISSION DATA SHEET

1977 Dodge Vehicla Aspen Nagon VIN NB45G7F252970	Odometer: Finish <u>11418.7</u> Start <u>11409.8</u>	Date <u>8/13/79</u> Project <u>1827_01</u> Run5
License <u>NJ 660-HOY</u> Trans. <u>Automatic</u> Carb. <u>1</u> bbls. <u>2</u>	Miles Idle rpm	DeviceBaseline Dyn. Load13.2
Engine V-8 CID 318 Analyst D. Gulick	BIT Driver <u>S. Stranick</u>	
Dry Bulb Temp., F <u>87</u> Wet Bulb Temp., F <u>68</u>	Barometric Press.	s., mn Hg <u>747.84</u> , mn Hg <u>15.99</u>
Gr. Water/Lb. Dry Air72	(P) Sample Pres	
(K) Factor 0.9861 (T) Sample Temp., R 575.2	(V) CVS Pump Di. (N) CVS Pump Re	sp., CFR

DILUTE EXHAUST MEASUREMENTS

Component	PVN/IM	FACTOR	GRAMS/MILE	
рра HC dil69.11				
ppm EC Air 2.28		· ·		
ppm HC exh. 66.83	531.652	11.348×10^{-6}	0.40	EC
ppm CO exh286	531.652	22.905×10^{-6}	3.48	co
Z CO ₂ exh. 2.09	531.652	36.022×10^{-2}	400.26	^{CO} 2
ppm NO			-	-
pp= NO2		•	•	
ppm NO _x 144.89		-	- -	
(ppm NO _x) (K) <u>142.88</u>	531.652	37.528×10^{-6}	2.86	³⁷⁰ x
KFG 21.81				

87

- 12

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-6

-

HIGHWAY FUEL ECONOMY EXHAUST EMISSION DATA SHEET

1977 Dodge Vehicle Aspen Wagon	Odometer:	Date	8/14/79
VIN NH45G7F252970	Finish 41442.2	Project	
License NJ 660-HOY	Start 41432.1	Run	
Traus. Automatic	Miles		Fuel-Max
Carb. 1 bbls. 2	Idle rpm	Dyn. Lozd	13.2
Engine <u>V-8</u> CID <u>318</u>	BIT	Dyn. Inert	ia 4000# ·
Analyst D. Gulick	Driver S. Stranick	-	D. Gulick
· ·	· .		
bry Bulb Temp., F <u>83</u>	Barometric Pres	ss., 📼 Hg	746.60
Net Bulb Temp., F 70	CVS Pump Press	., mm Hg	15.99
Sr. Water/Lb. Dry Air 89	(P) Sample Pres	ss., m Hg	730.61
(K) Factor <u>1.0704</u>	(V) CVS Pump D:	isp., CFR	.3103
(T) Sample Temp., R 571	(N) CVS Pump Re	evolutions	13784
-	•	· •	

DILUTE EXHAUST MEASUREMENTS

•				
COMPONENT	PVN/TM	FACTOR	GRAMS/MILE	•
pp= HC dil94.41			• •	•
ppm EC Air <u>5.19</u>	•			
ppm HC exh. 89.22	534,34503	11.348×10^{-6}	0.54	HC
ppm CO exh. 546	534.34503	<u>22.905 x 10⁻⁶</u>	6.68	_ co
2 CO ₂ exh. <u>1.92</u>	534.34503	36.022×10^{-2}	369.56	_ co,
ppm NO		· · · ·		
ppm NO ₂	•	•		
ppm NO _x 224.85	\$	-	•	
(ppm NO) (K) 240.68	534.34503 [.]	<u>37.628 x 10⁻⁶</u>	4.84	_ 310_
NFG 23.25				-

TROY, MICHIGAN / SAN BERNARDINO, CALIFORNIA

المتصفحا والمراجع المروار المراجع ويوجعهم مردا المراجع والمستعد

88

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE C-9 .

HIGHWAY FUEL ECONOMY

נ	1978 Oldsmob:	ile	EXHAUST ENIS	SION DATA SHEET		· .
	Cutlass Cruis		Odometer	r:	Date	8/15/79
	3H35H8G40425(Finish	48615.0	Project	1827-01
License	NJ 415-1	IRA	Start	48605.3	Run	9
Trans.	Automatic		Miles	_ `	Device	Baseline
Carb. 1	L 351	s. <u>2</u> .	_ Idle rp	₫	Dyn. Load	12.3
Engine V	7-8 CID	305	BIT		Dyn. Inert	ia3500#
Analyst	D. Gulick		Driver	S. Stranick	Calculator	D. Gulick
-		•				
Dry Bulb	Temp., F	70	• . •	Barometric Pr	ess., mm Hg	747.91
Wet Bulb	Temp., F	59	_ ·	CVS Pump Pres	s., mm Hg	15.71
Gr. Water	r/Lb. Dry Ai	r <u>57</u>	-	(P) Sample Pr	ess., mu Hg	732.20
(K) Facto	or	0.9220	-	(V) CVS Pump	Disp., CFR	.3105
(T) Sampl	le Temp., R	567.5	_	(N) CVS Pump	Revolutions	13792

DILUTE EXHAUST MEASUREMENTS

COMPONENT	PVN/TM	FACTOR	GRAMS/MILE	· - ·
рра HC d11 39.93				
ppm HC Air 3.28	•			
ppm HC exh36.68	539,47077	11.348×10^{-6}		HC
ppm CO exh. <u>69</u>		22.905×10^{-6}	0.85	CO
2 CO ₂ exh. <u>1.90</u>	·	36.022×10^{-2}		CO ₂
ррт Ю			•	-
ppm NO ₂			•	
ppm NO _x 67.33			•	
(ppm NO _x) (K) <u>62.08</u>	<u></u>	37.628×10^{-6}	1.26	^{NO} x
HPG 23.91				~

89

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-10

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

1978 Oldsmobile Vehicle Cutlass Cruiser	Odometer:	Date	8/16/79
"IN 3H35H8G404250	Finish	Project	1827-01
License NJ 415-HRA	Start	Run	
Trans. Automatic	Miles	Device	
Carb. 1 bbls. 2	Idle rpm -	Dyn. Load	12.3
Engine <u>V-8</u> CID <u>305</u>	BIT	Dyn. Inertia	3500#
Analyst D. Gulick	Driver <u>S. Stranick</u>	Calculator	D. Gulick
•		•	
Dry Bulb Temp., F <u>4</u> 73	Barometric Pres	ss., 📼 Hg	752.25
Wet Bulb Temp., F 59	CVS Pump Press.	., mm Hg	15.99
Gr. Water/Lb. Dry Air 52	(P) Sample Pres	is., ma Hg	736.26
(K) Factor 0.9024	(V) CVS Pump Di	Lsp., CFR	.3105
(T) Sample Temp., R 571.5	(N) CVS Pump Re	volutions	13793
		•	•

DILUTE EXHAUST MEASUREMENTS

COMPONENT	PVN/TM ·	FACTOR	GRAMS/MILE	
ppm BC dil40.13	• •			
ppm EC Air3.31		<i>,</i>	•	
ppm HC exh 36.82	538.70441	11.348×10^{-5}	0.23	_ HC
ррл CO exh. <u>31</u>		22.905×10^{-5}	0.38	_ co
Z CO ₂ exh. <u>1.81</u>	·	36.022×10^{-2}	351_23	_ co ₂
ppm NO				
ррш К0 ₂	· · · · · · · · · · · · · · · · · · ·		•	
ppm NO _x 230.91		•		,
(ppm NO _x) (K) <u>208.38</u>		37.628×10^{-6}	4.22	- ^{NO} x
NPG 25.18				

MPG _____21.90

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

90

TWX: 510-665-9344

TABLE C-7

HIGHWAY FUEL ECONOMY EXHAUST EMISSION DATA SHEET

1979 Mercury EX	HAUST EMISSI	ON DATA SHEET			
Vehicle Station Wagon	Odometer:		Date	8/15/79	
VIN 9274F649208	Finish	06776.2	Project	1827-01	
License NJ 414-KHO	Start	06766.5	Run	7	
Trans. Automatic		-	Device	Baseline	
Carb. 1 bbls. 2	Idle rpm		Dyn. Load	14.0	_
Engine V-8 CID 302	BIT	-	Dyn. Inertia	4500 #	
Analyst D. Gulick		. Stranick	Calculator	D. Gulick	
••••••		-			 .
Dry Bulb Temp., F 69	•	Barometric Pre	ss., an Hg	748.16	
Wet Bulb Temp., 7 58		CVS Pump Press	., mm Hg	15.99	
Gr. Water/Lb. Dry Air 54		(P) Sample Pre	ss., 📼 Ag	732.17	
(K) Factor 0.9102		(V) CVS Pump D	isp., CFR	.3103	
(T) Sample Temp., R 568	•	(N) CVS Pump R	avolutions	13790	
	. •		•	-	
DTI	TITE ETHATIST	MEASUREMENTS	•		
COMPONENT	PVN/IM		ACTOR .	GRAMS/MILE	
pp⊒ HC dil41_38	FAN' 11	-		GAELS/ MLES	
ррш HC Air2.63					
		11 24	s - 10-6		HC
· · · · - •	48.43854	<u> </u>	$\frac{8 \times 10^{-6}}{5 \times 10^{-6}}$	0.24	
ppm CO exh. <u>56</u>		22.90	$\frac{5 \times 10^{-6}}{10^{-2}}$	0.69	0
		<u>36.02</u>	2×10^{-2}	403.51	- ^{co} 2
ppn X0					
				-	
ppm NO _x <u>58.78</u>			-6		
(ppm NO _x) (K) <u>53.50</u>		<u> </u>	<u>6 x 10⁻⁶</u>	1.08	- ³³⁰ x

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

- 91

TWX: 510-665-9344

TABLE C-11

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

Vehicle Station Wagon	Odometer:	Date	8/17/79
VIN 9274F649208		-	1827-01
License NJ 414-KHO	Start 067	· · · ·	11
Trans. Automatic	Miles	· · · · ·	Fuel-Max
Carb. 1 bbls. 2			14.0
Engine V-8 CID 302	BIT		
Analyst D. Gulick	Driver S. St	ranick Calculator	D. Gulick
•		· ·	
Dry Bulb Temp., F 76	Baro	metric Press., mm Hg	754 49
Wet Bulb Temp., F 60	CVS	Pump Press., mm Hg	15.80
Gr. Water/Lb. Dry Air 52	· (P) :	Sample Press., mm Hg	738.69
(K) Factor 0.9024	(V)	CVS Pump Disp., CFR	.3105
(T) Sample Temp., R 573.5		CVS Pump Revolutions	13720
		•	
נכן	LUTE EXHAUST MEAS	JREMENTS	
COMPONENT	PVN/TM	FACTOR	GRAMS/MILE
pp= HC dil		•	
ppm HC Air 3.03			
ррл HC exh. <u>31.60</u>	535.74696	11.348×10^{-6}	0.19 HC
ppm CO exh. 23	·	22.905×10^{-6}	0.28 00
Z CO ₂ exh. 2.05		36.022×10^{-2}	395.62 . CO.
ppm NO	· · · ·		
ppm NO ₂			
ppm NO _x 98.71		•	
(pp= NO _x) (K)	· · · · · · · · · · · · · · · · · · ·	<u>37.628 x 10⁻⁶</u>	×0,
MPG22.37			

Maximum Temperature = 600° F

1977 Mercury

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-8

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

Vehicle Monarch	Odometer:	Date	8/15/79
VIN 7W37F539757	Finish	Project	1327-01
License NJ 677-HPA	Start 31299.1	Run	
TransAutomatic	Míles	Device	Baseline
Carb. 1 bbls. 2	Idle rpm	Dyn. Load	
Engine V-8 CID 302	BIT	Dyn. Inert:	ia 4000
Analyst D. Gulick	Driver S. Stranick	Calculator	D. Gulick
Dry Bulb Temp., F 74 Wet Bulb Temp., F 69	· · · · ·		
Gr. Water/Lb. Dry Air98	(P) Sample Pre	ss., mm Hg	731.97
(K) Factor1.1212	(V) CVS Pump D	isp., CFR	.3103
(T) Sample Temp., R _ 569	(N) CVS Pump R	evolutions	13789

DILUTE EXHAUST MEASUREMENTS

•				•
COMPONENT	PVN/TM	' FACTOR	GRAMS/MILE	
ppm HC dil. 103.60		•		
ppm EC Air		•		
ppm HC exh. 100.31	537.41622	11.348×10^{-6}	0.61	_ HC
ppm CO exh756	537.41622	22.905×10^{-6}	9.31	<u>`</u> co
2 CO ₂ exh. <u>1.85</u>	537.41622	36.022×10^{-2}	358.14 .	_ co,
ppm NO				
ppm NO2		• ·	•	
ppm NO _x 73.62				
(ppm NO_) (K) <u>83.54</u>	537.41622	37.628×10^{-6}	1.67	_ ਹਨ
NPG23.69				*

ppm HC exh.

Z CO₂ exh. ___ ppm NO _____ ppm NO₂ _____

ppm NO_x _____ (ppm NO_x) (K)

MPG '22.17

ppm CO exh.

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

93

TWX: 510-665-9344

TABLE C-12

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

1977 Mercury Vehicle <u>Monarch</u>	Odometer:		Date	8/21/79
VIN 7W37F539757	Finish	31363.8		
Licease NJ 677-HPA	Start	31354.0	Run	12
Trans. Automatic	Miles		Device	Fuel-Max
Carb. 1 bbls. 1	Idle rpm	-	Dyn. Load	13.2
Engine <u>V-8</u> CID <u>02</u>	BIT	. 	Dyn. Inertia	4000#
Analyst D. Gulick	Driver	B. Markley	Calculator _	D. Gulick
Dry Bulb Temp., F 70 Wet Bulb Temp., F 67 Gr. Water/Lb. Dry Air 95	•	(V) CVS Pump Di		15.80 734.13 .3105
	LUTE EXHAUST PVN/TM	MEASUREMENTS FA	ACTOR	grams/mile
ppm HC Air 6.61	•			

42.33	535.62196	11.348×10^{-6}	0.26	HC
205	······································	22.905×10^{-6}	2.52	co
2.05		36.022×10^{-2}	395.53	C0_
-				
••• · · · · · · · · · · · · · · · · · ·			•	
435.15		-	•	
480.32	•	37.628×10^{-6}	9.68	NO

MPG _____.21.15

94 Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344

TABLE C-13

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

LAH1979 OldsmobileVehicleCutlass Cruiser (Wgn)VIN3G35H92434400LicenseNJ 952-JP1Trans.AutomaticCarb.1bbls.2EngineV-8CID305AnalystD. Gulick	Odometer: Finish Start Niles Idle rpm BIT	20916.6 20906.8 - - B. Markley	Run 13 Device Bas	27-01 eline 13.2 4000#	
Dry Bulb Temp., F <u>80</u> Wet Bulb Temp., F <u>69</u> Gr. Water/Lb. Dry Air <u>89</u> (K) Factor <u>1.0704</u> (T) Sample Temp., R <u>570</u>		Barometric Press. CVS Pump Press. (P) Sample Press (V) CVS Pump Di (N) CVS Pump Re	, mn Hg s., mn Hg sp., CFR	15.80 734.13 .3105	
· · · ·	UTE EXHAUST PVN/TM	MLASUREMENTS	CTOR	GRAMS/MILE	
ppm HC dil. 52.44 ppm HC Air 9.23 ppm HC exh. 43.21 ppm CO exh. 205 Z CO2 czh. 2.14 ppm NO -	38.01281 38.01281 38.01281	<u> </u>	$\frac{2 \times 10^{-6}}{5 \times 10^{-6}}$	0.26 2.53 414.74	BC CO CO ₂
ppm NO_2 ppm NO_{χ} (ppm NO_{χ}) (K) 56.26		37.62	<u>3 x 10⁻⁶</u>		— ¹¹⁰ x

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-15 .

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

1979 Oldsmobile Cutlass Vehicle <u>Cruiser (Wagon)</u>	Odometer:	Date	8/24/79
VIN3G35H92434400	Finish 20940.0	Project	1827-01
License <u>NJ 952-JPI</u>	Start 20931.2	Run	15
Trans. Automatic	Miles	Device	Fuel-Max
Carb. 1 bbls. 2	Idle rpm	Dyn. Load	13.2
Engine V-8 CID 305	BIT	Dyn. Inert	ia 4000# .
Analyst D. Gulick	Driver B. Markley		D. Gulick
Dry Bulb Temp., F79	Barometric Pres		
Wet Bulb Temp., F73	CVS Pump Press.	, me Hg	15.80
Gr. Water/Lb. Dry Air <u>113</u>	(P) Sample Pres	s., mm Hg	732.94
(K) Factor 1.2174	(V) CVS Pump Di	sp., CFR	.31.05
(T) Sample Temp., R 572.5	(N) CVS Pump Re	volutions	13785
· · ·	•		

DILUTE ENHAUST MEASUREMENTS

COMPONI	ENT	PVN/TM	FACTOR	GRAMS/MILE	•
ppa HC dil	31.77				•
ppm HC Air	9.83	i •		•	
ppm HC exh.	21.94	• 535.02802	11.348×10^{-6}	0.13	HC
ppm CO exh.	31	535.02802	$\frac{22.905 \times 10^{-6}}{22.905 \times 10^{-6}}$	0.38	co
% CO ₂ ext.	2.10	535.02802	36.022×10^{-2}	404.73	_ co ₂
ppm NO	_				
ррд N02		•			
ppm NO _x	193.41		·	•	
(PP= NO_) (K)	·	535.02802	37.628×10^{-6}	4.74	- ²⁰ x
MPG 21.87	7				

96

Scott Environmental Technology Inc.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-14

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

Vehicle 1979 Ford Pinto	Odometer: I	Date 8/23/79
VIN 9711Y158158	Finish 11278.6 F	roject 1827-01
License NJ 392-KHL	Start11268.4 F	Rum <u>14</u>
Trans. Automatic	Niles L	evice <u>Baseline</u>
Carb. 1 bbls. 2	Idle rpm I	yn. Load 19.4
Engine 4-cyl. CID 140	BIT I	yn. Inertia <u>2500</u> #
Analyst <u>D. Gulick</u>		alculator <u>D. Gulick</u>
Dry Bulb Temp., F75	Barometric Press.,	m Kg 751.72
Vet Bulb Temp., F <u>68</u>		m Hg 15.80
Gr. Water/Lb. Dry Air91	(P) Sample Press.,	ma Hg 735.92
(K) Factor 1.0813	(V) CVS Pump Disp.	, CFR3105
(T) Sample Temp., R 572	(N) CVS Pump Revol	utions 13786

DILUTE EXHAUST MEASUREMENTS

COMPONENT	PVN/TM	FACTOR	GRAMS/MILE	
ррш НС dil24.20		•		ı
рра НС Аіт <u>3.87</u>				
pp= HC exh20.33	537.71193	11.348×10^{-6}	0.12	EC
ppn CO exh. <u>190</u>	537.71193	22.905×10^{-6}	2.34	CO
2 CO ₂ exh. <u>1.57</u>	537.71193	36.022×10^{-2}	304.10 .	CO
ppia NO	·			_
pp= NO2				·
pp= NO _x 90.54		•		
(ppm NO _x) (K) <u>97.90</u>	537.71193	37.628 x 10 ⁻⁶	1.98	ND_
HPG 28.80				- x

PLUMSTEADVILLE, PA. 18949

A. 18949 PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-16

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

Vehicle 1979 Ford Pinto	Odometer:	Date	8/27/79
VIN 9T11Y158158	Finish 11303.5	Project	1827-01
Licence NJ 392-KHL	Start 11293.9	Run	16
Frans. Automatic	Miles	Device	Fuel-Max
Carb. 1 bbls. 2	Idle rpm	Dyn. Load	
Engine . 4-cy1 CID 140	BIT		ia 2500#
Analyst D. Gulick	Driver S. Stranick	Col	D. Gulick
Analyst	Driver	CALCULATOR	
Dry Eulb Temp., F86	Barometric Pres	s., wa Hg	747.17
Dry Eulb Temp., F <u>86</u> Set Eulb Temp., F <u>74</u>	Barometric Pres CVS Pump Press.	s., wn Hg	747.17
Analyst Dry Eulb Temp., F 86 Wet Eulb Temp., F 74 Gr. Water/Lb. Dry Air 108 (K) Factor 1.1836	Barometric Pres CVS Pump Press. (P) Sample Pres	s., um Hg , mm Hg s., um Hg	747.17 15.61 731.56

DILUTE EXHAUST MEASUREMENTS

COMPONENT -	PVN/TM .	FACTOR	. GRAMS/MILĘ	
pp= HC df136_51		•		
ppm HC Air 7.11				
ppm EC exh. 29.41	526.9407	11.348×10^{-6}	0.18	HC
ppm CO exh. 279		22.905×10^{-6}	3.37	co
% CO ₂ exh. 1.60		36.022×10^{-2}	303.70	co
ppm NO				- 2
ppm NO2	· ·			•
ppm NO _x 221.57			•	
(ppm NO _x) (K) <u>262.25</u>		<u>37.628 x 10⁻⁶</u>	5.20	- ^{XO} x
NPG 28.67				~

PLUMSTEADVILLE, PA. 18949

PA. 18949 PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-17

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

1979 Chevrolet Vehicle <u>Chevette</u>	Odometer:	Date8/29/79
VIN 186809Y118162	Finish 07066.8	Project <u>1827.01</u>
License PA A53-258A	Start 07057.2	Rua 17
Trans. Automatic	Miles	Device <u>Baseline</u>
Carb. 1 bbls. 2	Idle rpm	Dyn. Load 9.4
Engine L-4 CLD 98	BIT	Dyn. Inertia 2500#
Analyst D. Gulick	Driver S. Stranick	Calculator D. Gulick
	•	•
Dry Bulb Temp., F 84	Earometric Pres	ss., Em Hg746.88
Wet Bulb Temp., F 79	CVS Pump Press	., mm Hg 15.80
Gr. Water/Lb. Dry Air 143		ss., mm Hg731.08
(E) Factor 1.4697	(V) CVS Pump D:	0 33 0E
(T) Sample Temp., R 573.2	(N) CVS Pump Re	evolutions 13782

. •		DILUTE EXPAUST MEAS	SUREIERTS		
COMPONE	INT	PVN/IM	FACTOR	GRAMS/HILE	-
ppm HC dil	44.83		·		
ppm HC Air	6.49	-	·		
ppa HC exh	38.34	532.90252	11.348×10^{-6}	0.23	EC
ppm CO exh.	212	532.90252	22.905×10^{-6}	2,59	co
% CO2 exh.	1.40	532.90252	35.022×10^{-2}	268.75 -	c o ₂
vp= 10					_
אסק NO2					
ppm NO ₂₅	69.03	•	•	•	
(۲) (۲۵ בקק) (K)	101.45	532.90252	37.628×10^{-6}	1.38	³³⁰ x
HFG	32.45				

99

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE C-18

HIGHWAY FUEL ECONOMY

EXHAUST EMISSION DATA SHEET

1979 Chevrolet				
Vehicle <u>Chevette</u>	Odometer:	-	8/31/79	
VIN1B6809Y118162	Finish 070	97.7 Project	1827-01	
License PA A53-258A	Start 070	58.1 Run	18	
Trans. Automatic	Miles	Device	Fuel-Max	
Carb. 1 bbls. 2.	Idle rpm	Dyn. Los	ad 9.4	
Engine L-4 CID 98	BIT	Dyn. Ind	ertiz <u>2500#</u>	
Analyst D. Gulick	Driver S.S	tranick Calculat	tor D. Gulick	
Dry Bulb Temp., F 77	Baro	metric Press., mm Hg	749.77	
Wet Bulb Temp., F67	CVS	Pump Press., mm Hg	15.80	
Gr. Water/Lb. Dry Air 83	(P)	Sample Press., mm Hg	733.97	
(K) Factor 1.0391		CVS Pump Disp., CFR		
(T) Sample Temp., R 571.4	(N)	CVS Pump Revolutions	13793	
	•	•		
DTI		1775		
	UTE EXHAUST MEAS	•	· · · · · · · · · · · · · · · · · · ·	•
	PVN/TM	FACTOR	GRAMS/MILE	
рря HC dil. <u>19.90</u>		•		÷
ppm EC Air		-		•
pp= HC exh. <u>16.92</u> <u>537</u>	.12284	11.348×10^{-6}	0.10	HC
ppm CO 2xh. 45 537	.12284	22.905×10^{-6}	0.55	CO
	.12284	36.022×10^{-2}	263.14	_ CO,
ppa NO				*
ppa 1102			•	
ppa 110, 234.98	•	•		
	.12284	37.628×10^{-6}	4.93	_ ²¹⁰ x
HPG . 33.58		· ·		X

SET 1796 01 0379

FUEL-MAX

TECHNICAL REPORT TWO EXHAUST EMISSION TESTS 1975 FEDERAL COLD-START WITH URBAN & HIGHWAY FUEL ECONOMY

Prepared For:

.

Mr. Mike Leshner Fuel-Max Industries 110 Harding Ave. Bellmawr, NJ 08031

March 27, 1979

SCOTT ENVIRONMENTAL TECHNOLOGY, INC. Plumsteadville, Pennsylvania 18949

Scott Environmental Technology Inc.

TABLE OF CONTENTS

. .

Page 1.0 INTRODUCTION 1 2.0 TEST VEHICLE DESCRIPTION . . . 2 . 3.0 DESCRIPTION OF DEVICE 3 . 4.0 TEST PROCEDURE DESCRIPTION . . . 4 . . -. 5.0 TEST RESULTS . . . 5 6.0 DISCUSSION 6 . .

1.0 INTRODUCTION

On March 14 and 15, 1979, Scott Environmental Technology, Inc. performed a series of exhaust emission tests on a late model automobile provided by Mr. Mike Leshner (Sponsor) of Fuel-Max Industries. These tests consisted of exhaust emission measurements of hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO₂), and nitric oxides (NO_x) from which (with the exception of NO_x) urban and highway fuel economy were calculated. The primary objective of these tests was to determine the effectiveness of the Sponsor's device in improving fuel economy, and secondarily, in reducing exhaust emissions. This technical report describes the test vehicle, test procedures utilized, and the final results of the test performed.

2.0 TEST VEHICLE DESCRIPTION

The exhaust emission tests were performed on a 1977 Chevrolet Caprice Classic (VIN: 1N6947S212474) equipped with a 305 cubic inch V-8 engine, 2-bbl. carburetor, and an automatic transmission. The vehicle was received in stock condition for the first emission test. The mileage prior to the initial test was 25528.4. The vehicle was registered in the state of Pennsylvania under license number 480-622. The first (baseline, vehicle in stock condition) test was performed as received, with no tune-up or adjustments made. Tables 1.0 and 2.0 describe the test vehicle used and include the chassis dynamometer inertia and road horsepower settings. Also shown is the data/time sequence for each test series performed.

Scott Environmental Technology Inc.

3.0 DESCRIPTION OF DEVICE

The Sponsor's device, called Fuel-Max, consists of two parts: part one is a plate and tube arrangement that replaces the exhaust gas recirculation (EGR) valve, which is used to connect the control device to the intake manifold and close the exhaust port normally used by the EGR valve. Part two is the main control portion of the device which is simply a vacuum operated valve installed between part one and the carburetor. When the valve is activated, it allows fresh filtered air into part two, through part one and into the intake manifold of the vehicle. The purpose of the device is to allow fresh air rather than exhaust gases into the intake manifold of the vehicle, further leaning the air/fuel mixture at high engine vacuum operating conditions.

The control portion (#2) of the device has an adjustment knob graduated in increments of one to five (1-5) which allows it to be adjusted for nearly any operational vacuum desired. The settings required are dependent upon specific vacuum of a given engine, and can be adjusted for optimum performance of that engine. For this program, the control device was at the number two (2) increment setting.

104

4.0 TEST PROCEDURE DESCRIPTION

Two 1975 Federal Cold Start exhaust emission tests were performed in accordance with Federal Register Volume 42, Number 124, "Control of Air Pollution from New Motor Vehicles and New Motor Vehicle Engines". Deviations from this procedure included the use of the vehicle's in-tank fuel supply and the elimination of the Evaporative Emission test sequence. Immediately following each "cold start" test, a 1976 Federal Highway Fuel Economy test was performed in accordance with Federal Register Volume 41, Number 218.

The initial minimum 12 hour "soak" period was begun at 1525 hours on March 13, 1979 with the first Baseline exhaust emission test starting at 0931 hours on March 14, 1979. Immediately following the exhaust emission test the Highway Fuel Economy test procedure was initiated.

Following this baseline test series, the Sponsor removed the vehicle's EGR value and installed the Fuel-Max device. No adjustments to the test vehicle's engine parameters were made and the vehicle was again "soaked" for the prescribed time period. This soak period started at 1630 hours on March 14, 1979 and ended with the beginning of the second (device) cold start test series at 0928 hours on March 15, 1979.

Prior to the cold start tests, the chassis dynamometer was warmed up using a non-test vehicle. The inertia and power settings were 4000# and 13.2 road horsepower respectively.

105

5.0 TEST RESULTS

Exhaust emission concentrations as collected in the integrated bag samples, were calculated using appropriate instrument calibration factors. This "raw" concentration data was then converted to grams of pollutant per test mile (based on a 7.5 mile test) using the procedure outlined in the aforementioned Federal Register. This data, including all measured parameters used in the mass emission computations for the FTP, is included in Tables 3.0 and 5.0. Exhaust emissions collected during the Highway Fuel Economy tests were reduced in the same manner as described above, with mass emissions (grams per mile) based on a test of 10.242 miles. Tables 4.0 and 6.0 summarize the exhaust emission data for these tests.

Urban and Highway Fuel Economy for each test sequence was calculated using the procedure outlined in Federal Register Volume 41, Number 218, Part 600 "Fuel Economy of Motor Vehicles", November 10, 1976. The basic equation used to calculate the fuel economy of a vehicle, in miles per gallon, from the mass emission data is as follows:

> MPG = Grams of carbon/gallon of fuel Grams of carbon in exhaust/mile

The Urban and Highway fuel consumption rates for each test are included at the bottom of Tables 3.0 through 6.0.

The data presented in Table 7.0 summarizes the vehicle exhaust emission and fuel economy tests performed. The exhaust emissions are presented in grams per mile (GPM) for total hydrocarbons (HC), carbon monoxide (CO) and oxides of nitrogen (NO_x) . Fuel economy measurements are shown in miles per gallon (MPG).

Scott Environmental Technology Inc.

6.0 DISCUSSION

The data in Summary Table 7.0 show that the Fuel-Max improved the fuel economy for the Urban and Highway tests by 12.45% and 33.3% respectively as compared to the baseline tests. At the same time there was a small decrease in CO, a small increase in HC and a substantial increase in NO_{χ} emissions.

The tests described in this report indicate that the device produced improved fuel economy from the test vehicle. However, great care must be taken in interpreting results obtained from any tests involving a single vehicle. The data cannot be extrapolated to estimate the effects of the device on other vehicles or on the overall vehicle population. Valid conclusions regarding the general effectiveness of this device cannot be rendered until additional tests on representative vehicles are performed.

PLUMSTEADVILLE, PA. 18949

949 PHONE: 215-766-8861

TWX: 510-665-9344

TABLE 1.0

17

VEHICLE INFORMATION

Make: Chevrolet	Model:	Caprice C	lassic	Year:	1977
Engine Serial No	Cha	assis Seria	L No.	1N69U7S	212474
Transmission <u>Automatic</u>		-			
Odometer		-			· · ·
Engine Disp. 305		_			·
Idle RPM 500		_			
Fuel System <u>1 - 2 bbl</u>		-		•	
Tank Capacity		-			,
Tank Location Rear	<u>_</u>	-			
Curb Weight3838#		_			
Drive Wheel Tire Press. 34.5	psi	_			
Device Baseline - no device					

DYNAMOMETER INFORMATION

Serial No. <u>Clayton 1289P</u>	Serial No
Inertia4000#	Final Wt. (g)
Road Horsepower @ 50 MPH	Initial Wt. (g)
Actual 13.2	Net Wt. (g)
Indicated 9.8	

TEST	SEQU	ENCE:

Test No. 1 Project No.1796:01

CARBON TRAP INFORMATION

	Date	Start Time	Odometer Start	End Time	Odometer End
Road Precondition:		<u></u>			
Dyno Precondition:	·	<u></u>		<u></u>	
Cold Soak:	3/13/79	1525		0931	
Fuel Transfer:	. <u></u>		,	<u></u>	
Heat Build:				<u></u>	
CVS Test:	3/14/79	0931	25528.4	1012	25539.0
Hot Soak:				<u></u> n	
Highway Fuel Economy:	3/14/79	1018	25540.0	1031	25549.8

MADISON HEIGHTS, MICHIGAN / SAN BERNARDINO, CALIFORNIA

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

TWX: 510-665-9344

TABLE 2.0

VEHICLE INFORMATION

Make: Chevrolet	Model:	Caprice Classic	Year: 1977
Engine Serial No	Ch	assis Serial No.	1N69U75212474
Transmission Automatic		_	
Odometer 25549.8		_	
Engine Disp. <u>305</u>			
Idle RPM 550		_	,
Fuel System <u>1 - 2 bbl</u>		-	•
Tank Capacity		· ·	
Tank Location Rear			
Curb Weight		_	
Drive Wheel Tire Press. 34.	.5 psi	-	
Device Fuel-Max			
DYNAMOMETER INFORMATION		CARBON TRAP	INFORMATION
Serial No. Clayton 1289P	·	Serial No.	
Inertia 4000#)
Road Horsepower @ 50 MPH			(g)
Actual 13.2		Net Wt. (g)	· · · · · · · · · · · · · · · · · · ·
Indicated <u>9.8</u>			
TEST SEQUENCE:		st No2	Project No. <u>1796:01</u>
Dat	e <u>Start</u>	Odometer Time Start	odometer End Time End
Road Precondition:	<u> </u>		_

Road Precondition:	_ 			<u> </u>	
Dyno Precondition:				<u> </u>	<u></u> ,_
Cold Soak:	3/14/79	1630		0928	
Fuel Transfer:					
Heat Build:	. <u></u>	<u></u>			
CVS Test:	3/15/79	0928	<u> 25549.</u> 8	1008	25560.4
Hot Soak:	<u></u>			<u> </u>	
Highway Fuel Economy:	3/15/79	1015	25565.0	1028	25574.8

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344 EXHAUST CIISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE TABLE 3.0

	1977 Chevrolet			TAB	LE 3.0	0			
Veh.	Caprice Classi		meter R	eading		7	Date	3/14/79	
Ven Vin:		Fin		25539.		F	Proj.	1796-01	
	. Automatic	Sta		528.4			Run No.	بمصحب فيتقونه وملته ستهم	
Comb a	1 bb1s. 2	M£1		-		×	Dev.	Bone (Ba	colina)
Eag.	V8 CID: 30		· · · · · · · · · · · · · · · · · · ·				Dyna itti		0 50 MPH
Idle			ing 1	1° BT	DC		Dyno In		00#
Analy			ver S.	Stran	ick			tor D. Gu	
nieży								<u></u>	
	ulb Temp.		79.0	٥F	S	aronatra	ic Press		738.71 mm Hg
	sulb Temp.		61.0	°F		VS Pump		-	14.96 mm Hg
	ive Humidity		34	2		•	le Press	i.	723.75 mm Hg
	fic Humidity		51				le Temp.		577.0°R
•			.8986	9-,		•	Pump Dis		.3110 CFR
ĸ _Ħ			•		``	.,	. Amb. Bro	P •	, JALO 01 M
53	MAUST BAG	- DIL	UTION A	TR	C	ORRECTE	D EYH.	WET	GHTED MASS
	NALYSIS		NALYSIS			ONCENTR			ISSIC:S
	Lings 0 to				-				
Cold	Transient Mode	WF = .43							
	Itumitene note								
N	9141 Revs				•				
ω ₂	1.88%	co ₂	.04	¥	ω,	1.84	. 7.	ω,	1019.7 gms
ωz	1960.0ppm	$\tilde{\omega}^2$	12.0		$\tilde{\omega}^2$	1857.5			65.2 ETLS
RC	222.54ppm	нс	15,51	77- 777	HC	209.44		HC	3.64 grs
NOx	42.7ppm	NOx		ррл	NOx	42.70		NOx	2.21 gns
x	4441.655	x ⁰ x	••	P. P. m.	×x	42470	. 55.00	""X	4.41 2113
Cold	Stabilized Mode	EWF = 1.0		:					
N	15705 Revs								
co ₂	1.35%	C02 ·	.04		ω_2	1.31	- 7	∞_2	2900.2 gms
CO _	508.0ppm	C 0		ppm	C0_	482.1		CO	67.6 gms
HC	56.36ppm_	HC	13.08	ppmc	HC	44.65	PPne	HC	3.10 gms
NOx	17.8 _{ppm}	NOx	•2	ppa	NOx	17.69		NOx	3.66 gins
		~						~	
<u>Iot</u> I	Transient Mode W	F = .57							
N	01695								
N CO-	9162 Revs	6 0-	.	~	~~			80	
со ₂	1.81%	C02	- 04		C02	1.77		^{CO} 2	1303.0 grs
8	871.0ppn	C0	10.0		CO	822.6			38.3 gus
HC	138.43ppmc	HC	11.67	PPPc	HC	128,42	2 ppme	HC	2.96 gus
20 2	31.8 ppm	NOx	.3	P PH	NOX	31.59	i ppm	NO _x	2.17 gis
[Resul	lts:								
		C0,	5223	grans	/test			C02	696.4 gpm
		CO ²	171.2	grans	/test			ຕ້	22.8 gpm
		HC	9.71	grans	/test			HC	1.29 gpm
		NOx		grans				no _x	1.07 gpm
							ban Fuel	Econoriy	12.04 MPG
								-	

MADISON HEIGHTS, MICHIGAN / SAN BERNARDINO, CALIFORNIA

•

PLUMSTEADVILLE, PA. 18949

949 PHONE: 215-766-8861

.

TWX: 510-665-9344

TABLE 4.0

17

.

EXHAUST EMISSION DATA SHEET

1977 ChevroletVehicleCaprice ClassicVIN1N69U7S212474License480-622 PATrans.AutomaticCarb.1bbls.2EngineV8CID305AnalystD. Gulick	Odometer: Finish	Run <u>1</u> Device <u>none</u> Dyn. Load <u>13.2 @ 50 mph</u> Dyn. Inertia <u>4000</u>
Dry Bulb Temp., F <u>82</u> Wet Bulb Temp., F <u>62</u> Gr. Water/Lb. Dry Air <u>53</u> (K) Factor <u>9063</u> (T) Sample Temp., R <u>577.5</u>	CVS Pump Press (P) Sample Pres (V) CVS Pump D	ss., mm Hg 738.71 ., mm Hg 14.96 ss., mm Hg 723.75 isp., CFR .3110 evolutions 13307
-	525.42595 <u>1.51</u>	ACTOR GRAMS/MILE 3×10^{-6} 1.13 HC 4×10^{-6} 39.26 CO
X CO ₂ exh. 2.55 ppm NO - ppm NO ₂ - ppm NO ₂ 39.08	525.42595 4.80	$\frac{3 \times 10^{-2}}{7 \times 10^{-6}} = \frac{482.64}{0.70} \text{ NO}_{x}$

MADISON HEIGHTS, MICHIGAN / SAN BERNARDINO, CALIFORNIA

PLUMSTEADVILLE, PA. 18949 PHONE: 215-766-8861 TWX: 510-665-9344 EXHAUST CHISSION DATA SHEET 1975 FEDERAL TEST PROCEDURE . TABLE 5.0

	1977 Chevrolet			. IASL	_					
Veh.	Caprice Classic	Odo	meter R				Date 3			
Vin:	1N 69U7S212474	📃 Fin		<u>5560.4</u>			Proj.			
Irans	, Automatic	Sta	rt 255	49.8			Run No.	2		
Carbs	. <u>1</u> bbls. <u>2</u>	<u> </u>					Dev.	Fuel-Max		
Eng.	V8 CID: 30	5					Dyno IH	P 13.2		g SO MPH
Idle	RPM 550	Tin	ing_11	BTDC			Dyno In		000	• • • • • •
	st D. Gulick		ver S		nick	خصف ایری از این	Calcula		Gulick	
an (* †)		<u> </u>	· · · -							
5 S	ulb Temp.		76.0	0F	R	aronetri	In Press		751.50	mm Ha
			51.0	°F		VS Pump		•		na Hg
	Sulb Temp.		11	7		(P) Sampl			736.07	
	ive Humidity		16						563.0	
	ific Humidity			gr/lb		T) Samp.	•			
ĸ _H		•	.7829		((V) CVS B	ump Dis	P •	.3107	CFR
	CHAUST BAG		UTION A			OFRECTE			CHILD W	
_!	NALYSIS	<u> </u>	NALYSIS		2	ONCENTR	ATICMS		HISSION	<u>s</u>
						-	_			
Cold	Transient Mode W	/F = 43								
R	9138 Revs									
ω ₂	1.922	c0,	.04	Z	∞_2	1.88	Z	ω,	1084.6	2015
co ²	2054.0Ppm	ω ²		ppm	ωź	1963.2		ωź	71.7	-
HC	254.64PP=	HC		ppm _c	HC	251.81		нс	4.55	
NO _x	132.6pp=				NO.	132.60			6.23	
X	Tor.chim	NO x	•0	b bw	,x	132.00	pher	NOx	0.25	Rrez
Cald	Chabilitanad Mada			·						
010	Stabilized Mode	WF = 1.0								
v	7567/ Devie									•
N	15674Revs	-	·	-		1 0/				
ω2	1.082	coz	.04		∞ ₂	1.04		^{co} 2	2392.9	grs
co _	400.0ppm	CO	10.0	ppm	CO_	381.1	ppm	C0_	55.5	gns
hC	69.45ppmc	HC		ppmc	HC	64.53	ppmc	HC	4.66	ഉനട
NOx	49.9ppm	NO _x	•0	ppn	NO _x	49.93	<u>a</u> dd	NOx	9.36	ST-3
								~ ~		-
Hot T	ransient Mode WI	= .57								
2	9143 Revs		•							
c o ₂	1.58%	CO2	.04	%	C02	1.54	z -	C0,	1178.0	2 T S
ຜ້	288.0721	6	10.0		co	269.4		ω ²		
ПC	73.81 ppm	нС		ppm _c	HC			HC	13.0	
NO _x	139.1 ppm	no _x	7.30	PPPC		67.31	P.F.m.C		1.61	
X	T73+T55m	**** X	•4	քեր	no'x	138.76	5.bw	NO _x	8.65	5
Da 1										
Resul								_		
		^{CO} 2	4655					C02	620.7	
		°,	140.4					<u>`</u> 0	18.7	
		HC	10.83					HC	1.44	
		NOx	24.25	grars	/test			NOx	3.23	
						Uri	olan Fuel	Econory	13.54	
								-		

.

PLUMSTEADVILLE, PA. 18949

PHONE: 215-766-8861

. .

TWX: 510-665-9344

TABLE 6.0

17

113

HIGHWAY FUEL ECONOMY

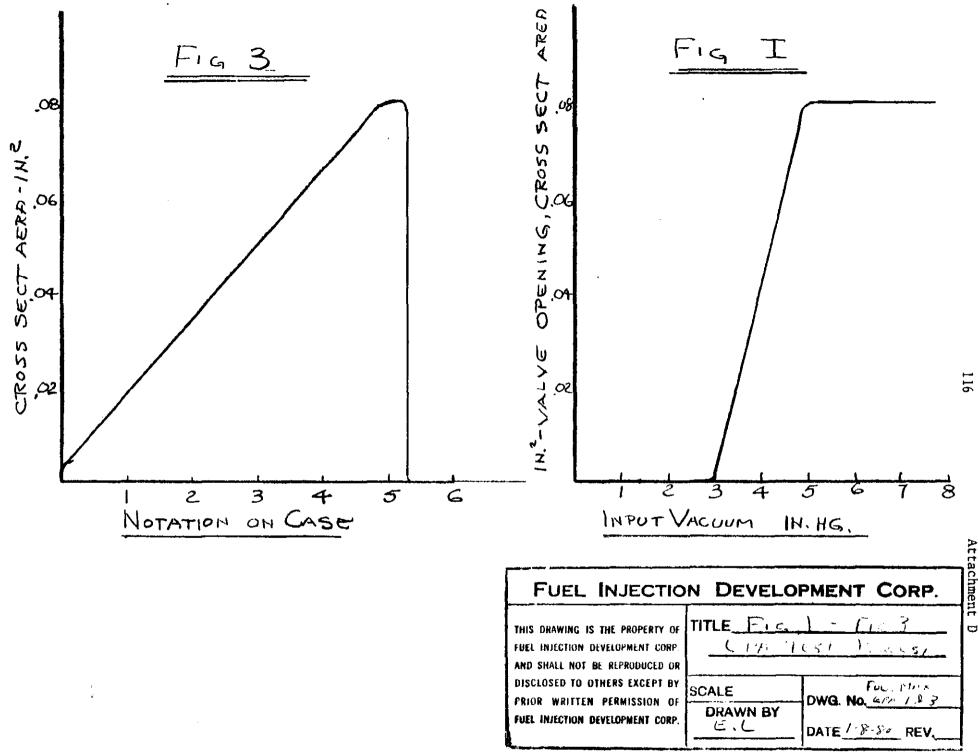
EXHAUST EMISSION DATA SHEET

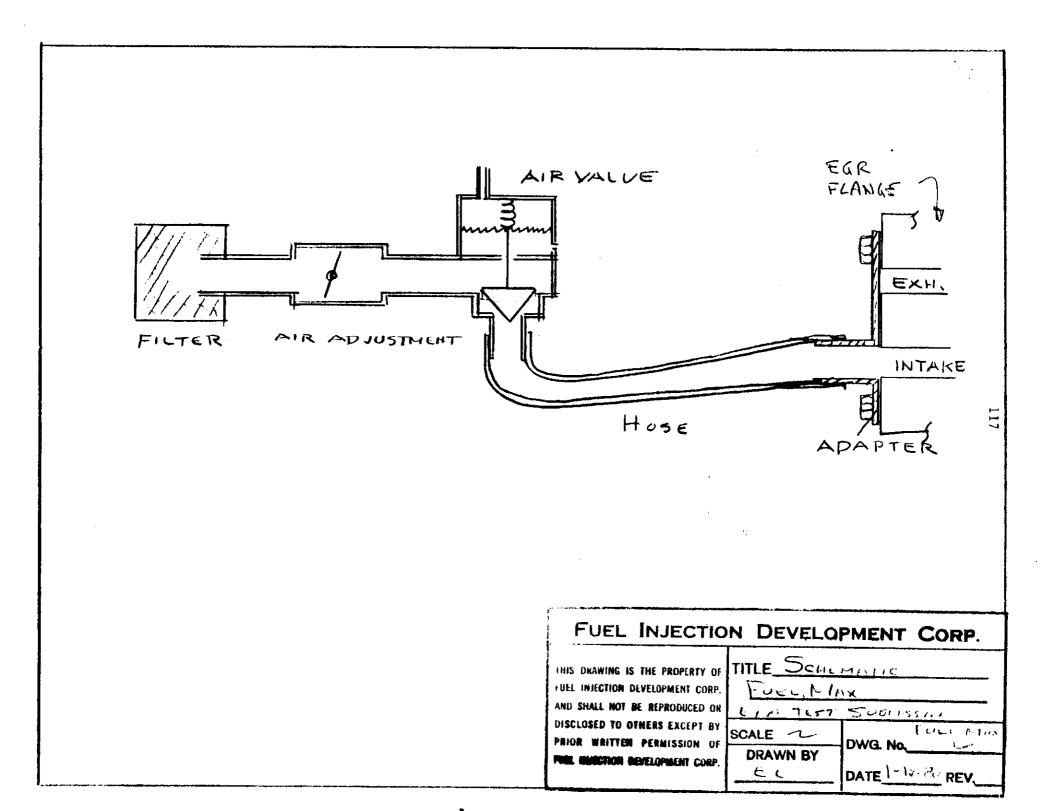
1977 Chevrolet Vehicle <u>Caprice Classic</u>	Odometer:	Date
VIN <u>1N69U75212474</u>	Finish 25574.8	Project 1796:01
License 480-622 PA		Run2
Trans. Automatic	Miles	Device
Carb. 1 bbls. 2	Idle rpm550	Dyn. Load 13.2 RHP 2 50 MPH
Engine V8 CID 305	BIT 10° BTDC	Dyn. Inertia 4000#
Analyst D. Gulick	Driver S. Stranick	Calculator D. Gulick
Dry Bulb Temp., F 82	Barometric Pres	ss., mm Hg
Wet Bulb Temp., F 54	_ CVS Pump Press	., mm Hg <u>15.43</u>
Gr. Water/Lb. Dry Air 18	(P) Samplé Pres	ss., mm Hg 736.07
(K) Factor7887	(V) CVS Pump D	isp., CFR3107
(T) Sample Temp., R 575.5	(N) CVS Pump Re	evolutions 13801

DILUTE EXHAUST MEASUREMENTS

COMPONENT	PVN/TM	FACTOR	GRAMS/MILE	
pp= HC d1156.59				
ppm HC Air <u>7.46</u>				
ppm HC exh. <u>49.13</u>	535.47696	11.348×10^{-6}	0.30	EC
ppm CO exh468	_ 535.47696	22.905×10^{-6}	5.74	_ co
X CO ₂ exh. 2.08	535.47696	36.022×10^{-2}	401.21	_ co,
ppm NO				- 2
Fbm NO ⁵				
ppm NO _x 195.72				
(ppm NO_) (K) 154.36	535.47696	<u>37.628 x 10⁻⁶</u>	3.11	- ^{NO} x
MPG				- x

TABLE 7.0


SUMMARY OF TEST RESULTS


Test <u>No.</u>	Test <u>Type</u>	HC (GPM)	CO (GPM)	NO (GPM)	Fuel Economy Urban	(MPG) <u>Highway</u>
1	Baseline (no device)	1.29	22.8	1.07	12.04	16.18
2	Device (Fuel-Max)	1.44	18.7	3.23	13.54	21.57

Scott Environmental Technology Inc.

114

115 SAME ART WORK AS Box TOP HSTACE IT YOURCERIE 0 FITS - APPLICATIONS G.M. ALL CARS 19.73 - 19.79 -IGHT TRUERSS VINNS GXLEPT DIEFEL ALL CARS FORD 1973-1979 LIGHT TRUCES & VANS ALL CARSS UDUS CHEYSLER 1973-1979 EXCEPT V-8 ENGINES FEDERIL EPA REGULATIONS PERMIT THE VERNICE OWNER TO INSTALL FUEL MAX ON 1973-1979 GASOLINE PUEREDVELIE TEST RESULTS PER FEDERAL REG, VOL 442 TEST 124 PHO USE UUL 41 TETT 218 (1975 FEDERAL, EPM, EMISSIONS TEST WAITH URBAN AND HIGHWAY FUEL ECONOMY PERFOR PART NO. FM-1 THEL INJECTION DEVELOPMENT CORF. 110 HARDING AVE 1 =

Test Plan/Testing Agreement - EPA Testing of Fuel Max

Testing will be initiated after the Test Plan and Testing Agreement have been signed by the applicant.

Test Plan

.

The following is the test procedure plan which will be used by the EPA in collecting data on the fuel economy and emission effects of Fuel Max (a retrofit device) under Section 511 of the Energy Policy and Conservation Act.

- 1. A minimum of three representative vehicles will be identified and obtained by the EPA. Representativeness will be based upon the appliciability of Fuel Max as detailed in the application; i.e. 1979 year or older, domestic, gasoline fueled, non three-way catalyst, and for engine size and manufacturer; i.e. small, medium, large engines from different manufacturers.
- 2. Vehicles will each be checked and adjusted to ensure that they are operating in accordance with vehicle manufacturer's specifications.
- 3. Baseline Tests Duplicate valid Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) procedures will be performed on each test vehicle. Basic vehicle driveability will be observed.
- 4. Fuel Max will be installed on each vehicle in accordance with the installation instructions provided with the application. The installations will be performed by EPA personnel with the applicant's representative observing. The vehicles may be checked, as necessary, for correct operation prior to initiation of the device tests.
- 5. Device Tests The testing sequence performed for the baseline tests will be repeated.

Test Agreement

The following constitutes the agreement which must be signed prior to the initiation of testing of "Fuel Max" by the EPA. It is agreed:

- 1. That the applicant concurs with the test plan as specified above, and that the applicant will be notified if there is need for changes to the test plan.
- 2. That the applicant will be provided a copy of the test scheduled and that up to two representatives of the applicant are welcome to be on site at the EPA laboratory to observe the vehicle check-out, device installation, and dynamometer testing.
- 3. That a copy of the data collected will be provided to the applicant after all testing has been completed and the EPA test report is written.

- 4. That the test data and results from the evaluation will not be released by the applicant prior to the official release by the EPA at the completion of the entire evaluation.
- 5. That Merrill Korth will be the official EPA point of contact during the evaluation, and Peter Hutchins will be in charge of the Fuel Max evaluation.
- 6. That the fact that the EPA is testing Fuel Max shall not be publicized during the evaluation process.
- 7. That the following persons shall be the official contacts for the applicant:

All non-technical issues

M. LESHNER CHIEF ONGINEER 110 HARREINS AV FL MAWR NJ 65071

931 3168

All technical issues

Munan 1 68HINGT Signed: For

Name Títle

City

Phone

Street

•

Date 2 FF3 81

(19

110 HARDING AVENUE

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY ANN ARBOR. MICHIGAN 48105

> OFFICE OF AIR, NOISE AND RADIATION

January 23, 1981

Mr. Michael D. Leshner, Chief Engineer FIDCO Fuel Injection Development Corporation 110 Harding Avenue Bellmaur, NJ 08030

Dear Mr. Leshner:

Enclosed for your review is the test plan which we have developed for evaluation of the "Fuel-Max" device. The work will begin as soon as feasible, after we receive your concurrence and three devices for our test vehicles. Other than these three devices, there will be no cost to you or your company. The testing should require a total of six to eight weeks to complete. Another two to four weeks should be allowed for us to evaluate the results and to prepare the technical report. Although EPA does not "approve" devices under Section 511, you will receive official notification of our findings and a synopsis of the test results will be published in the <u>Federal Register</u>.

All testing is to be performed at the EPA's Motor Vehicle Emission Laboratory in Ann Arbor. A minimum of three late-model passenger cars will be tested in a baseline condition (set to manufacturer's tune-up specifications), and after the Fuel-Max has been installed.

The tests to be performed in each of these configurations are the Federal Test Procedure and the Highway Fuel Economy Test. These tests are the ones which result in the published values for city and highway fuel economies. Each of these tests will be performed at least two times at each test point to increase the confidence in the results. You should find the remainder of our test procedure to be described in sufficient detail in the enclosed test plan.

If you concur that the results of testing conducted in accordance with this test plan will accurately reflect the effectiveness of your device, please sign the agreement portion and return the document to me. You will be notified of the testing schedule as soon as possible. You should also be aware that the EPA reserves the right to conduct any additional testing which may be necessary to resolve questions arising from the basic test program. This is required of us by the regulations under 40 CFR 610.

Peter Hutchins will oversee the EPA evaluation of the Fuel-Max. If you have any questions or require further information before returning the agreement form, please contact me at (313) 668-4299.

Sincerely,

Merrill W. Korth

Senior Project Manager Test and Evaluation Branch

Enclosures

cc: P. Hutchins T. Penninga 511 File, "Fuel-Max" Fuel Injection Development Corporation

2 February 1981

Mr. Merrill W. Korth Senior Project Manager Test and Evaluation Branch U.S. Environmental Protection Agency Ann Arbor, Michigan 48105

Dear Mr. Korth,

I have enclosed the Test Plan/Testing Agreement for EPA testing of FUEL-MAX. The plan is approved as written.

Three FUEL-MAX kits will be shipped to your attention under separate cover. Please notify me when the tests have been scheduled. I look forward to meeting you at that time.

Best regards,

Munan D. Corner

Michael D. Leshner

110 Harding Avenue · Beilmawr, N.J. 08030 · 609/931-3168

Attachment H

EPA-AA-TEB-81-15

.

Emissions and Fuel Economy of FUEL-MAX, a Retrofit Device

> F. Peter Hutchins John T. White

> > May, 1981

Test and Evaluation Branch Emission Control Technology Division Office of Mobile Source Air Pollution Control Environmental Protection Agency

••••

.

Abstract

This report describes the results of testing the "FUEL-MAX" device as part of an evaluation under Section 511 of the Motor Vehicle Information and Cost Savings Act. The FUEL-MAX is an air-bleed device which replaces a vehicle's Exhaust Gas Recirculation (EGR) valve. The amount of air bled into the intake manifold is determined by the vacuum signal which once controlled the action of the EGR valve. This device is claimed to conserve fuel. The primary purpose of this project was to evaluate the effect of the FUEL-MAX on exhaust emissions and fuel economy.

Testing of three typical 1979 model year passenger cars was conducted during March, 1981. The basic test sequence included the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET). These tests were performed both before and after installation of the FUEL-MAX. As a result of the testing, average hydrocarbon and carbon monoxide emissions decreased somewhat while oxides of nitrogen displayed substantial increases. Fuel economy was found to increase approximately three percent on the FTP but exhibited no change over the HFET. The occurrence of engine knock was obvious on two of three vehicles. EPA's Office of Enforcement has determined that the FUEL-MAX can violate the anti-tampering provisions of the Clean Air Act.

Background

Section 511 of the Motor Vehicle Cost Savings and Information Act empowers the Environmental Protection Agency (EPA) to evaluate devices or fuel additives which may improve the fuel economy of conventional motor vehicles. The EPA has developed and instituted a procedure whereby an individual or organization may apply for an evaluation of the device or fuel additive. This procedure requires the applicant to submit a technical description of the system in conjunction with results from actual testing. Once a complete application is received, the EPA will conduct an engineering evaluation and publish the results in the Federal Register. In those cases where the device or additive shows promise, the EPA will conduct tests as a part of its evaluation. Such testing is performed at EPA's Motor Vehicle Emission Laboratory in Ann Arbor.

In February, 1980, EPA received an application from Fuel Injection Development Corporation for an evaluation of the FUEL-MAX. This device is an air-bleed mechanism which replaces the Exhaust Gas Recirculation (EGR) valve. The amount of air bled into the intake manifold is determined by the vacuum signal which once controlled the action of the EGR valve.

Based on an evaluation of the test results submitted to support the claims for the FUEL-MAX, EPA chose to conduct confirmatory testing. The basic purpose of the testing was to determine the effect of the device on fuel economy and exhaust emissions. Secondary purposes included an evaluation of the installation instructions and driveability factors.

Test Vehicles

Three typical 1979 production vehicles were used: a Ford Pinto with a 4-cylinder engine, an Oldsmobile Cutlass with a 6 cylinder engine, and a Mercury Zephyr with an 8 cylinder engine. All vehicles were equipped with automatic transmissions. A more detailed description of each vehicle is provided in Appendix A.

Test Puel

Commercial, unleaded regular fuel was used in the testing of the FUEL-MAX. A single batch of the fuel was purchased and stored at the EPA. The motor octane number was 83 while the research octane number was 91. The decision to use a commercial fuel was based upon the knock sensitivity of some engines to EGR deactivation. The Indolene fuel used in EPA testing has a higher octane rating than typical commercial unleaded gasoline. Thus, use of commercial fuel was appropriate for this evaluation where the possibility of increased knock was probable.

Type of Tests

Exhaust emission tests were conducted according to the 1977 Federal Test Procedure (FTP) described in the Federal Register of June 28, 1977, and the EPA Highway Fuel Economy Test (HFET) described in the Federal Register of September 10, 1976. The vehicles were not tested for evaporative emissions. Other tests were also conducted as an additional aspect of this evaluation. These tests consisted of hot start LA-4 cycles. The LA-4 driving cycle is the basic FTP driving cycle. The results of these hot start LA-4 tests are generally similar to bags 2 and 3 of the FTP.

Device Installation

Installation of the FUEL-MAX on the test vehicles was performed in accordance with the device installation instructions. Following installation, a dial on the FUEL-MAX was set for the size of the engine as specified in the instructions; i.e., set at 1.4 for the Pinto (140 CID), 2.3 for the Cutlass (231 CID), and 3.0 for the Zephyr (302 CID).

The following problems were experienced during the installations:

- 1. On the Pinto, the installation instructions call for the EGR value to be disconnected from the intake manifold, but to be left connected to the exhaust gas transfer pipe so as to close the end of the transfer pipe. On the test vehicle, the EGR value and the exhaust gas transfer pipe had to be removed because the configuration of the EGR value was different than that shown in the installation instructions and an exhaust leak occurred.
- 2. On the Zephyr, the FUEL-MAX caused an exhaust leak at the manifold where the EGR value is normally installed. A sealing plate and additional gaskets had to be employed to prevent this underhood exhaust leak.

Vehicle Test Configurations

Baseline testing was performed after each vehicle was set to the vehicle manufacturer's tune-up specifications. The second test configuration was with the FUEL-MAX installed in accordance with the installation instructions. A third configuration was employed in testing the Pinto. In this configuration (along with the FUEL-MAX), the ignition was retarded by 5° from specifications. This was done to correct the heavy knock which had been exhibited in the road evaluation.

Test Results

The vehicles were tested during March of 1981. All tests were performed by EPA at its Motor Vehicle Emission Laboratory in Ann Arbor. Table 1 summarizes the results of this testing. Emission levels are listed in grams/mile while fuel economy is shown in miles per gallon. The results of the individual tests on each vehicle are presented in Appendices B, C, and D.

Table 1 Summary of Test Results

			F	TP		HFET			
Vehicle	Configuration	HC	<u>co</u>	NOx	MPG	HC	CO	NOx	MPG
Ford Pinto	Baseline FUEL-MAX Average Change	2.08 1.58 -24%	26.0 18.6 -28 2	1.35 6.03 +350%	21.5 22.4 +4.2%	.76 .61 -20%	5.2 2.8 -46%	2.38 6.83 +1907	29.0 29.3 +1.0%
Oldsmobile Cutlass	Baseline FUEL <u>-M</u> AX Average Change	1.89 1.46 -23%	21.0 19.4 -8.0%	1.55 7.44 +380%	18.2 18.5 +1.6%	.40 .23 -43%	4.7 1.6 -6 6%	1.56 8.72 +460Z	26.4 26.4 -0-
Mercury Zephyr	Baseline FUEL-MAX Average Change	2.47 2.08 -16%	25.5 14.2 -44%	0.67 7.17 +970%	15.2 15.7 +3.3%	-89 -83 -7.0%	2.7 1.2 -5.6 2	1.17 9.03 +670%	22.9 22.8 -0.4%
Overall Fleet	Baseline FUEL-MAX Average Change	2.15 1.71 -20%	24.2 17.4 -28 7	1.19 6.88 +480%	17.9 18.5 +3.4Z	.68 .56 -18 2	4.2 1.8 -57%	1.70 8.19 +380%	25.8 25.9 +0.4%

The Pinto exhibited heavy knock during the road evaluation. In this case, the basic timing was retarded 5° and the vehicle was retested. The results are shown in Table 2 below:

.

 Table 2

 Summary of Test Results on Pinto with Retarded Timing

		FTP				HFET			
Vehicle	Configuration	HC	CO	NOx	MPG	HC	<u>C0</u>	NOx	MPG
Ford Pinto	Baseline FUEL-MAX FUEL-MAX (-5°) Average Change (from baseline	1.58 1.20 -427	18.3	6.03 4.46		•61 •50	5.2 2.8 2.0 -62%	2.38 6.83 5.24 +120%	29.0 29.3 29.8 +2.8%

On-Road Evaluations and Observations

- <u>Pinto:</u> With FUEL-MAX installed, the vehicle exhibited the following knock characteristics;
 - a) Cold engine, light acceleration moderate knock
 - b) Heavy knock on light accelerations or while maintaining speed on a minor grade
 - c) Under wide-open throttle accelerations to 55 mph, knock did not occur
 - d) Idle quality was poor (rough) with a warmed-up engine

Ignition timing retard of approximately 5° removed the knock. Vehicle acceleration performance deteriorated.

- <u>Cutlass</u>: With FUEL-MAX, this vehicle exhibited stumble and hesitation attributable to a lean air/fuel mixture. Knock (trace) occurred under heavy accelerations, moderate accelerations and light accelerations. Intermittant, light knock occurred under highway cruise conditions with FUEL-MAX.
- Zephyr: This vehicle exhibited occasional occurrences of trace knock. When cold, the vehicle exhibited stumble at 20 mph.

Conclusions

As a result of EPA testing of FUEL-MAX on three 1979 passenger cars, the following conclusions were drawn:

- 1. The installation instructions and the material packaged with the device were not adequate in all cases.
- Use of the FUEL-MAX resulted in a decrease in hydrocarbon emissions. The average decrease was 20% for the FTP and 18% for the HFET.
- 3. Carbon monoxide emissions were also reduced; 28% over the FTP and 57% over the HFET.
- 4. NOx emissions increased substantially; 480% over the FTP and 380% over the HFET.
- 5. Use of the FUEL-MAX resulted in a three percent increase in fuel economy on the FTP but essentially no change on the HFET.
- 6. During the road evaluations, FUEL-MAX caused heavy knock on one car, and light knock in another. Knock was rarely noted on the third car.

7. Installation of the FUEL-MAX device is considered "tampering" under the provisions of the Clean Air Act*.

*"EPA tests showed that the use of this device, on the vehicles tested caused emissions to exceed applicable standards. Thus, the installation of this device by a person in the business of servicing, repairing, selling, leasing, or trading motor vehicles, fleet operators, or new car dealers will be considered in violation of Section 203(a)(3) of the Clean Air Act, the Federal prohibition against tampering with emission control systems. That is, there is currently no reasonable basis for believing that the installation or use of this device will not adversely affect emission performance. This determination does not preclude the use of the FUEL-MAX device on a different vehicle or vehicles than those tested by EPA if Federal Test Procedure tests performed on such vehicles clearly establish that emission performance of those particular vehicles is not adversely affected.

Appendix A

Test Vehicle Descriptions

.

Make/Model	Ford Pinto	Oldsmobile Cutlass	Mercury Zephyr		
Model Year	1979	1979	1979		
Туре	2 door	2 door	2 door		
Vehicle I.D.	9 T1 1Y186165	3R47A9M523280	9E35F621630		
Initial Odometer	23540	34880	31760		
Engine Type	Spark Ignition	Spark Ignition	Spark Ignition		
Configuration	In-line 4	V6	₩8		
Displacement	140 CID	231 CID	302 CID		
Fuel Metering	2V Carburetor	2V Carburetor	2V Carburetor		
Fuel Requirement	Unleaded	Unleaded	Unleaded		
Transmission	Automatic	Automatic	Automatic		
Tires	B78-1 3	P195/75R14	CR78-14		
Inertia Weight	3000	4000	3500		
Actual HP @50 mph	10.3	12.0	11.2		
Emission Control Systems	EGR Ca talyst	EGR Catalyst	EGR Air Pump Catalyst		

Appendix B

Test Results - Ford Pinto, 140 CID, 4 Cylinder

Test	Test		Federa	l Test	Proce	dure	High	way I	Juel Ec	onomy Test
Date.	#	Configuration	нс	co	NOx	MPG	HC	CO	NOx	MPG
						•				
3-3-81	5560	Baseline	2.09	26.1	1.37	21.44				
3-3-81	5561	Baseline					0.74	5.0	2.35	28.87
3-4-81	5562	Baseline	2.06	26.0	1.33	21.56				
3-4-81	5563	Baseline					0.77	5.3	2.40	29.19
3-5-81	5564	FUEL-MAX	1.66	20.2	5.84	22.06				
3-5-81	5565	FUEL-MAX					0.64	3.2	6.57	29.17
3-6-81	5566	FUEL-MAX	1.50	17.0	6.22	22.71				
3-6-81	5567	FUEL-MAX					0.58	2.3	7.08	29.42
				i.						
3-25-81	5568	Fuel Max (-5°)*	1.00	18.8	4.36	21.97				
3-25-81	5569	Fuel Max (-5°)					0.49	1.9	4.93	29.80
3-26-81	5570	Fuel Max (-5°)	1.41	17.8	4.56	22.48				
3-26-81	5571	Fuel Max (~5°)					0.51	2.1	5.56	29.90

*For this series of tests, the device remained in place but the basic timing was retarded 5° to correct a heavy knock condition.

Test	Test		Federa	l Test	Proce	dure	High	way I	uel Ec	onomy Test
Date.	#	Configuration	HC	со	NOx	MPG	HC	CO	NOx	MPG
3-4-81	6845	Baseline	1.95	22.3	1.56	18.16				
3-4-81	6848	Baseline					0.55	7.1	1.52	26.17
3-5-81	6849	Baseline	1.82	20.3	1.52	18.37				
3-5-81	6850	Baseline					0.43	5.0	1.44	26.61
3-6-81	6851	Baseline	1 .9 0	20.5	1.57	18.16				
3-6-81	6852	Baseline					0.36	4.2	1.58	26.34
3-10-81	6853	FUEL-MAX	1.40	18.9	7.44	18.43				
3-10-81	6854	FUEL-MAX					0.22	1.4	8.57	26.32
3-11-81	6855	FUEL-MAX	1.51	20.0	7.45	18.62		۰.		
3-11-81	6856	FUEL-MAX					0.24	1.6	8.76	26.53
3-19-81	8359	Baseline					0.40	4.6	1.61	26.43
3-19-81	8361	Baseline					0.25	2.6	1.63	26.40
3-19-81	6858	FUEL-MAX					0.23	1.9	8.82	26-42

Appendix C Test Results - Oldsmobile Cutlass, 231CID, V-6

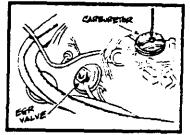
HOT START LA-4

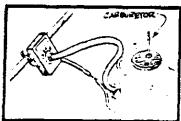
3-19-81 8358	Baseline	1.14	13.4	1.50	19.25
3-19-81 8360	Baseline	1.32	15.1	1.54	19.54
3-19-81 6857	FUEL-MAX	1.24	16.5	7.90	19.71
3-19-81 6859	FUEL-MAX	1.37	15.6	7.73	13.06*

*Fuel economy void - error in CO₂ readings.

Test	Test		Federa	1 Test	Proce	dure	High	way F	uel Ec	onomy Test
Date.	#	Configuration	HC	CO	NOx	MPG	HC	CO	NOx	MPG
3-3-81	6771	Baseline	2.42	25.2	0.66	15.10				
3-3-81	6772	Baseline					0.94	1.4	1.34	23.08
3-4-81	6773	Baseline	2.42	24.1	0.69	15.25				
3-4-81	67,74	Baseline					0.86	3.8	1.07	22.58
3-5-81	6775	Baseline	2.46	23.2	0.71	15.23				
3~5-81	6776	Baseline	·				0.86	2.8	1.11	23.09
							:			
3-10-81	8094	FUEL-MAX	2.05	14.3	7.20	15.72				
3-10-81	8095	FUEL-MAX					0.81	1.2	9.31	22.77
3-11-81	8125	FUEL-MAX	2.12	14.2	7.14	15.72				
3-11-81	8126	FUEL-MAX					0.85	1.1	8.75	22.80
3-18-81	8302	Baseline	2.58	29.5	0.61	15.04				

Appendix D									
Test Results	- Mercury	Zephyr,	302CID,	<u>v-8</u>					


.



What is Fuel Max? Pollution control systems, used on cars built since 1973 to help meet Federal emissions control standards, drive down gas mileage and performance. Fuel Max* is a precision engineered device that enables a car owner to change the <u>airffuel ratio</u> and eliminate the negative effects of exhaust gas recirculation. Fuel Max can add up to 12½%** more mpg in city driving, up to 33%** more on the highway. When Fuel Max was tested on 50 randomly selected '73 to '79 cars and trucks, gas savings averaged a dramatic 10½% Fuel Max also saves gas and improves performance on 1980 models, but to a lesser degree.

How does Fuel Max work? The pollution control system on '73—'80 automobiles works by recirculating exhaust gas back into the engine by means of an EGR (Exhaust Gas Recirculating) Valve. This reduces the exhaust emissions but also decreases the car's smoothness, acceleration and response. It causes more gas to be burned. Fuel Max is a precision built vacuum operated valve that uses the existing EGR system but allows MORE AIR into the engine intake and eliminates recirculation of exhaust gas. More air in the combustible mixture means a leaner mix—you use less gas, get better performance, and lower total overall emissions.

Fuel Max is easy to install. Easy-to-follow instructions included—simpler than changing your car's sparkplugs. No carburetor adjustment necessary! Federal EPA regulations permit vehicle owner to install Fuel Max on own vahicle.

WARRANTY

Fuel Max is warrante to against defects in materials and workmanship for one year from date of purchase.

Only \$29.95 postpaid right to your door. Fuel Max soon pays for itself with the gas savings you get! Exclusive only through this offer.

Order today. Start saving gas and getting better performance from your car.

Petent pending. Results of Bats using E.P.A. processines on a 1977 Chevy web a 305 cubit anch V-8 engine

OGI Group Ltd. 114 East 32 Street New York, New York 10016 Please send me __FUEL MAX 'a: \$29.95 ppa Name Address ______ City ______State _____Zip ____

Er closed is my check or money order for \$_____ Visa & Mastercharge card holders dial b, foll free #800-228-2028 Satisfaction Guaranteed or Money Refunded

Reproduced from best available copy.

13. Will I Really Save Gas by Driving 55 MPH instead of 60 or 65?

Yes. The most efficient driving speed is usually between 30 and 40 miles per hour. For each 10 mph speed increase, there is a fuel economy penalty of about 10 percent. At speeds above 65 mph, the penalty is even greater.

14. Does the Air Conditioner Reduce Fuel Economy?

Yes. The air conditioner uses engine power, which causes a decrease in fuel economy of a few percent.

15. Why Do Some Cars Run after They Are Turned Off?

After-Run, or so-called dieseling, is aggravated by an excessively fast idle speed. Engines should be tuned when warmed up to idle at the minimum speed which gives a smooth idle. (Check automatic transmission cars in "drive".) If cold idling is a problem, the automatic choke may be set to stay on longer. (Automatic choke also boosts idle speed.)

16. Is There Really a Fuel Shortage?

Yes and No. There is no shortage of energy resources, but there is a very real shortage of cheap energy. We have become accustomed to buying gasoline for 50¢ per gallon, which is less than we pay for beer, milk, soft drinks, or even distilled water.

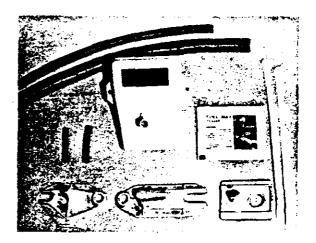
17. What Kind of Tires Give the Best Gas Mileage?

Radial tires have less rolling resistance than biasply tires, and give a fuel economy improvement of a few percent. Higher tire pressures can also add a few percent to fuel economy, but safety is more important. Stick to the manufacturer's recommened tire pressures.

18. Do Special Oils Really Work?

Some of the synthetic oil products and "slippery" oils can make a small improvement in fuel economy by reducing engine friction.

19. Is It Legal for Me to Change My Car's Emission Control System?


If you are not a Professional Mechanic, Dealer Representative, or Fleet Operator, the Federal EPA Laws do not apply to you. Some individual states are considering legislation which might apply. Check your owns state's legislation if you are not sure.

20. Can Fuel-Max Damage an Engine? No. Fuel-Max can actually prolong the life of an engine by eliminating the corrosive effect of exhaust gas recirculation.

· FUEL-MAX INDUSTRIES

P. O. Box 726 Bellmawr, NJ 08031

FUEL-MAX - GASOLINE CONSERVATION FOR CARS AND TRUCKS

Fuel-Max has been designed for the motorist who wants to improve his vehicle's fuel economy. The Fuel-Max installation has shown an average improvement in fuel economy better than ten percent. For those serious about conserving fuel, an additional ten to twenty percent may be saved by careful attention to driving habits.

Driving Habits can make the difference between 15 MPG and 25 MPG on the same car. Careful use of your car's power can save more fuel than any other technique.

Most of the gasoline your car uses is consumed during accelerations. The harder you accelerate, the more fuel is wasted. It is for this reason that highway driving gives better economy than city driving.

While only about 10 horsepower are needed to maintain your car at 55 miles per hour on the highway, you can use all of your engine's horsepower to accelerate. The economical driver uses the minimum horsepower required for any driving situation. A good way to retrain yourself for economical driving habits is to pretend there is a glass of water on the dashboard, and drive in such a way as to avoid getting wet.

REMEMBER THESE GAS-SAVING TIPS -AVOID PROLONGED IDLING DON'T CARRY AROUND UNNECESSARY

WEIGHT ACCELERATE GRADUALLY, DRIVE

- SMOOTHLY FOLLOW THE SPEED LIMITS -
- HIGHER SPEEDS WASTE FUEL

FUEL ECONOMY --QUESTIONS AND ANSWERS

To help you understand some of the technical aspects, we have listed answers to the 20 most frequently asked questions about fuel economy.

1. What is EGR? (Exhaust Gas Recirculation) Exhaust Gas Recirculation is used on all cars built after 1973. The EGR Valve is controlled by a vacuum signal that comes from the carburetor whenever the throttle is in the cruising range. Most cars also have a temperature-controlled vacuum switch in the control line to keep the EGR Valve from opening when the engine is cold.

EGR allows some of the exhaust gas to bleed back into the engine intake, which helps to control one of the emissions, Oxides of Nitrogen. When the EGR system is disconnected, fuel economy improves a few percent, performance is improved noticeably. Oxides of Nitrogen emissions increase, and the engine may knock or ping more than before.

Fuel-Max uses the controls and passages of the EGR system for another purpose.

2. How does the Fuel-Max work?

Fuel-Max makes use of an engine's existing EGR system, but bleeds air into the engine instead of exhaust gas. The Fuel-Max improves fuel economy and performance, and causes a change in the balance of the three regulated exhaust emissions. In general, Hydrocarbon and Carbon Monoxide emissions go down, and Oxides of Nitrogen emissions go up. The total of the three emissions usually goes down.

Fuel-Max causes the engine to run on a leaner airfuel mixture, only when the engine is warmed up. Fuel-Max does not operate at idle, or on wideopen throttle accelerations. For this reason a better fuel economy improvement should be expected in highway driving than urban driving.

3. What is Engine Knock or Ping?

Knock is the sound made by a small "explosion" in the combustion chamber, when the fuel and air burn abruptly instead of smoothly. Heavy and prolonged knocking can cause damage to the engine. There are two remedies for excessive knock: 1. Switch to a higher octane fuel.

2. Retard the ignition timing, which will also cause the fuel economy to decrease.

4. Should I Change the Ignition Timing?

To get the maximum fuel economy, ignition timing should be advanced as far as the engine will tolerate without knocking. (Usually not more than 8 degrees beyond factory specifications.) Advanced timing will usually cause the emissions to increase. 5. What is Octane? Octane is a measure of a fuel's resistance to knock. For example, an engine which knocks on 86 octane fuel might not knock on 90 octane fuel.

6. What is Unleaded Gasoline?

Before 1975; almost all gasoline contained a Lead-Compound additive. Lead increases the octane of the gasoline, but may not be used in catalyst-equipped vehicles. The lead is deposited on the inside of the catalytic converter and spoils the catalyst.

7. Why does Unleaded cost more than Regular?

If lead is not used to boost a fuel's octane, the fuel must go through additional refining to raise its octane. The extra refining uses energy, so unleaded fuel costs more to manufacture than leaded fuel of the same octane.

8. What is Air-Fuel Ratio?

The mixture of fuel and air supplied by the carburetor or fuel injection system must be carefully set to the right ratio. Most vehicles operate in the range of 15 to 18 Air-Fuel Ratio. (15 pounds of air for each pound of fuel.)

The most efficient mixture is the leanest (highest air-fuel ratio) that the engine will tolerate without rough running or hesitation. There is no external adjustment on the carburetor for air-fuel ratio, except the idle mixture.

9. How Should I Adjust the Idle Mixture?

Turn the mixture screw (or screws) to the leanest setting (clockwise is leaner) that gives a smooth idle. Some cars have plastic limiter caps on the idle screws to restrict the range of adjustment.

10. Will a Lean Mixture "Burn Valves"?

No. All modern cars operate at air-fuel ratios greater than 15. The air-fuel ratio which gives the highest combustion temperature is 14.7. Temperatures drop as the mixture gets richer or leaner than 14.7.

Before 1970, many vehicles used mixtures richer than 14.7, and leaning the mixture could raise combustion temperatures, and "burn valves".

11. Will it help to remove the Catalytic Converter?

No. The catalytic converter has no direct effect on fuel economy. Its removal would not produce any change except increased exhaust emissions.

12. How Should I Measure Gas Mileage?

Anyone can measure fuel economy by keeping a record of each fuel purchase. Start by noting the odometer reading when the tank is full. Then note the number of miles on the odometer and the gallons purchased every time you buy fuel. After using several tankfuls of fuel, divide the total miles travelled by the total gallons used. The result will be the miles per gallon. Be sure to average several tankfuls of fuel, to get accurate measurements over a long period.

137

OFFICE OF AIR. NOISE AND RADIATION

November 7, 1980

Mr. Michael D. Leshner, Chief Engineer FIDCO Fuel Injection Development Corporation 110 Harding Avenue Bellmaur, NJ 08030

Dear Mr. Leshner:

During our analysis of your firm's application for evaluation of the "Fuel-Max" fuel economy retrofit device under Section 511 of the Motor Vehicle Information and Cost Savings Act we have found deficiencies in the data you enclosed with your application.

First, the appendices to one of the Scott reports were not included with the application. We requested a complete copy of the report from Scott Environmental Technology, Inc. but they will not release the information to us without prior authorization from the sponsoring company. Please forward to us Appendices A, B, and C for Scott Report #1827 01 0979, "Technical Report on Evaluation of a Fuel Economy Device".

Second, in the test reports provided with your firm's application, the baseline data were collected by the testing laboratory on vehicles in an "as received" condition. The independent laboratory can not verify the status of the engine design parameter settings. Please provide detailed information regarding the engine design parameter settings (ignition timing, idle speed, idle mixture, etc.) for each vehicle used for the baseline and device installed testing supporting your firm's application for evaluation.

Thank you very much for your help on this problem. Your cooperation will facilitate the evaluation process.

Sincerely,

Merrill W. Korth, EPA Device Evaluation Coordinator Test and Evaluation Branch

Fuel Injection Development Corporation

29 December 1980

Receive Attachment L

Mr. Merrill W. Korth U.S. Environmental Protection Agency Ann Arbor, Michigan 48105

Dear Mr. Korth,

I have enclosed a complete copy of Scott Environmental Technology Report #1827 01 0979. The copy which was originally sent with our Section 511 Application did not include the appendices. These appendices were not available to our company until today. The company which sponsored the test program was not willing to share the appendices without compensation, and we had to negotiate a special agreement for their release.

Second, we did some checking on the engine design parameter settings for the test vehicles. All of the vehicles were leased by the sponsoring company for their employees. The vehicles were all delivered new by factory dealerships, and were not adjusted after initial new-car preparation. Since these calibrations were not measured, we can only assure they were all set to factory specifications.

I apologize for the delay in forwarding this information. Please let me know if I can help you to expedite this evaluation.

Sincerely,

Munna D. (Sonon

Michael D. Leshner Chief Engineer