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Chemicals present in the environment have a
potential impact on neurodevelopment and
children’s health. In recent years, much atten-
tion has been given to model development
and risk assessment procedures for reproduc-
tive toxicity, but the specific area of develop-
mental neurotoxicity (DNT) has been
relatively neglected in testing and risk assess-
ment studies. Although epidemiologic and
animal studies on developmental neurotoxi-
cants have been carried out (Evangelista de
Duffard and Duffard 1996), most chemicals
in use have been tested scarcely or not at all
for DNT. To properly assess the risk of
chemicals for human health, data on DNT
are necessary and this need is recognized by
all stakeholders.

In 1998, the U.S. Environmental
Protection Agency (U.S. EPA 1998) pub-
lished the Health Effects Test Guidelines
OPPTS 8706300 on DNT (U.S. EPA 712-
C-98-239), and the Organisation for
Economic Co-operation and Development
(OECD) is currently finalizing a new draft
Test Guideline (TG) for DNT (OECD
2006). To support and promote these
efforts, this workshop focused on two imme-
diate needs for DNT testing: first, the iden-

tification of iz vitro and nonmammalian
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alternative methods that may recapitulate
critical aspects of the development of the
human nervous system; and second, how
results from such alternative methods could
be integrated into current iz vivo testing
strategies and the existing regulatory frame-
work. Our hope is that this approach will
decrease the number of chemicals reliant on
DNT data solely from in vivo mammalian
DNT tests and, consequently, refine, reduce
—and maybe partly replace—the need for
animal testing. Furthermore, we hope this
workshop report will provide the basis for dis-
cussion in the expert communities on DNT
testing and that such a discussion will identify
the best steps forward.

Definition of DNT

Chemicals may adversely affect the nervous
system in various ways (Ray 1999). They may
perturb commitment of neural stem cells, pro-
liferation of neuronal progenitor cells, cell
migration, synaptogenesis, cell death, forma-
tion of transmitters and receptors, trimming of
connections, myelinization, and development
of the blood-brain barrier (BBB). Impairment
of the nervous system can lead to a variety of
health effects such as altered behavior, mental
retardation, and other neurodevelopmental

disabilities and diseases (Li et al. 2005; Olney
2002; Rodier 1995).

For the purpose of this report, DNT is
defined as the adverse effects of substances
(regulated foreign compounds or xenobiotics)
on the nervous system associated with expo-
sure during development. The adverse effects
may be expressed at any time during the life
span of the exposed individual.

Available Tests Linked
to DNT End Points, Processes,
and Models

Alternative approaches to DNT testing can
be divided into two classes: iz vitro models
and nonmammalian animal models. In the
following section we summarize possible
in vitro models for DNT testing and then
elaborate in more detail on nonmammalian
models for DNT testing, and conclude with a
critical assessment of these approaches for
DNT testing.

In vitro models for DNT testing. Many
neural development processes are understood
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In vitro methods for developmental neurotoxicity testing

at a cellular and molecular level, and can partly
be modelled in vitro. Cell culture techniques
have been developed to address key biochemi-
cal and functional features of developmental
neural biology such as cell migration, forma-
tion of neuronal networks, synaptogenesis, and
neuron—glia interaction. Among others, these
processes may be specifically targeted by devel-
opmental neurotoxicants in vivo. Therefore,
the rationale for the use of in vitro models for
DNT testing is based on a clear understanding
of the mechanistic processes underlying normal
nervous system development. However, each
in vitro model has its own specific advantages
and disadvantages (Tiffany-Castiglioni 2004)
and represents different grades of complexity
and allows predictions for humans to different
degrees (Table 1).

In the following sections, we outline the
potential uses of the less well-established but

promising murine and human embryonic
stem cells (ESC) and human neuronal stem
cells (NSC) for DNT testing. For a brief dis-
cussion on the predictive capacity and inher-
ent limitations of established 7z vitro models
with potential use for DNT testing, see
Tables 1 and 2 and the literature therein.
Rodent and human stem cells. Presently,
the mouse embryonic stem cell test (EST) is
the only system based on a mammalian cell
line, which was successfully validated as an
alternative for in vivo embryotoxicity testing
(Genschow et al. 2002). Committing mouse
ESCs into neuroectodermal fate or directing
these cells to more advanced stages of neuronal
development may extend the mouse EST to
capture also DNT end points (Hareng et al.
2005). Similarly, human ESCs can be directed
into all three major central nervous system

(CNS) cell types, and the sensitivity of these

Table 1. General characteristics of potential in vitro models for DNT testing.

cell types to compounds may be assessed
(Zhang et al. 2001). However, human ES cell
culture techniques still require optimization
for DNT testing.

Another stem cell model for DNT testing
might be somatic neural stem cell (sNSC)
cultures. These cultures are characterized by
their capacity to self-renew and to differenti-
ate into neurons, astrocytes, and oligodendro-
cytes. These three cell types can interact with
each other in two- and three-dimensional
(neurosphere-like structures) cultures. This
may provide the ability to assess the sensitivity
of early and advanced human neural develop-
ment to compounds by various means such as
cell proliferation, cell migration, cell-type spe-
cific mRNA/protein expression, and electro-
physiologic responses. Although sNSCs are
still a fairly immature model, recent work on
normal human neural progenitor cells and a

Type of culture Relevance for DNT

Main advantages

Main limitations

Organotypic
cultures?

« Derived from undifferentiated embryonic brain

o Presence of in vivo-like three-dimensional anatomic

o Low throughput

Re-aggregating

or spinal cord tissue (e.g., slices, explants)

 Develop into mature and interactive

neuronal—glial tissue-like structure

o Used to study the mechanisms of morphologic

and physiologic cell maturation that could be
affected by toxicants

« Derived from dissociated embryonic brain

brain cell cells that re-aggregate spontaneously under
culture® continuous gyratory agitation
 Reproduce 3D complexity, exhibiting a
developmental pattern both morphologically
and functionally similar to the original brain
tissue in vivo
Primary o Used for mechanistic studies and characteri-
dissociated zation of endogenous factors that are crucial
culture® for the normal differentiation and function of
the developing nervous system
Immortalized e Derived from tumors or transformed cells
human and (neuroblastomas, gliomas, and schwannoma
rodent cell cell lines)
lings? o Suitable to study the mechanisms of cell

differentiation because under the appropriate

culture conditions (e.g., exposure to growth
factors) the cells differentiate into non-
dividing neuronlike cells, characterized by
neurite outgrowth

and functional organization such as tissue-specific
cytoarchitecture, neuronal connectivity, electrophysio-
logic activity, complex glial-neuronal interactions

o Presence of neuronal cell types corresponding to the
original tissue

o Presence of all glial cell types, i.e., astrocytes, oligoden-
drocytes, microglia

o Glial cell proliferation and maturation, synaptogenesis,
and myelination recapitulate in vivo development

o Formation of natural extracellular matrix

o Mature cultures exhibit spontaneous and evoked
electrical activity

o Possibility to study microglial cell activation and
astroglial reactivity as early markers of neurotoxicity

o Cultured in chemically defined medium

 The model is robust and provides large amount of
material for multidisciplinary and multiparametric assays

« Easy access to single-cell toxicity assay assessment

» Most of the neurodevelopmental features are preserved
(cell death, glia progenitor proliferation, cell migration,
synthesis of transmitters, and expression of their
receptors or formation of neuronal connections)

« Possibility to use pure culture of each cell type or as
mixed neuronal—glial culture to study their interaction

« Easy to obtain and maintain

e Availability of human tissue

« Differentiated neuronlike cells express electrical
activity, synthesis of various neurotransmitters, and
expression of associated receptors and ion channels.

« Provide homogeneous cell populations in large quanti-
ties in a very reproducible manner

o Limited period of culture

 Possible necrosis in the tissue center due
to the limited oxygen and nutrients
supply

 Anatomic organization present in the
original tissue is lost

¢ Most neurons are postmitotic at culture
initiation

* Not suitable for studies at the single-cell
level

o Variability between individual aggregates
with respect to size, proportion of
neurons versus glial cells, and electrical
activity

« Histotypic tissue organization is lost
e [solated neurons are postmitotic
o \ariability between neuronal—glial ratio

* Because they are transformed cells,
differentiation process may not be
comparable to “normal” cells, and their
ultimate phenotype are often different
from primary neurons

« Often neurites are not representative of
either axons or dendrites and do not form
functional synapses

« Usually only one cell type is present,
cell—cell interaction is missing

o Genetic instability with increased number
of passage

aData on organotypic cultures from Braun et al. (2006); Chalisova et al. (2006); Chen et al. (2005); Ghoumari et al. (2005); Hechler et al. (2006); Heck et al. (2006); Neumann et al. (1996);
Overstreet et al. (1997); Pinzon-Duarte et al. (2004); Stoppini et al. (1991); Strasser and Fischer (1995); Zimmer et al. (2000). “Data on re-aggregating brain cell culture from Braissant et al.
(2002); Braun et al. (2006); Eskes et al. (1999, 2002); Harry et al. (1998); Honegger (1985); Honegger and Monnet-Tschudi (2001); Honegger and Richelson (1979); Monnet-Tschudi et al.
(1995a, 1995b, 1997, 2000); Sales et al. (2004); Seeds and Vater (1971); Zurich et al. (2002, 2004). ®Data on primary dissociated culture from Bal-Price and Brown (2001); Demerens et al.
(1996); Goldin et al. (2001); Howard et al. (2005); Krause et al. (2006); Lein et al. (1995); Sah and Matsumoto (1987); Sass et al. (2001); Veronesi (1992); van Pelt et al. (2005); Yamamoto et al.
(2005). “Data on immortalized human and rodent cell lines from Abdulla et al. (1995); Greene (1978); Hong et al. (2003); Pahlaman et al. (1990); Parran et al. (2001); Sachana et al. (2001).
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nonimmortalized human cord blood—derived
NSC line points to its potential for DNT test-
ing (Buzanska et al. 2005; Fritsche et al. 2005).

Alternative nonmammalian models for
DNT testing. Current in vivo test methods for
detecting neurotoxicity and DNT are based on
a number of end points including behavioral
tests that are considered by regulators as crucial
for neurotoxicity risk assessment. Iz vitro mod-
els cannot recapitulate such complex end
points. However, using nonmammalian species
in alternative test strategies may help address
some of these behavioral end points. Among
nonmammalian model organisms, zebrafish
and C. elegans are particularly suited to address
neurotoxic and DNT end points. The ease of
obtaining high numbers of progeny, the avail-
ability of neuronal tissue specific in vivo
reporter strains and the inherent transparency
of the embryos make these two model organ-
isms amenable to high-throughput screening
(HTS) (Peterson et al. 2000; Wittbrodt et al.
2002). Moreover, the basic understanding of
gene function and physiology combined with
well-characterized stereotypic behaviors

provides the possibility of using zebrafish and
C. elegans for neurotoxicity risk assessment
based on behavioral end points (Orger et al.
2004). Additional nonmammalian species
include the sea urchin (Buznikov et al. 2001;
Cameron and Davidson 1991) and Drosphila
(Grueber and Jan 2004; Jones et al. 2006);
both are potentially useful systems, but details
are not included here due to space limitations.
Medaka and zebrafish as potential models
for DNT. Assays based on medaka and
zebrafish measure general DNT end points
such as cell proliferation, neuronal precursor
differentiation, and maturation. The existing
techniques allow the assessment of specific
neuronal migration, axonal and dendritic out-
growths, pruning, synaptogenesis, develop-
ment of neuronal circuits, and their ultimate
function—behavior (Tables 2 and 3).
Neuronal precursor proliferation and mol-
ecular differentiation can be assayed in vitro
and in vivo. In vitro, marker gene expression
can be used to analyze the specification of
major neuronal and glial cell types (neurons,
oligodendrocytes, astrocytes, microglia) and

Table 2. Overview of promising in vitro alternative models? and their characteristics.

neuronal subtypes (e.g., GABAergic neurons,
glutaminergic neurons) (Brosamle and
Halpern 2002). More recently, transgenic
techniques allow the analysis of these marker
genes in live animals by fluorescent protein
expression (Higashijima et al. 2000; Park et al.
2000; Table 3).

Similarly, neuronal migration and mor-
phologic differentiation can also be analyzed
in vitro and in vive. In vitro, a combination
of marker gene expression and cell position
can be used to assess neuronal migration.
However, this is an indirect measure because
incorrect patterning and morphogenesis of
other tissues may affect neuronal migration
and, thus, correct positioning. These caveats
may, in part, be overcome by in vivo analyses
of neuronal migration. Using transgenic tech-
niques to fluorescently mark migrating cells,
in vivo analyses of migration also offers the
possibility to assess other cell dynamics besides
correct cell positioning (Gilmour et al. 2002).
Although more laborious, this allows motility
and chemotaxis defects during neuronal
migration to be distinguished, and may resolve

Immortalized Immortalized
human cell lines  rodent cell lines Primary
Human stem cell/ Rodent stem neuronal/ neuronal/ Brain dissociated Organotypic
In vitro models/ precursor cells cells nonneuronal nonneuronal aggregates cultures cultures
processes? #i# ## # # ## ## ##
Cell proliferation ++ ++ ++ ++ ++ (glial only) ++ (glial only) —
Li et al. 2005 Milosevic Shastry Margioris Honegger and Kinsner
Zhang et al. 2001 etal. 2005 etal. 2001 etal. 1995 Richelson 1979 etal. 2005
Precursor cell ++ ++ ++ ++ ++ (glial only) — +
differentiation Carpenter Takahashi Shastry Greene Guentert-Lauber Pinzon-Duarte
etal. 2001 etal. 1999 etal. 2001 1978 and Honegger 1985 et al. 2004
Glial reactivity + + — ++ ++ ++ +
Turka et al. 1995 Martinez-Contreras Seidman Monnet-Tschudi Bal-Price and Neumann
etal. 2002 etal. 1997 etal. 1995a, 1995b; Brown 2001 etal. 1996
Zurich et al. 2002
Glial maturation + + ++ ++ ++ ++ +
(myelination) Windrem Briistle et al. 1999 Liu et al. 2000 Garcia Honegger and Demerens Ghoumari
etal. 2004 Peden et al. 1990 etal. 2001 Matthieu 1985 etal. 1996 etal. 2005
Migration +/— +/— — — + + ++
Imitola et al. 2004 Imitola et al. 2004 Levitt et al. 1976 Sass et al. 2001 Heck et al. 2006
Axon/dendritic + ++ ++ ++ ++
outgrowth Harper et al. 2004 Yoon et al. 2005 Abdulla Parran Braissant Howard Hechler
etal. 1995 etal. 2001 etal. 2002 etal. 2005 et al. 2006
Apoptosis ++ ++ ++ ++ ++ ++ ++
Li et al. 2005 Milosevic Ba et al. 2003 Pittman Monnet-Tschudi Dessi Chalisova
etal. 2005 etal. 1993 1998 etal. 1995 et al. 2006
Synapse + + — — + + +
formation Cummings Copi et al. 2005 Seeds and Vater Yamamoto Chen et al. 2005
etal. 2005 1971; Monnet-Tschudi etal. 2005
etal. 1995b
Synapse pruning — — — ++ +
Goldin Overstreet
etal. 2001 etal. 1997
Neurotransmitter + + ++ ++ ++ + ++
receptor profiles Zhang et al. 2001; Ma et al. 2004 Lambert and Whiting Honegger and Sah and Zimmer
Carpenter et al. 2001 Nahorski 1990 etal. 1987 Richelson 1979 Matsumoto 1987 et al. 2000
Neuronal + + — — — + —
connectivity Benninger Toda et al. 2000 van Pelt
etal. 2003 etal. 2005

aGrading of technical feasibility and accessibility of in vitro alternative models available: ###, complex; ##, less complex; #, simple. Grading of availability and extend of literature related
to the processes for a specific alternative model: ++, currently available; +, potential, —, not yet available. Some of these systems are high-throughput, whereas others have the poten-

tial to be developed.
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secondary defects better than static iz vitro
analyses (Table 3).

Morphologic differentiation of neurons
involves dynamic processes. Neurons extend
axons and dendrites, establish and discontinue
synaptic contacts, and mature into a neuronal
circuit. In vitro, neuronal membrane-specific
antibodies and, iz vivo, membrane-tethered
fluorescent proteins can be used to analyze
these processes (Higashijima et al. 2000; Park
et al. 2000).

Behavior is the ultimate effect of neu-
ronal development. Certain behavioral
responses of fish can be analyzed reasonably
robustly, because some of the underlying
neuronal circuits have been characterized
(Baier 2000). Such behaviors may be classi-
cally analyzed by responses to certain stimuli
or, more recently, molecularly by stimulus-
induced gene expression.

Limitations of alternative models for
DNT testing. The alternative approaches
to DNT testing discussed above and in
Tables 1-3 are potential models for DNT
testing. To our knowledge none of these
models have been used specifically for DNT
testing up to this date. However, we believe
that these models merit intensive considera-
tion in drafting DNT testing strategies if one
is aware of their limitations and caveats.

One concern is the predictive capacity of
alternative models. How does one interpret
an “effect” seen in an iz vitro or nonmam-
malian model? Provided the molecular basis
leading to the end point in question reflects
in vivo development, an “effect” detected in
an alternative model is a good indication that

a similar effect may be expected in humans
after chemical exposure. This is less of a con-
cern when using nonmammalian models for
DNT testing because mechanisms of neural
development are highly conserved among dis-
tant species. On the other hand, interspecies
differences may cause false positives or false
negatives when screening compounds for
adverse effects on humans, with nonmam-
malian models. The use of human cell sys-
tems will circumvent this problem. Therefore,
a combination of nonmammalian and human
cell-based models may maximize the predic-
tiveness of alternative models.

Pharmacokinetics need to be considered
when interpreting results from 7 vitro models.
Because 77 vitro systems do not reflect iz vivo
absorption, distribution, metabolism, and
excretion (ADME) of test compounds, results
need to be interpreted with caution. This also
holds true for nonmammalian 7z vivo models.
These systems display ADME phenomena,
but these phenomena do not necessarily
reflect the human situation.

An additional, more practical concern is
the amenability to automation and HTS.
Depending on the model, the feasibility of
HTS varies, and Tables 2 and 3 show to what
extent we believe the different models were
suited for such an approach.

As indicated above, some of the discussed
caveats may be partly overcome by combining
different alternative models in an intelligent
testing strategy. Models with a well-character-
ized mechanism that reflects the in vivo
situation, possibly based on human cell lines,
in combination with nonmammalian models

Table 3. Overview of promising nonmammalian alternative models? and their characteristics.

Nonmammalian models/ Zebrafish Medaka C. elegans
processes’ ## ## #
Cell proliferation ++ ++ ++
Waullimann and Knipp 2000 Candal et al. 2005 van den Heuvel 2005
Precursor cell ++ ++ ++
differentiation Bertrand et al. 2002 Hirose et al. 2004 Chisholm and Jin 2005
Glial reactivity — — —
Glial maturation + — —
(myelination) Brosamle and Halpern 2002
Migration ++ ++ ++
Gilmour et al. 2002 Hirose et al. 2004 Hatten 2002
Axon/dendritic ++ ++ ++
outgrowth Beattie et al. 2002 Ishikawa et al. 2004 Colamarino and Tessier-Lavinge
1995; Cooper 2002
Apoptosis ++ ++ ++
Cole et al. 2001 Stokes et al. 2004 Lettre and Hengartner 2006
Synapse ++ — ++
formation Hutson and Chien 2002 Ackley and Jin 2004; Jin 2002
Synapse pruning + — +
Hutson and Chien 2002 Wiggin et al. 2005
Neurotransmitter ++ ++ ++
receptor profiles Higashijima et al. 2004 Hamm et al. 2001 Komuniecki et al. 2004
Neuronal ++ — ++
connectivity Godinho et al. 2005 Volovitch et al. 1993

aGrading of technical feasibility and accessibility of in vitro nonmammalian models available: ###, complex; ##, less com-
plex; #, simple. ®Grading of availability and extent of literature related to the processes for a specific alternative model:
++, currently available; +, potentially available; —, not yet available. Some of these systems are amenable for high-

throughput screening.
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may more robustly detect compounds with
adverse effects on humans. In addition, non-
mammalian models may mimic human phar-
macokinetics to a certain degree and offer the
possibility to assess basic neuronal network
functions such as simple behavior, although
more complex behaviors relying on neocortical
structures unique to mammals will escape
detection. In this light, an intelligent combina-
tion of DNT tests may help refine the i vivo
animal histology and behavioral testing battery
used in the U.S. EPA and OECD guidelines.

Systems Interaction and other
Considerations

Interaction/interplay between endocrine and
immune function. Chemicals may interfere
with or mimic the effects of endogenous hor-
mones and signaling chemicals of the
endocrine system. A well-known example is
the interference of chemicals with the thyroid
system (Colborn 2004; Damstra 2002).
There are international efforts to validate or
standardize screens or assays for detecting test
chemicals with potential endocrine-disrupting
effects. Among the chemicals on the market
today, few if any have been systematically
tested for such effects for regulatory purposes.
These tests should be integrated in an overall
hazard and risk assessment strategy for DNT.
Importance of blood—brain barrier and
choroid plexus in DNT. Alterations in both
BBB and choroid plexus (CP) have been
implicated in neurodevelopmental disorders.
The integrity of the BBB and the CP barriers,
both structurally and functionally, is essential
for brain chemical stability. /n vitro BBB and
CP models (Prieto et al. 2004; Reichel et al.
2003) are available and can be used for evalu-
ating the DNT potential of chemicals. The
BBB is a special capillary bed that separates
the blood from the CNS parenchyma. The
CP produces the cerebrospinal fluid (CSF)
and is involved in the most basic aspects of
neural function including: maintaining the
extracellular milieu of the brain by actively
modulating chemical exchange between the
CSF and the brain parenchyma, surveying the
chemical and immunologic status of the
brain, detoxifying the brain, secreting a nutri-
tive mixture of polypeptides, and participat-
ing in repair processes after trauma (Emerich
et al. 2005). Retrospective studies diagnosing
human fetal anomalies of the CNS by ultra-
sonography and by fetal magnetic resonance
imaging, combined with follow-up studies
after birth, have revealed CP pathology in 9%
of children with suboptimal neurodevelop-
mental (Leitner et al. 2004).
Metabolism-mediated DNT effects.
Biokinetic processes—such as absorption,
distribution, biotransformation, and excre-
tion—determine the relationship between the
exposure pattern and the internal concentration
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time course. In addition to barrier effects,
biotransformation may play a crucial role in
DNT hazards. Biotransformation or metabo-
lism is the process by which a substance in the
body is chemically transformed to a metabolite
or a variety of metabolites. Biotransformation
is usually divided into two main phases, phase
1 and phase 2, the former of which is usually
oxidative (e.g., hydrolysis, although reductive
metabolism can occur) and predominantly
catalysed by the many isoforms of the
cytochrome P450 supergene family. Phase 2
is catalysed by a variety of enzymes that con-
jugate the oxidized moiety with highly polar
molecules, such as glucose, sulphate, methio-
nine, cysteine, or glutathione. The biokinetics
of a compound, including its metabolism, can
greatly influence its toxicologic properties.
One of the most frequently cited limitations
of nonhuman-based 77 vitro and in vivo assays
is the qualitative and quantitative differences
in the biotransformation of test chemicals, in
comparison with human biotransformation
(Coecke et al. 2006). The effect of human
chemical biotransformation needs to be taken
into account in both iz vive and in vitro
assays. In the case of DNT, existing data indi-
cate a role of biotransformation for DNT
(Parmar et al. 2003). Estrogen formed in the
brain and from other estrogen-synthesizing
tissues is catalyzed by cytochrome P450 aro-
matase isoforms. Estrogen regulates neuronal,
proliferation, survival, morphology, synapto-
genesis, and differentiated functions in many
various regions of the adult brain. Thus, inhi-
bition or induction of these cytochrome P450
isoforms may cause alterations in these
processes.

Validation and Testing
Strategies
To investigate chemicals that have the poten-
tial to cause DNT, we have illustrated the
availability of 7 vivo and in vitro test methods.
Both 77 vitro and nonmammalian test systems
(particularly when used in combination) offer
the possibility of providing an eatly screen for a
large number of chemicals, and could be useful
in characterizing the mechanism of action or
the developmental processes that are particu-
larly affected by the test chemical. /n vitro
assays may not always reflect the 77 vivo animal
results because of species differences, absence of
kinetic considerations, or a complex interplay
between a diverse range of mechanisms and
processes affected by the chemicals, including
for example, the interaction/interplay between
endocrine and immune function. Therefore, a
battery of in vitro and in vivo assays seems at
present the most appropriate way of providing
the added value of the alternative approaches.
Any potential alternative test system must
be validated and standardized before the
information generated can be used for hazard
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identification and for risk assessment. Because
adequate reference methods that reliably pre-
dict health effects are lacking and the in vivo
approaches are complex, the assessment of the
in vitro methods will not be a straightforward
task. A significant problem with the existing
in vivo methods for the identification of
developmental neurotoxicants is the lack of
explicit guidance on how to quantitate the
risks of DNT [either for low observed effect
level (LOEL) or no observed effect level
(NOEL), or for benchmarks]. Moreover, it is
difficult to interpret the methods in terms of
their predictive value for human health.
Figure 1 illustrates a strategy for toxicologic
evaluation in the context of DNT testing,
including the possible contribution of both
in vitro and nonmammalian testing.

Tier 1. Tier 1 incorporates existing knowl-
edge including #) any animal studies,
b) in vitro studies (cell and tissue cultures
methods, conventional and novel end points
such as “omics”), ¢) exposure information,
d) epidemiology information, ¢) intended use,
and f) chemical structure and any relevant
physicochemical data. The first step is a criti-
cal evaluation of the quality of existing infor-
mation. If sufficient information is available at
Tier 1, a decision can be made if there is a
concern about DNT. If there are data gaps,
new iz vivo data should be generated and
complemented by 7 vitro testing to enable a
decision to be made regarding DN'T potential.
In cases where absolutely no chemical infor-
mation exists, a base set of data should be gen-
erated [see OECD recommendations on
Screening Information Data sets (SIDs)
(International Programme on Chemical Safety
1996]. Both i vitro and nonmammalian test
systems could be applied for initial screening
to permit an approximate DNT assessment.

Tier 2. In cases where data are available, a
decision can be made whether there is a DNT
concern (high or low priority). In cases where
there is evidence for pre- and/or postnatal
exposure in humans (e.g., detection of a
chemical in breast milk), priority should be
high. If information collected in Tier 1 is rele-
vant to DNT, priority should be given for
DNT testing. The evaluation of the exposure
scenario will aid the decision as to whether
the compounds are high or low priority for
DNT testing, or if no further testing is
required and a regulatory action can be taken.
Well-conducted studies that indicate no cur-
rent concern should move chemicals to the
low-priority list for DNT testing. These com-
pounds should be evaluated when new infor-
mation becomes available from animal and
alternative test methods. In cases where avail-
able data support a high concern for DNT,
Tier 3 testing should be carried out.

Tier 3. Based on the nature of the avail-
able data and regulatory requirements, this

stage could include very specific tests, or it
may involve the use of higher-order 77 vitro or
nonmammalian alternative tests, or iz vivo
mammalian testing.

However, i1 vitro or nonmammalian alter-
native approaches may become important for
this stage when the number of chemicals with
no available data is very high. This is currently
the case in different international regulatory
environments. The drivers in Europe, for the
research of alternative methods to replace con-
ventional animal tests for toxicologic hazard
assessments, are generally related to the chemi-
cals and cosmetic regulations (Eskes and
Zuang 2005; European Commission 2003).
Also, with the High Production Volume
Challenge Program in the United States (U.S.
EPA 1998), a call for the replacement of ani-
mal experiments within a short-time frame is
being launched. Therefore, Tier 3 in the
in vitro alternative predictive test batteries
strategy, based on end points, mechanisms,
and processes relevant to DNT for chemical-
induced neurotoxicity, might be of great
added value and become increasingly more
important for regulatory decision making.
Tests may include the use of #n silico tools in
combination with one or more of the pro-
posed alternative test systems targeting spe-
cific mechanistic or functional markers of
developmental neurotoxicant-induced altera-
tions. Such tests may use integrated genomic,
proteomic, and other “omic” analyses and a
variety of biochemical, morphologic, biotech-
nologic, or electrophysiologic profiling meth-
ods. Such a tiered testing scheme will allow
more data to be generated in Tier 3 for those
compounds where there is a concern for
DNT, to allow regulatory decision making.
Such tiered approaches that integrate batteries
of in vitro alternative tests are currently pro-
posed for ecotoxicologic risk assessment
(Jeram et al. 2005).

Conclusion

There is societal concern that the increasing
prevalence of childhood behavioral diseases is

Are there —_—
Tier 1 sufficient No Ge;:t?te
data? -—
Yes
Data generated
-
Tier 2 Is there a K as resources/
er fcul})cﬁ_rrr; Lower (possibly no) - new information
? —_— ;
or available
High
Are data sufficient Vs Regulatory
Tier 3 | tomakeregulatory |5 o action:
decisions? stop
]
Further testing

Figure 1. Scheme of the different steps in identifying
DNT hazards. Two different levels were identified.
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related to augmented exposures to xenobiotics.
Currently, there are thousands of chemicals
that have not been evaluated for their potential
to cause DNT. DNT tests used for regulatory
decisions should predict and identify DNT
hazards. Despite the empirical usefulness of
in vivo animal tests, these tests consume a
high number of animals, are labor intensive,
complex in experimental design, not always
sensitive enough, and often do not provide
information that facilitates a detailed under-
standing of potential mechanisms of toxicity.
Furthermore, iz vivo mammalian tests are
unsuitable for screening large numbers of
agents, and their predictive capacity for the
human situation remains unclear. Today, it
would be too ambitious to pretend that an
alternative DNT strategy would focus on
replacement of the 7z vivo DNT test methods.
A first step would be to refine the current
in vivo strategies by integrating information
derived from 77 vitro and nonmammalian
alternative test strategies. /n vitro DNT tests
designed to identify chemicals with the
potential to cause DNT would eliminate the
number of chemicals reliant on DNT data
solely from iz vivo mammalian DNT tests,
and therefore reduce animal testing. At the
same time, primary neuronal cell cultures
(organotypic, re-aggregating, or dissociated)
are prepared from freshly isolated brain tissue,
thus still consuming animals, although one
animal provides material for many individual
experiments. Because at present iz vivo-based
DNT testing cannot be replaced by in vitro
approaches, incorporation of i vitro testing as
a part of an intelligent testing strategy could at
least refine and eventually reduce animal usage.
Combining in vivo data sets with in vitro
approaches in intelligent test strategies is
increasingly important for regulatory decision
making. In addition, these approaches will
also be the most efficient way to decrease
costs and the amount of time required for
testing. In this report we focused on the sev-
eral processes involved in brain development
and identified iz vitro and nonmammalian
tests that may allow the generation of data
sets that can help identify DNT hazards.
Although all the test systems described were
not developed for regulatory purposes at this
stage, if they prove useful, we hope that this
report will encourage their further develop-
ment to render them amenable to high-
throughput approaches. In this context we
consider a test system “useful” if it models a
certain iz vivo process and distinguishes
known chemicals that interfere or do not
interfere with this process. Thus, this report
proposes an approach that would refine and
potentially reduce the number of animal tests
that need to be performed. Most important,
test strategies/batteries are needed that can
evaluate mechanisms responsible for DNT.

Recommendations
* Focus on experimental designs relevant for
regulatory methods.

1. Catalog in vitro systems available in the
research community (including acade-
mia and government), and explore how
they can be developed for regulatory use.

2. A reference list of potential DNT chemi-
cals should be established that incorpo-
rates all available data. Benchmarking
against experiences gained in other large
international efforts (e.g., ReProTect;
Hareng et al. 2005) is suggested.

3. Proper experimental design of i vitro
(and 77 vivo) DNT tests must have posi-
tive and negative controls. Therefore,
there is an urgent need to generate high-
quality data on chemicals with DNT
potentials.

* Toward development of an integrated tiered
approach.

1. Further refine the tiered approach based
on the integration of physico-chemical
data, and other data sets available for the
in vivol in vitro toxicologic effects; expo-
sure use patterns, toxicokinetic, immuno-
toxicity, reproductive toxicity, endocrine
disruption and available developmental
toxicity data sets should be explored.

2. Evaluate the introduction of an iterative
tiered/battery approach for DNT testing
that combines both 7 vitro and in vive
data sets.

* Increase knowledge of critical neurode-
velopmental processes enabling compar-
isons of alternative DN'T models.

1. A strategy should be developed to evaluate
reference chemicals in multiple models to
identify those models to be considered for
inclusion in an intelligent testing strategy.

2. Evaluate, by literature searches, which
end points and mechanisms are linked to
adverse effects on the developing human
nervous system.

3. Catalog and correlate human develop-
mental landmarks to findings/end points
from animal and in vitro studies.

4. Alternative approaches using contempo-
rary human and rodent cell and tissue
cultures and alternative species might be
the way forward to achieve a greater
understanding of the importance of con-
sidering species differences when evaluat-
ing the DNT hazards of xenobiotics.
Until interspecies differences for DNT
are better understood, use of both human
and rodent cell and tissue cultures and
alternative species should continue.

5. Considerations should be given to
metabolism-mediated toxic effects
(inclusion of metabolic competence).

6. With the recognition of the lack of
knowledge in developmental biology
and developmental neurotoxicology, we
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encourage exploration of the most fun-
damental research issues.

7. A long-term goal should be to evaluate
the use of “omics” in DNT assessment.
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