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Abstract 
 
Statistical distributions of site and background soil samples often do not meet the assumptions of 
statistical tests. This is true even of “non-parametric” tests. This paper evaluates several 
statistical tests over a variety of cases involving realistic population distribution scenarios and 
sampling schemes. Over the range of cases, performance was erratic for most tests. When 
planning a project, the sampling scheme must be designed together with the statistical test, and 
the choice of test may vary depending on which scenario best matches the conceptual model for 
the site. 
 
 
Introduction 
 
This report began as an inquiry into the ability of the Wilcoxon Rank Sum (WRS) test to 
distinguish between background and contaminated soils in the “Choccolocco Corridor” (CC) 
area of Fort McClellan Army Base in Alabama. The WRS test was performed under the null 
hypothesis that there is no difference between the concentrations in the site and concentrations in 
the background reference area.  The alternative hypothesis was that the site concentrations are 
greater than those in the background reference area. A positive test result for any analyte 
indicated the presence of site contamination that would require further evaluation for possible 
cleanup. Concerns about the performance of the WRS test led to an investigation of the test 
under conditions similar to those in the Choccolocco Corridor.  
 
Poor WRS performance under some conditions in the initial tests from the CC raised the obvious 
question: Are there better alternatives? This question prompted the expanded and more 
generalized investigation presented here, which compares the WRS test directly with several 
other tests. 
 
Student’s t is the most well-known and widely-used statistical test for comparing two samples 
sets. However, Student’s t is based on very specific assumptions about the populations from 
which the samples are drawn. These include the assumption that the population variances are 
equal, and the assumption that the shape of both populations is normal. Welch’s test (also called 
Satterthwaite’s t or the unequal-variance t) is a modified Student’s t test that attempts to correct 
for unequal variances, though it still requires the assumption of normality. The Wilcoxon Rank 
Sum test (WRS) is a non-parametric alternative to the Student’s t test that assumes that the 
population shapes are identical, though not necessarily normal. The WRS test and the Welch’s t 
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test are often suggested when their assumptions appear to be more accurate than those of the 
Student’s t test. (EPA 2002, EPA 2006).   

The literature is confusing at best regarding the relative merits of the WRS test and the Student’s 
t test. Hodges and Lehman (1956) argue on theoretical grounds in favor of the WRS, noting that 
it is never much less efficient than Student’s t (where less efficient means needing more samples 
to get the same performance) but can be infinitely more efficient.  

A sampling of papers that compare the tests in the context of specific applications or specific 
distributions produces mixed conclusions. Bridge and Sawilowsky (1999) conclude that WRS is 
better for small samples of skewed distributions; they recommend WRS when distributions are 
unknown. Blair and Higgins (1980) found that WRS generally held power advantages over the t-
test for various non-normal distributions. Potvin and Roff (1993) conclude that the WRS test is 
more powerful than the t-test for skewed distributions. 
 
Johnson (1995), however, criticizes Potvin and Roff, pointing out that The Central Limit 
Theorem works in favor of Student’s t, making it insensitive to modest departures from 
normality. Johnson also notes that the WRS test requires a strict assumption that the two 
distributions are identical in both shape and variance – something that is rarely tested. He 
concludes that if investigators use random sampling properly, “…parametric methods will 
ordinarily be adequate; if they are not, nonparametric methods will not protect them from sailing 
off course.” Modarres et al. (2005) likewise note the strict distributional requirements of the 
WRS test (and rank-based nonparametric tests in general), claiming results of these tests are not 
valid when the assumptions are violated. For log-normal distributions, Zhou et al. (1997) reject 
both WRS and t, and propose an alternative test that calculates a z-statistic using maximum 
likelihood estimators. 
 
The disparity among these papers is likely due to differences in the scenarios being investigated. 
No two of the papers compare statistical tests on identical distributions and distribution shifts; 
the conclusion to be drawn from the literature is that t-tests are superior in some cases, WRS in 
others. None of the papers deals with the kinds of distributions that we would expect to 
encounter when testing to distinguish between contaminated and uncontaminated soils. 
 
Hypotheses 
 
Statistical tests are framed in the form of a null hypothesis which is assumed to be true and an 
alternative hypothesis which is accepted as true only if the data strongly indicate that the null 
hypothesis is actually false. 
 
Hypothesis tests favor the null hypothesis by setting stringent limits on the probability that the 
null hypothesis will be rejected simply by chance, when it is, in fact, true. This is called a false 
positive, or Type I error, and the limit on its probability is called the significance level of the test, 
or alpha. Most hypothesis tests are designed so that when the assumptions of the test are met, the 
test will perform as specified.  In practical terms, that means in a large number of repeated trials, 
the fraction of false positive decisions should be very close to alpha. 
 
Two alternative null hypotheses are considered in this investigation. Adopting the terminology 
from EPA (2002a), we have: 
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• Test Form 1 – The null hypothesis is that the distribution of concentrations in the site 

population is identical to that of the background. In this case, no further action will be 
taken unless the statistical test indicates that the site measurements are sufficiently higher 
than the background measurements that they are unlikely to have occurred by chance. In 
formal terms, the p-value of the test, which is the estimated probability that the result 
could have occurred by chance, must be less than alpha. This test form directly controls 
the costs of taking unnecessary action, while the environmental risks from failure to 
detect contamination are determined by the sample size and the population variability. 

• Test Form 2 – The null hypothesis is that the site mean concentration exceeds the 
background mean concentration by a specified threshold amount or more. In this case, 
action will be taken unless the difference between site and background measurements is 
significantly less than the threshold. This test form controls environmental risks by 
setting an upper limit on the amount of contamination that can be missed by sampling, 
while the costs of unnecessary action are a function of sample size and variability.   

 
Statistical Tests and Assumptions 
 
The statistical tests evaluated here include Wilcoxon Rank Sum, Student’s t, Welch’s t, the 
quantile test, the quantile test combined with the WRS test, and the difference in sample means 
compared to a specified threshold difference. In addition, Welch’s t was performed on log-
transformed data. The test descriptions in italics below are taken from EPA (2006). 
 
The Two-Sample Student’s t Test 

  
Purpose: Test for a difference or estimate the difference between two population means when it 
is suspected the population variances are not equal. 
 
Data: A simple or systematic random sample x1, x2, . . . , xm from the one population, and an 
independent simple or systematic random sample y1, y2, . . . , yn from the second population.  
 
Assumptions: The two populations are independent. If not, then it is possible that a paired 
method could be used. Both are approximately normally distributed or the sample sizes are large 
(m and n both at least 30). If this is not the case, then a nonparametric procedure is an 
alternative. 
 
Limitations and Robustness: The two-sample t-test with unequal variances is robust to moderate 
violations of the assumption of normality. The t-test is also not robust to outliers because sample 
means and standard deviations are sensitive to outliers. 

(U.S.EPA 2006, Section 3.3.1.1.1) 
 

The Two-Sample t-Test (Welch-Satterthwaite: Unequal Variances) 
 
Purpose: Test for a difference or estimate the difference between two population means when it 
is suspected the population variances are not equal. 
 
Data: A simple or systematic random sample x1, x2, . . . , xm from the one population, and an 
independent simple or systematic random sample y1, y2, . . . , yn from the second population. 
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Assumptions: The two populations are independent. If not, then it is possible that a paired 
method could be used. Both are approximately normally distributed or the sample sizes are large 
(m and n both at least 30). If this is not the case, then a nonparametric procedure is an 
alternative, 
 
Limitations and Robustness: The two-sample t-test with unequal variances is robust to moderate 
violations of the assumption of normality. The t-test is also not robust to outliers because sample 
means and standard deviations are sensitive to outliers. 

(U.S.EPA 2006, Section 3.3.1.1.2) 
 

The Wilcoxon Rank Sum Test 
 
Purpose: Test for a difference between two population means. The Wilcoxon Rank Sum test, 
applied with the Quantile test, provides a powerful combination for detecting true differences 
between two population distributions. 
 
Data: A random sample x1, x2, . . . , xm  from one population, and an independent random 
sample y1, y, . . . , yn from the second population. 
 
Assumptions: The validity of the random sampling and independence assumptions should be 
verified by review of the procedures used to select the sampling points. The two underlying 
distributions are assumed to have approximately the same shape (variance) and that the only 
difference between them is a shift in location. A qualitative test of this assumption can be done by 
comparing histograms. 
 
Limitations and Robustness: The Wilcoxon signed rank test may produce misleading results if 
there are many tied data values. When many ties are present, their relative ranks are the same, 
and this has the effect of diluting the statistical power of the Wilcoxon test. If possible, results 
should be recorded with sufficient accuracy so that a large number of tied values do not occur. 
Estimated concentrations should be reported for data below the detection limit, even if these 
estimates are negative, as their relative magnitude to the rest of the data is of importance. If this 
is not possible, substitute the value DL/2 for each value below the detection limit providing all 
the data have the same detection limit. When different detection limits are present, all data could 
be censored at the highest detection limit but this will substantially weaken the test. A statistician 
should be consulted on the potential use of Gehan ranking. 

(U.S.EPA 2006, Section 3.3.2.1.1) 
  
The Quantile Test 
 
Purpose: Test for a shift to the right in the right-tail of population 1 versus population 2 This 
may be regarded as being equivalent to detecting if the values in the right-tail of population 1 
distribution are generally larger than the values in the right-tail of the population 2 distribution. 
 
Data: A simple or systematic random sample, x1, x2, . . ., xn, from the site population and an 
independent simple or systematic random sample, y1, y2, . . ., ym, from the background 
population. 
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Assumptions: The validity of the random sampling and independence assumptions is assured by 
using proper randomization procedures, which can be verified by reviewing the procedures used 
to select the sampling points. 
 
Limitations and Robustness: Since the Quantile test focuses on the right-tail, large outliers will 
bias results. Also, the Quantile test says nothing about the center of the two distributions. 
 
Therefore, this test should be used in combination with a location test like the t-test (if the data 
are normally distributed) or the Wilcoxon Rank Sum test. 
(U.S.EPA 2006, Section 3.3.2.1.2) 

 
The Sample Means Test 

 
The difference in arithmetic means of the two samples is tested against a threshold value. If the 
site mean minus the background mean is greater than the threshold, then the site is considered 
contaminated.  
 
The arithmetic means test is not a true statistical test in the sense that it does not attempt to 
control either alpha or beta. It is perhaps better described as a decision rule. The test is error-
neutral. It is the same whether using test form 1 or 2. If the error distributions are symmetrical, or 
the sample sizes are large, then false positive and false negative error rates will be equal. It has 
some potential advantages: it is simple; it directly tests the parameter of concern; and because it 
uses no distributional information, it can be performed equally well with composite data at lower 
analytical costs. 
 
Alternately, the sample means test could be considered a degenerate form of the t-test. It is 
equivalent to setting the alpha value of the t-test at the sample mean threshold to 0.5.  In this case 
the value of t becomes zero, and the critical value of the test is simply the threshold.  
 
Tests on Transformed Data 
 
Log transforms are not generally recommended when analyzing environmental data (EPA, 
1997). Two problems are common. Upper confidence limits calculated by Land’s method, while 
theoretically correct if the true distribution of the population is exactly log-normal, may be much 
too high when the population is only approximately log-normal. Also, it can easily be 
demonstrated that in a one-sample test, comparing a statistic calculated on log-transformed data 
against a log-transformed threshold limit can produce biased, non-protective decisions. To test 
whether the same is true for a two-sample test, Welch’s t on log-transformed data is included in 
this study for comparison. The Welch’s t test is chosen here instead of the Student’s t test 
because its assumptions are less stringent. 
 
For test form 1, the approach is straight-forward: take the logarithms of the two data sets and 
perform the Welch’s t test.  However, test form 2 presents complications when the significant 
difference being tested is greater than zero. With untransformed data, the significant difference is 
tested by either subtracting the difference from the site data or by adding the difference to the 
background data, and then performing the test. Either way the result is the same. But the results 
are not the same if the data are transformed before the test. Subtracting the significant difference 
from the site data yields negative values that cannot be transformed, so the only real option is to 
add the significant difference to the background values, transform the data, and perform the test.  
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An alternative approach is to transform the original data before adding the significant difference.  
There are a wrong way and two right ways to do this. The wrong way is to log-transform the 
sample data and then to add the log of the significant difference (equal to the width of the gray 
region – in this case, 50) to the transformed background values. That is the equivalent of 
multiplying the background values by 50. The right ways differ in the interpretation of the 
performance objectives (see Figure 1 below).  We might be testing for a 50% increase, in which 
case the log of 1.5 would be added to the transformed background data. Or we might be testing 
for an increase of 50 units over an unknown background mean; then the added value would be 
the log of the ratio: background mean plus 50 over the background mean. The latter is used in 
this paper. 
 
Combined Tests 
 
The U.S. EPA (EPA, 1992, 1996) recommends using the quantile test in conjunction with the 
Wilcoxon Rank Sum test. The reasoning is that the WRS test is robust to the presence of outliers, 
which also makes it insensitive to localized contamination that would show up in the site 
distribution as an increase or shift in the upper tail. The quantile test looks only at the upper tail 
and should detect such an increase if it has occurred. The decision logic is that if either test 
indicates further action, then further action will be taken.   
 
Evaluation of the performance of a combination of two tests is beyond the scope of this paper.  
To perform a quantile test requires choosing two parameters – the significance level alpha and 
the quantile to test (i.e., the upper 10% of the distribution). A full evaluation would require 
testing various combinations of alpha and quantile for the quantile test, along with various levels 
of alpha for the WRS. This paper shows performance for a single combination as an example.  
Both alpha values are set at 0.05, and the quantile is the upper 10%. 
 
It has been suggested (EPA 1992) that a “hot sample” test be included in combination with the 
WRS and quantile tests. This involves choosing an upper threshold value such that the site is 
declared contaminated if any site measurement exceeds the threshold.  That reference, however, 
was not explicit as to how to choose or calculate a hot sample threshold.  This paper does not 
evaluate hot sample tests, alone or in combination. That is left, along with a full evaluation of  
the combined WRS - quantile test, as a subject for future research. 
 
Decision Objectives 
 
Comparing statistical tests can be an “apples and oranges” exercise, because the tests operate on 
different characteristics of the samples.  Both the Student’s t and the WRS tests set out to test 
exactly the same thing. Both assume that the two populations being sampled have identical 
shapes and variances, and that the populations differ only by a location shift. “Location shift” 
usually denotes a change in mean, but the shape and variance constraints imply something 
stronger – not only the mean, but every quantile of the population, including the median, are all 
shifted by exactly the same amount.  
 
When the tests are performed, they tell us different things. The t-tests actually estimate the 
population means and might conclude that the mean of population A is significantly higher than 
the mean of population B. The WRS test does not conclude anything about means – only that the 
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relative rankings of population A are greater than the relative rankings of population B. As 
Modarres et al. (2005) noted, when the WRS assumptions are violated, a difference in rankings 
might be detecting a change in shape or variance instead of the intended location shift.  
 
Similarly, the t-test performed on log transformed data compares the means of the logs, which 
tells us nothing about the arithmetic population means. If the log-transformed populations are 
strictly normal, then the t-test on log-transformed data is a test of medians because the mean of a 
normal distribution of logs is the median of the corresponding arithmetic values. The simulated 
site populations that will be used in this investigation are bimodal log-normal distributions – the 
background and contaminant components of the site distribution are each log-normal, but the 
combination is only log-normal if the entire site is contaminated.  
 
As pointed out earlier, this investigation began as an evaluation of the performance of the WRS 
test and expanded to include comparisons of the WRS test with some alternative tests.  For site-
background comparisons, the WRS test is used (in the author’s experience) only as a non-
parametric substitute for a t test when the hypothesis of normality is rejected; therefore it is 
reasonable to assume in such cases that the purpose of performing either test is to compare the 
population means. In this investigation, we choose to define the objective of performing a test to 
be the detection of a significant difference in population mean, regardless of what the test itself 
may actually be measuring. There may be good reasons to compare other population parameters, 
but such comparisons are beyond the scope of this paper. 
 
We adopt a pragmatic approach toward hypothesis testing. Contaminated sites are not controlled 
experiments. In the real world, if we evaluate sets of sample data and find that there are no 
available statistical tests whose assumptions are perfectly met, we do not have the luxury of not 
making a decision. We do not abandon tests simply because the underlying assumptions are not 
met. After all, t-tests and the WRS test are widely used at least in part because they are robust to 
moderate violations of the assumptions.  However, we do abandon the notion of formal statistical 
inference. P-values can not be interpreted as exact probabilities; therefore, alpha values are not 
true significance levels. The tests in effect become mechanical decision algorithms or “decision 
rules” – the data go in and a decision comes out. Our concern is not about which test is formally 
“correct”, but about which test performs best under the circumstances. 
 
Performance Evaluation 
 
Performance was evaluated by computer simulations designed to mimic the sampling and 
decision process as closely as possible. For this investigation, the site and reference area are 
assumed to be sampled randomly, and that the comparison of samples is intended to answer the 
question: Is the mean concentration of the site significantly higher than the mean concentration 
of background?  The approach is to produce realistic simulated “populations” for the background 
and the site, to re-sample and test the populations numerous times, and to record the decision 
outcomes. Each decision is classified as “action” or “no action,” and the decimal fraction of 
“action” decisions over a number of trials is plotted as an estimate of the true performance 
probability for the test. A performance curve is constructed by repeating the process with a series 
of simulated site populations with increasing mean concentrations. 
 
Hypothesis tests are run at specified levels of alpha, which control (or attempt to control) the 
false rejection rate at a specified threshold value. Here, the threshold for test form 1 is set at zero 
difference. An alpha value of 0.05 would represent a 0.05 probability of cleanup when the site 
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mean concentration is actually identical to the background mean concentration. A DQO diagram 
(Figure 1) is used during project planning to quantify the desired performance of a 
sampling/decision-making effort.  The alpha “control point” for test form 1 is indicated by the 
lower corner on the line bounding the left side of the gray region. The alpha control point for test 
form 2 is the upper corner on the right boundary. For this study, the threshold difference for test 
form two is set at 50, or 50% higher than the nominal background mean of 100.  An alpha of 
0.05 would represent a 0.95 probability of cleanup at this threshold.   
 
A statistical test that is performing correctly because all of the assumptions are met should 
always pass through the alpha control point. Whether it passes through the other control point is 
a function of the variability of the populations and the number of samples.  
 
For this investigation, the threshold value for the sample mean test is set at the midpoint of the 
gray region, or 25.  This is just a first approximation to make the performance of this test 
comparable to the other tests. This is basically a Central Limit theorem approximation - if the 
sample size is large enough to make the distribution of errors about the mean look approximately 
normal, then the mean will approximately equal the median.  When the true value equals the 
threshold, the decision probability will be 0.5 either way; thus the performance curve will pass 
through the center of the gray region.  
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Figure 1. Example DQO diagram specifying performance requirements for a two-sample test.  (a) The alpha 
control point for test form 1. (b) The alpha control point for test form 2. The dotted red line is a performance 
curve for an acceptable DQO design; “acceptable” because it stays within the boundaries of the gray region, 
or equivalently, within the control points.  Different combinations of sample size and method, analytical 
method, and statistical test can produce numerous acceptable designs. In the typical DQO process, the lowest 
cost of these would be “optimal.” 
 
Performance results for the simulations in this study are presented in the form of simplified DQO 
diagrams. To reduce visual clutter when comparing several performance curves on the same 
graph, the gray region and most of its boundaries are removed.  Only the corner sections of the 
bounding lines remain to indicate the design control points. The alpha control point for the test 
form being illustrated is shown in black; the other in gray, as in Figure 2.  All results will be 
shown in this fashion; as pairs of plots with test form 1 on the left and test form 2 on the right. 
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Figure 2. Simplified DQO diagram used to present results in this paper.  The gray region and most of the 
gray region boundaries in Figure 1 have been removed to reduce visual clutter. The gray and black “ticks” 
remain to show the target points.  The alpha point for formal statistical tests is shown in black for the 
appropriate test form. 
 
 
The Simulation Algorithm 
 

1. Generate a simulated background population: 100,000 random values log-normally 
distributed with arithmetic mean = 100 and a specified log standard deviation. 

2. Generate a simulated contaminant population of 100,000 values containing both zero 
values and contaminated values in a specified proportion. The non-zero contaminated 
values are log-normally distributed with a specified log standard deviation and an 
arithmetic mean such that the arithmetic mean of the entire contaminant population, 
including the zeros, is equal to D, a user-specified arithmetic “true difference” value. D is 
initially set to zero—no contamination. 

3. Add the two distributions to create the site population.  
4. Draw a simple random background sample of size nb and a simple random site sample of 

size ns. The sample sizes, nb and ns, are user-specified and may differ. 
5. Perform a Wilcoxon Rank Sum test with the null hypothesis: site = background, versus 

the alternative hypothesis: site > background. Record the p-value. 
6. Perform a two-sample Student’s t test as in step 5.  
7. Repeat steps 4 through 6. The number of repetitions is user-specified, and is determined 

by trial-and-error to produce acceptably smooth performance curves. Evaluate the 
performance of the tests by computing the fraction of repetitions with positive action 
decisions (p-value<alpha for test form 1, or p-value>alpha for test form 2).  

8. Repeat steps 2 through 7, for a series of specified D values. 
9. Plot the performance for each test as a function of the true difference in means. 

 
Simulations and graphics were done with R software (R Development Core Team, 2005). 
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The Background Population 
 
Trace metal concentrations in natural soils are usually positively skewed and are often 
approximately log-normal. Background sample data from the Fort McClellan Choccolocco 
Corridor were used as a basis for choosing a reasonable background population distribution for 
this study. Normal probability plots of the log concentrations for six metals in the Choccolocco 
Corridor background samples are shown in Figure 3. A perfectly normal, or in this, case log-
normal, distribution would plot on a straight line. All but mercury (Hg) appear approximately 
log-normal. Mercury is anomalous – possibly bimodal. For purposes of this investigation, we 
will assume that “typical” background distributions are log-normal.  
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Figure 3.  Probability plots of log concentrations of trace metals in Choccolocco Corridor background 
samples. The solid lines are the theoretical log-normal distributions matching the sample parameters. 
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Table 1 contains natural log standard deviations for the six CC background distributions in 
Figure 2.  Four corresponding values from a USGS soil survey (USGS, 1984) covering the 
contiguous 48 States are also shown. Normally, we would expect to see lower variability in a 
local sample than in the USGS sample; but soil variability can be very sensitive to the soil 
sampling method, the total mass of a sample, and sub-sampling procedures. In any event, Table 1 
provides what is needed for this investigation – a range of values for real-world sample 
variability. For this study, we will assume a lognormal background distribution, and choose a 
middle-of-the-pack natural log standard deviation of 0.80. 
 
Table 1.  Natural log standard deviations of  
Choccolocco Corridor and USGS background samples 
 ______________________________ 
   CC USGS   
Arsenic 0.87 0.80 
Cadmium 1.17 --- 
Chromium 0.83 0.86 
Lead  0.71 0.52 
Mercury 0.67 0.92 
Silver  1.45 --- 
 
The Site Populations 
 
Four scenarios for the distribution of the site population will be evaluated: 
 

1. 100% of the site is contaminated. 
2. 50% of the site is contaminated. 
3. 20% of the site is contaminated. 
4. 10% of the site is contaminated. 

 
In these scenarios, the site population is initially set equal to the log-normal background 
population and a lognormal contaminant distribution is added to the background distribution in 
the contaminated fraction. The contaminant distribution is assumed to be more variable than the 
background distribution - a natural log standard deviation of 1.5 is assumed for the contaminant 
distribution in the simulations.   
 
Figures 4 – 7 show site and background population distributions for the four site scenarios. The 
distributions are shown as density plots, which can be thought of as smoothed histograms. Each 
case is plotted with arithmetic concentration on the x-axis, and then plotted again to the right 
with log concentration on the x-axis. In each figure, the upper pair of plots (a and b) shows the 
case when the site concentration exceeds the background concentration by 50; that is, the target 
threshold or significant difference that was chosen for test form 2.  In the lower pair of plots (c 
and d) the difference between the site and the background is 200. The background population, of 
course, remains constant through all of these scenarios and cases. 
 
As the fraction of contaminated soil decreases, the visual differences between the site and 
background populations become less obvious.  Intuitively, we might expect these low-fraction 
scenarios to be more difficult to distinguish by statistical testing as well.  Scenario 4 (Figure 7), 
with only 10% of the soil contaminated, is statistically equivalent to a hot-spot scenario. 
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Background and site populations are largely identical, with all of the differences occurring in the 
upper tail. 
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Figure 4.  Distributions from Scenario 1. 
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Figure 5. Distributions from Scenario 2. 
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Figure 6. Distributions from Scenario 3. 
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Figure 7. Distributions from Scenario 4. 
 

 
Null Hypotheses 
 
The performance of a formal statistical test of two populations depends on whether we begin by 
assuming that the two populations are the same, or that they are different. EPA (2002) refers to 
the former as “test form 1” and the latter as “test form 2.”  In statistical terms, the null hypothesis 
for test form 1 is that the site mean is less than or equal to the background mean. When the test 
rejects the null hypothesis, the site mean concentration is deemed significantly elevated above 
the background mean concentration, thus requiring a cleanup operation, or at least a further 
evaluation phase. When test form 2 is used the null hypothesis is that the site is contaminated by 
at least a specified amount above background. In this case, cleanup or further evaluation will 
proceed unless the null hypothesis is rejected in favor of the alternative. 
 
The Student’s t, Welch’s t, and WRS tests are commonly used for both test forms.  When test 
form 1 is used, the sample data are used directly; the tests assume the two data sets are equal, and 
determine whether or not the site data are higher than background.  When test form 2 is used, one 
of the data sets is shifted by the significant difference – the width of the gray region. The 
difference can either be added to the background measurements or subtracted from the site 
measurements. Statistical software packages usually have an option to test for a significant 
difference between populations, making it unnecessary for the user to modify the data. The tests 
assume that the modified data sets are equal, and then determine whether or not the background 
data are lower than the site.  
 
The quantile test is performed only using test form 1. The quantile test only looks at the upper 
tails of the distributions; so, it does not make sense to shift an entire data set.  
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Sample Sizes 
 
Two sample sizes were used in the simulation: n = 30 and n = 150.  N = 30 is a frequently used 
(and misused) rule-of-thumb sample size.  From the Central Limit Theorem, we know that for 
any population distribution, the distribution of the sample mean approaches the normal 
distribution as the sample size increases. An example of this is the Student’s t distribution, where 
the distribution of the mean for sample sizes of 30 or more is very close to normal.  It is 
sometimes mistakenly assumed that 30 samples are adequate for any distribution. 
 
The sample size of 150 comes from an ad hoc design approach intended to provide a “ballpark” 
number.  The theoretical sample size required to achieve the performance objectives in Figure 1 
was calculated by assuming a normally distributed population.  An arbitrary “safety factor” of 
20% was added, and the result rounded to the nearest 10 samples. The theoretical part of the 
design was done using the Visual Sample Plan, v.4.6D freeware package (http://dqo.pnl.gov/) 
developed by the Pacific Northwest National Laboratory, as shown in the screen shot below.  
 
 

 
 
 
The first four inputs are taken directly from Figure 1, and are obvious.  The arithmetic estimated 
standard deviation (ESD) was calculated from the log standard deviation of the background 
population by first calculating the coefficient of variation (CV): 

 

CV2 = esy^2 – 1 = e0.8^2 – 1 = 0.896, where sy is the log standard deviation of the 
background population. Then, 
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CV = 0.947 
 
By definition,  
 

CV = ESD/mean, so  
ESD = CV * mean.  

 
The appropriate mean in this case is the midpoint of the gray region, or 125, so  
 

ESD = 0.947 * 125 = 118.375. 
 
The theoretical sample size (Nt) from VSP is 122, and our ad hoc adjustment gives  
 

N = 1.2 * Nt = 146.4 ≈ 150. 
 

Measurement Errors 
 
Measurement errors were not treated separately in the simulations.  The simulated populations 
were assumed to be the sets of all possible soil sample measurements rather than being the sets 
of all possible true soil sample concentrations. All measurements were assumed to be above the 
detection limit. 
 
Simulation Results 
 
Figures 8-23 illustrate performance curves for the various statistical tests. Each figure shows one 
test case: one contamination scenario sampled by a particular combination of site and 
background sample sizes.   
 
Each figure contains three pairs of plots as described earlier; each pair comparing several tests 
for the two test forms. WRS and Welch’s t results are repeated in each pair for reference. 
 

• Upper pair (a and b) – WRS, Student’s t, and Welch’s t. 
• Middle pair (c and d) – WRS, Welch’s t, Quantile test, and WRS + Quantile test. 
• Lower Pair (e and f) – WRS, Welch’s t, Welch’s t (log transformed data), and Sample 

Mean test. 
 
Overall test performance is determined by both false positive and false negative rates. When 
evaluating test performance with performance plots, there are two critical features to look at. 
First, as indicated above, the curve should pass through the specified alpha control point. Second, 
the curve should rise steeply to the right of the control point in the case of test form 1 or fall 
steeply to the left of the control point in the case of test form 2. In general the best overall 
indicator of performance is the steepness of the curve.  Steeper curves indicate a sharper 
separation between populations.  
 
Table 2 presents some of the performance results in quantitative terms. Each of the 16 cases 
shown in figures 8-23 has two rows of performance data, with columns representing specific 
tests.  The first row, with text in italics, shows the observed performance when the true 
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concentration difference is zero. This is the false positive rate for test form 1, or for any test, the 
false action rate. The second row contains the value of the true difference in concentration at 
which the test achieved the desired 0.95 action rate. If the test did not achieve a 0.95 action rate, 
the observed rate at the maximum true difference (200) is shown instead. 
 
The focus on differences in row 2 is because it provides an intuitive evaluation of relative risk.  
The true difference between the mean site concentration and the background concentration is 
proportional to the increase in risk at the site. The upper performance target – a 0.95 action 
decision rate at a threshold value of 50 – sets a de facto upper limit on the increase in risk that 
can be allowed to go undetected. If a test meets this target, it can be considered “protective” 
against a risk increase of 50 (or 50%, where the true background mean is 100).  If the observed 
performance of a test achieves the 0.95 action rate at a true difference of 70, that test can be said 
to be protective against a 70% increase in risk. 
 
Performance rates are used in row 1 because decision errors of this type increase action costs 
unnecessarily. These (expected) increases are directly proportional to the error rate.  
 
Table 2 highlights the “better” performance results. In row 1, error rates less than or equal to 
0.10 are underlined. In row 2, distances less than or equal to 100 are shown in bold. Instances 
where both criteria are met are shaded. These ranking criteria are arbitrary. 
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Figure 8. Scenario 1. Performance of several statistical tests.  30 background samples, 30 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 9 Scenario 2. Performance of several statistical tests.  30 background samples, 30 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 10 Scenario 3. Performance of several statistical tests.  30 background samples, 30 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 11. Scenario 4. Performance of several statistical tests.  30 background samples, 30 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Equal Sample Sizes: 150 Background Samples, 150 Site Samples 
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Figure 12. Scenario 1. Performance of several statistical tests.  150 background samples, 150 site samples. 
Left: Test Form 1. Right: Test Form 2. 
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Figure 13. Scenario 2. Performance of several statistical tests.  150 background samples, 150 site samples. 
Left: Test Form 1. Right: Test Form 2. 
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Figure 14. Scenario 3. Performance of several statistical tests.  150 background samples, 150 site samples. 
Left: Test Form 1. Right: Test Form 2. 

 25



   

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

Scenario 4     10 % contaminated

True Difference

Pr
ob

ab
ilit

y 
of

 A
ct

io
n

150 Background Samples
150 Site Samples

Background mean = 100

WRS
Student's t
Welch's t

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b

Scenario 4     10 % contaminated

True Difference

Pr
ob

ab
ilit

y 
of

 A
ct

io
n

150 Background Samples
150 Site Samples

Background mean = 100

WRS
Student's t
Welch's t

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

Scenario 4     10 % contaminated

True Difference

Pr
ob

ab
ilit

y 
of

 A
ct

io
n

150 Background Samples
150 Site Samples

Background mean = 100

WRS
Welch's t
Quantile Test
WRS+Quantile

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

Scenario 4     10 % contaminated

True Difference

Pr
ob

ab
ilit

y 
of

 A
ct

io
n

150 Background Samples
150 Site Samples

Background mean = 100

WRS
Welch's t
Quantile Test
WRS+Quantile

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

e

Scenario 4     10 % contaminated

True Difference

Pr
ob

ab
ilit

y 
of

 A
ct

io
n

150 Background Samples
150 Site Samples

Background mean = 100

WRS
Welch's t
Welch's log t
Sample Mean

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f

Scenario 4     10 % contaminated

True Difference

Pr
ob

ab
ilit

y 
of

 A
ct

io
n

150 Background Samples
150 Site Samples

Background mean = 100

WRS
Welch's t
Welch's log t
Sample Mean

 
Figure 15. Scenario 4. Performance of several statistical tests.  150 background samples, 150 site samples. 
Left: Test Form 1. Right: Test Form 2. 
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Figure 16. Scenario 1. Performance of several statistical tests.  30 background samples, 150 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 17. Scenario 2. Performance of several statistical tests.  30 background samples, 150 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 18. Scenario 3. Performance of several statistical tests.  30 background samples, 150 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 19. Scenario 4. Performance of several statistical tests.  30 background samples, 150 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Unequal Sample Sizes: 150 Background Samples, 30 Site Samples 
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Figure 20. Scenario 1. Performance of several statistical tests.  150 background samples, 30 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 21. Scenario 2. Performance of several statistical tests.  150 background samples, 30 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 22. Scenario 3. Performance of several statistical tests.  150 background samples, 30 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Figure 23. Scenario 4. Performance of several statistical tests.  150 background samples, 30 site samples. Left: 
Test Form 1. Right: Test Form 2. 
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Table 2.  Performance of Two-Sample Comparison Tests    
%
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 T
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W
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T_

2 
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100 30 30   0.046 0.055 0.049 0.047 0.013 0.048   0.043 0.048 0.295 0.296 0.01 0.387   0.14 
     140 130 0.93 0.93 0.55 130   100 100 70 70 0.56 50   90 

50 30 30   0.051 0.057 0.051 0.051 0.01 0.051   0.05 0.058 0.308 0.308 0.012 0.379   0.145 
     0.76 0.82 0.78 0.77 0.47 0.82   0.94 0.94 80 80 0.48 90   130 

20 30 30   0.054 0.061 0.052 0.051 0.011 0.054   0.052 0.058 0.312 0.313 0.01 0.392   0.152 
     0.3 0.42 0.41 0.39 0.25 0.41   0.53 0.57 130 130 0.26 0.93   0.93 

10 30 30   0.05 0.056 0.05 0.049 0.011 0.052   0.046 0.052 0.298 0.3 0.011 0.368   0.141 
     0.14 0.21 0.18 0.17 0.11 0.22   0.26 0.3 0.91 0.91 0.11 0.82   0.82 
                                      
100 150 150   0.049 0.083 0.049 0.049 0.044 0.051   0 0.042 0.006 0.006 0.042 0.003   0.011
     40 40 50 50 90 40   100 80 60 60 90 50   50 

50 150 150   0.047 0.081 0.049 0.049 0.045 0.048   0 0.041 0.007 0.007 0.041 0.001   0.01
     60 60 60 60 100 60   0.93 100 60 60 100 90   60 

20 150 150   0.052 0.08 0.052 0.052 0.04 0.055   0 0.044 0.007 0.007 0.044 0.003   0.012
     0.81 140 150 150 170 190   0.04 170 80 80 170 0.92   80 

10 150 150   0.058 0.084 0.051 0.051 0.038 0.054   0 0.038 0.006 0.006 0.038 0.004   0.011
     0.4 0.74 0.85 0.85 0.68 0.71   0 0.69 100 100 0.69 0.57   110 
                                      
100 30 150   0.049 0.074 0.035 0.102 0.033 0.051   0.001 0.036 0.155 0.08 0.035 0.189   0.084
     90 80 0.9 100 0.81 80   90 80 50 50 0.8 50   70 

50 30 150   0.046 0.07 0.031 0.093 0.029 0.047   0 0.027 0.15 0.077 0.027 0.192   0.073
     0.94 160 0.65 130 0.78 150   160 140 50 50 0.77 80   80 

20 30 150   0.047 0.073 0.035 0.103 0.033 0.047   0 0.027 0.157 0.083 0.027 0.193   0.085
     0.43 0.73 0.14 0.93 0.61 0.7   0.3 0.68 60 70 0.61 0.93   90 

10 30 150   0.048 0.07 0.035 0.095 0.029 0.051   0 0.034 0.158 0.079 0.034 0.205   0.078
     0.18 0.38 0.01 0.78 0.3 0.39   0.03 0.33 60 80 0.32 0.77   120 
                                      
100 150 30   0.049 0.082 0.06 0.022 0.049 0.049   0.013 0.061 0.157 0.202 0.054 0.202   0.09
     80 80 100 170 170 80   110 100 70 80 170 60   80 

50 150 30   0.049 0.092 0.065 0.021 0.059 0.052   0.016 0.06 0.155 0.199 0.054 0.199   0.1
     0.91 170 140 0.81 0.93 0.92   0.89 180 90 90 0.92 90   110 

20 150 30   0.048 0.088 0.058 0.02 0.054 0.052   0.013 0.066 0.159 0.206 0.06 0.196   0.097
     0.43 0.71 0.9 0.39 0.65 0.52   0.38 0.68 190 160 0.65 0.91   0.94 

10 150 30   0.047 0.087 0.062 0.019 0.054 0.048   0.012 0.058 0.153 0.196 0.052 0.192   0.1
     0.21 0.43 0.75 0.16 0.38 0.28   0.13 0.38 0.86 0.89 0.36 0.77   0.83 
                                      
 The first three columns identify a test case -- a combination of contaminated fraction and sample sizes    
 Each case has two rows of results:                      
  1.   Fraction of unnecessary "action" decisions.  (The target is 0.05)       
  2.  True difference in population means above which the fraction of "action" decisions is >0.95    
    (the target difference is 50) … or, if the result is a number less than 1:      
  2.  The maximum "action " fraction at a true difference of 200        
                   
 Underscore:   Row 1 results less than twice the target fraction         
 Bold:   Row 2 results less than twice the target difference        
 Shaded:   Both underscore and bold              
                   
 "1" or "2" in column heading indicates test form           
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Design Considerations 
 
The purpose of this paper was to compare the performance of statistical tests, not sampling 
designs.  But perhaps the most important message to be gleaned from the results presented here 
is that decision performance is determined by a combination of the sampling design and the 
statistical test. If one wants to optimize a decision making process, then both factors must be 
considered together. 
 
To design sampling plans for actual sites, it is recommended that case-specific simulations be 
performed, similar to those used in this report. Programs for running such simulations, or 
“scripts” as they are called in the R language, are included in Appendix 1. These scripts will 
permit a user to reproduce, within the limits of simulation variability, the results presented in this 
paper, and to experiment with different sample sizes, alpha levels, etc.   
 
A cautionary note to anyone wishing to use these scripts as a design tool: although the scenarios 
used in the simulations are fairly realistic and present difficult sampling problems, they do not 
cover the full range of difficulties that the real world has to offer. In particular, these scripts do 
not provide for superimposing a regional anthropogenic background component over both site 
and reference areas. Nor do they allow for any real differences between the site and reference 
area background distributions due simply to natural variability; or for measurement errors or 
non-detects. Choosing appropriate background and site scenarios is a critical part of developing 
the “conceptual model” in the early stages of project planning. 
 
The decision quality objectives used in this investigation (Figure 1) were totally arbitrary. They 
are used only to provide reference points to assist comparisons of the statistical tests and should 
not be considered an example to emulate at actual sites.  Nevertheless, the objectives used here 
provide a useful starting point for discussion when setting objectives for a real site. The 
objectives from Figure 1 protect against missing an increase in mean concentration of 50% over 
the background mean level. Is a 50% increase too high, so that we need to aim to detect a 25% or 
even a 10% increase? Or is it too low, allowing us to relax the detection threshold to 100%, 
200%, or more? 
 
Test Recommendations 
 
The tests recommended below generally performed well over the range of scenarios and 
sampling schemes evaluated. The recommendations should be considered tentative, and 
challenged when developing case-specific designs, especially if the design objectives or the site 
scenarios differ significantly from those assumed in this paper.  
 
Perhaps the best approach is to start with the recommended tests, and then experiment to try to 
find a better alternative. Alternatives are not limited to the tests that have been evaluated in this 
paper. Any of the tests evaluated here can be modified by choosing different values for test 
parameters, such as alpha, significant difference, or action threshold. Many different 
combination tests are possible other than the WRS – quantile combination tested here.   
 
Use Student’s t or Welch’s t with Test Form 2 
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Although the Wilcoxon Rank Sum test with Test Form 1 performs somewhat better than the t 
tests with Test Form 2 in the specific case of 100% contamination, WRS performance roughly 
equals the t tests at 50% contamination and rapidly becomes much less protective as the 
contaminated fraction drops.  The t tests are consistently protective over the range of scenarios. 
If the site conceptual model suggests a real possibility that the site may be less than 50% 
contaminated, then t tests are the safer choice. When site and background sample sizes are equal, 
it makes no difference whether Student’s t or Welch’s t is used. Although the two tests may 
differ for any particular sampling event, over many simulations their overall performances 
become indistinguishable.  There is a difference, however, when the sample sizes are unequal. 
The Welch’s t test is superior to the Student’s t test when the site sample size is larger than the 
background sample size and inferior when the site sample is smaller. (The opposite relationship 
holds for Test Form 1, but Test Form 1 is not recommended).   
 
Consider composite sampling with a sample means test.  
 
The sample means test did not perform as well as the t tests, but it was not far behind.  The only 
statistic used is the sample mean, which can be obtained as easily by analyzing a composite 
sample as by averaging analyses of individual samples.  This has considerable potential for 
reducing analytical costs when the required sample size is large and there are many target 
analytes requiring individual and costly analyses.  
 
Observations and Discussion 
 
Quantile test results are shown in Table 2 for both test forms, though the test was run the same 
way in both cases. Comparing the two columns provides an indication of the precision of the 
simulation process.  
 
Within the limits of the precision of the simulation method, the WRS test and the Welch’s log t 
test achieved the specified alpha requirement for Test Form 1 over all scenarios and sample 
sizes.  This is as expected because when there is no difference between the site and background 
distributions, the assumptions for the WRS test are met; and when there is no difference between 
the distributions and they are log-normal, the assumptions of the Welch’s log t test are met.  
Unfortunately this is of limited practical value for two reasons. Real reference area populations 
are inevitably different from true site background populations, so actual decision performance 
can differ from theoretical performance. More importantly, neither test performs well for Test 
Form 1 on scenarios 3 and 4 (20% and 10% contamination, respectively).  
 
The WRS test fails completely for Test Form 2 on scenarios 3 and 4 when sample sizes are large. 
This is a rather unusual case where test performance actually gets worse with more data. This 
happens because Test form 2 subtracts 50 from each site sample. For example, in Figure 7c, the 
downshift would move approximately 30% of the site population below the background 
population, while only 10% of the site population was shifted upward by contamination. With 
enough data, the ranks will always show this net downward shift, causing rejection of the null. 
With few data, the test sometimes gets it wrong, which ironically gives the appearance of better 
performance with respect to our mean-oriented objectives.   
 
The quantile test is combined with the WRS to address the WRS insensitivity to shifts in the 
upper tail.  The quantile test is also a rank test, but looks only at the upper tail.  However, neither 
the quantile test by itself, nor the quantile test in combination with the WRS, performed 
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consistently well enough to be recommended. This conclusion only applies to the particular 
combination of parameters used in this paper.  For Test Form 1, the WRS test parameters were: 
alpha = 0.05 and significant difference = 0; the quantile test parameters were: alpha = 0.05 and 
quantile = 0.9 (meaning that the test looks only at the upper 10% tail.)  For Test Form 2, the 
significant difference was 50 while the other three parameters did not change. As suggested 
earlier, all four of the parameters could be varied, and it would be a substantial project to search 
for the optimal combination. With the right set of parameters, a combination of the WRS test and 
the quantile test might prove to be the best overall performer, but he parameter sets used in this 
paper are not it. 
 
The Welch’s log t test performed similarly to the WRS test for Test Form 1.  For those specific 
scenarios where the WRS test with Test Form 1 was equal to or better than the untransformed t 
tests with Test Form 2, the Welch’s log t test equaled or slightly outperformed the WRS test. 
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APPENDIX 1 – Evaluating statistical test performance with R 
 
R programs for simulating statistical test performance are included in the next three appendices.  
 
The scripts presented here have been somewhat modified from the original that was used to 
produce the results in this report: loops were removed that produced six graphs on a single 
figure, and that ran all four scenarios in a single long run. Parameters that can be modified by the 
user were moved to a separate file so that they can be more easily located and changed without 
inadvertently altering the operational code. Graphical output has been reduced to a single plot; 
the user can select any or all of the performance curves to be plotted. Text previously written 
inside the performance plot has been moved outside. Performance results for all tests are 
automatically written to an output file, along with a copy of the parameter file used during the 
run. The user has been given the option of changing the arithmetic mean and the log standard 
deviation of the background population, and changing the log standard deviation of the 
contaminant population. Numerous comments have been added to the scripts.  
 
The instructions below are not intended as an R tutorial. The intent is that an interested reader 
who is not an R user (and who has no desire to become one) will be able to run simulations and 
to be able to experiment with different input parameters.  Although it would be possible to 
perform a rudimentary trial-and-error design optimization using these scripts, the scripts 
themselves have not been subjected to independent validation, and should be used with 
appropriate caution.  
 
Instructions 
 
Download the R Windows installation program from: http://www.R-project.org.  (The current 
version at this writing is R-2.4.1-Win32.exe.) 
 
Run the install program. 
 
Create a work folder and copy the scripts below into the folder (use the file names in italics, e.g., 
parameters.r. Make copies in another folder as backup files. 
 
Run R. R will open with a main (RGui) window and a console window: 
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Click <File> on the toolbar, then <Change dir…> on the dropdown menu: 
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Browse and select your working directory (folder): 
 

 
 
 
On the R console window, type the command source(“stat test perf.r”): 
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R is a “command line interpreter” similar to Basic, rather than a compiled language, like Fortran 
or C++. When you hit <Enter>, R will execute the source command. R then reads and executes 
the R commands in the stat test perf.r script, which in turn reads and executes the R commands 
in the parameters.r and sort.data.frame.r script files. The parameters.r file contains the input 
parameters that control the simulation and statistical tests. These parameters are kept in a 
separate script file to make it easy for a user to make changes.  
 
When R has finished, it will display a performance plot in a new graphics window, and print 
output on the console: 
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The graphics window can be saved in any of six common graphics formats. 
 
The first line on the console after the source command is a file name into which R has written 
the output data, as well as a copy of the input parameters. The output file is a comma separated 
values file (.csv) that can be opened directly by a spreadsheet program. The file name is 
generated by the script, and includes the background sample size, site sample size, contamination 
percentage, and the date and time to make the name unique. 
 
The data table on the console contains the data shown in the performance plot. Plotting the Diff 
column on the x axis versus any other column on the y axis will reproduce one of the 
performance curves. 
 
The warning messages can be ignored. R is explaining – not very clearly – that it reformatted the 
data table in order to create the csv format output file. 
 
Note that the sample sizes in the example above are not the same as any of those in the body of 
this report. They illustrate a step in the author’s own rudimentary trial-and-error optimization 
attempt. Compare these results with Figure 15.  This example uses the same total number of 
samples, but improves the performance of the t tests by taking fewer background and more site 
samples. Although the performance targets are not changed, the tests were “tweaked” by 
lowering the significant difference value (“mu” in the parameter file) from 50 to 35.  This has the 
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effect of shifting the performance curve a little to the left. Searching for a better design is left as 
an exercise for the reader. 
 
The screen shot below shows the output file after being opened in a spreadsheet. 
 
 
 

 
 
 
To change parameters, open the parameters.r file using Notepad. Edit the parameter values as 
desired, being careful to change only the numerical values or the TRUE-FALSE logical values. 
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Save the revised file under the same file name, return to the R console, and execute the 
source(“stat test perf.r”) command again.  
 
If the scripts fail to run properly, replace them with copies of your backup scripts and try again. 
 
Note. Each time the scripts are executed, they open another graphics window and add another 
output file to the working directory. Periodic housekeeping is necessary. 
 
 
APPENDIX 2 - Script file: parameters.r 
 
########### Begin Script ############################## 
## parameters for statistical test performance simulation            |# 
bsamsize=100 ## Background sample size                               |# 
ssamsize=200 ## Site sample size                                     |# 
frac= .10    ## Contaminated fraction between 0 and 1                |# 
nreps=101  ## Number of sampling replications                        |# 
## Test parameters                                                   |# 
TestForm=2   ## Test Form                                            |# 
alpha=0.05   ## Alpha value for tests that use it                    |# 
mu=35        ## Significant difference value for tests that use it   |# 
b1=.90       ## Quantile for quantile test                           |# 
al=20        ## Threshold for Sample Means test                      |# 
## Do you want to plot the following tests? TRUE or FALSE            |# 
plotWRS=TRUE                # WRS                                    |# 
plotStudentst=TRUE          # Students t                             |# 
plotWelchst=TRUE            # Welch's t                              |# 
plotQuantile=TRUE           # Quantile                               |# 
plotWRSplusQuantile=TRUE    # WRS plus Quantile                      |# 
plotWelchslogt=TRUE         # Welch's log t                          |# 
plotSampleMean=TRUE         # Sample mean                            |# 
## DQO targets (just for putting the ticks on, not used in tests)    |# 
lft=0    # left bound of the gray region                             |# 
rgt=50   # right bound of the gray region                            |# 
bot=.05  # the alpha you want for test form 1                        |# 
top=.95  # 1-(the alpha you want) for test form 2                    |# 
## Defining the population parameters                                |# 
bsd=0.8       # background log standard deviation (natural logs)     |# 
bmean=100     # background arithmetic mean                           |# 
csd=1.5       # contaminant log standard deviation                   |# 
## Defining the True Difference points for the performance curve     |# 
## (step=10 and numsteps=21 calculates 21 points:  0,10,20,...,200)  |# 
step=10 ##                                                           |# 
numsteps=21 ## 
########### End Script ########################## 
 
 
APPENDIX 3 – Script file: stat test perf.r   
 
########### Begin Script ############################## 
## Evaluate performance of several statistical tests 
##-------------------------------------------------- 
## get the parameters and a sort utility script 
source("parameters.r") 
source("sort.data.frame.r") 
## initialize variables 
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stpvalue=numeric() 
wtpvalue=numeric() 
wpvalue=numeric() 
probcleanw=numeric() 
probcleanst=numeric() 
probcleanwt=numeric() 
qpvalue=numeric() 
probcleanq=numeric() 
cpvalue=numeric() 
probcleanc=numeric() 
lpvalue=numeric() 
mpvalue=numeric() 
probcleanl=numeric() 
probcleanm=numeric() 
diff=numeric() 
bsam=numeric(nreps*bsamsize) 
sbsam=numeric(nreps*ssamsize) 
ssam=numeric(nreps*ssamsize) 
csam=numeric(nreps*ssamsize) 
## open the graphics window and set the layout 
windows(width=5,height=3) 
mx=c(1,1,1,2,2,1,1,1,2,2) 
layout(matrix(mx, 2, 5, byrow = TRUE))   
par(mgp=c(2,1,0)) ## reset at end to 3,1,0 
## preliminary calculation for the quantile test 
qnsite=qn=ssamsize 
qmbkg=qm=bsamsize 
qc=qmbkg+qnsite-floor((qmbkg+qnsite-1)*b1)-1  
## set test parameters for thr R test functions 
alt="l" 
if(TestForm==1)alt="g" 
mew=0 
if(alt=="l")mew=mu 
## create sets of background samples; set to specified mean 
bsam=exp(rnorm(nreps*bsamsize,0,bsd)) 
bsam=bsam/mean(bsam) 
bsam=bsam*bmean  
dim(bsam)=c(nreps,bsamsize)  
## create sets of site background samples before contamination 
sbsam=exp(rnorm(nreps*ssamsize,0,bsd)) 
sbsam=sbsam/mean(sbsam) 
sbsam=sbsam*bmean  
dim(sbsam)=c(nreps,ssamsize)  
## create sets of contanimant values 
csam=exp(rnorm(nreps*ssamsize,0,csd)) 
csam[1:((1-frac)*length(csam))]=0 ## zero out the uncontaminated fraction 
csam=csam/mean(csam)  ## make site contaminant mean = 1.0 
csam=sample(csam) ## shuffle the data 
dim(csam)=c(nreps,ssamsize) 
 
## calculate fraction of samplings that result in a cleanup decision 
 
for (m in (1:numsteps))  # test a range of differences between site and 
background 
{ 
## add site-related contaminant to background 
diff[m]=step*(m-1) 
ssam=sbsam+csam*diff[m] 
 
for(i in 1:nreps) 
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  { 
  ## generate p-values for the tests 
  ## WRS   
  wout=wilcox.test(ssam[i,],bsam[i,],alternative=alt,mu=mew) 
  wpvalue[i]=wout$p.value 
  ## Welch's t 
  wtout=t.test(ssam[i,],bsam[i,],alternative=alt,mu=mew) 
  wtpvalue[i]=wtout$p.value 
  ## Student's t 
  stout=t.test(ssam[i,],bsam[i,],alternative=alt,mu=mew,var.equal=TRUE) 
  stpvalue[i]=stout$p.value 
  ## quantile test   
  qsam=c(bsam[i,],ssam[i,]) 
  code=c(rep(0,qm),rep(1,qn)) 
  first=length(code)-qc+1 
  last=length(code) 
  qdata=data.frame(code,qsam) 
  qdata=sort.data.frame(~qsam,qdata) 
  qs=sum(qdata$code[first:last]) 
    qmew=(qn*qc)/(qm+qn)  
  qsigma=sqrt(qn*(qc/(qm+qn))*(1-(qc/(qm+qn)))*(qm/(qm+qn-1))) 
  qpvalue[i]=1-pnorm((qs-0.5-qmew)/qsigma) 
  ## combined quantile and WRS 
  if(alt=="g") 
    { 
    cpvalue[i]=1 
    if(wpvalue[i]<alpha)cpvalue[i]=0 
    if(qpvalue[i]<alpha)cpvalue[i]=0 
    } 
  else 
    { 
    cpvalue[i]=0 
    if(wpvalue[i]>alpha)cpvalue[i]=1 
    if(qpvalue[i]<alpha)cpvalue[i]=1 
    } 
  ## Welch's log t  
  
if(alt=="l"){lout=t.test(log(ssam[i,]),log(bsam[i,])+log((bmean+mew)/bmean), 
    alternative=alt,mu=0,var.equal=FALSE)} 
  else{lout=t.test(log(ssam[i,]),log(bsam[i,]),alternative=alt, 
    mu=0,var.equal=FALSE)} 
  lpvalue[i]=lout$p.value 
  ## sample mean test 
  ms=mean(ssam[i,]) 
  mpvalue[i]=1 
  if((ms-mean(bsam[i,]))>al){mpvalue[i]=0}   
   
} ## next i  
  
## rejection probability (equals action probability for test form 1) 
probcleanw[m]=length(wpvalue[wpvalue<(alpha)])/length(wpvalue)  #WRS 
probcleanst[m]=length(stpvalue[stpvalue<(alpha)])/length(stpvalue)#Students t 
probcleanwt[m]=length(wtpvalue[wtpvalue<(alpha)])/length(wtpvalue)#Welchs t 
probcleanc[m]=length(cpvalue[cpvalue<(alpha)])/length(cpvalue) #combo: WRS & 
quantile 
probcleanq[m]=length(qpvalue[qpvalue<(alpha)])/length(qpvalue) #quantile test 
probcleanl[m]=length(lpvalue[lpvalue<(alpha)])/length(lpvalue) #log Welch's t 
probcleanm[m]=length(mpvalue[mpvalue<(alpha)])/length(mpvalue) #mean  
 
}# next m diff step 
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md=max(diff) 
 
## 1-rejection probability needed for test form 2 
if(alt=="l") 
  { 
  probcleanst=1-probcleanst 
  probcleanwt=1-probcleanwt 
  probcleanw=1-probcleanw 
  probcleanc=1-probcleanc 
  probcleanl=1-probcleanl 
  } 
## plot empty performance diagram with title 
plot(diff,probcleanw,xlim=range(0,diff[m]),type="n",lwd=1, 
    ylim=c(0,1.1),cex=.4,xlab="",ylab="") 
title(main=paste((frac*100),"% contaminated","   Test 
Form",TestForm),cex.main=1, 
     xlab="True Difference", 
     ylab="Probability of Action") 
## plot gray region tick marks 
if(lft!=rgt) 
{ 
cp=c("black","gray") 
if(alt=="l"){cp=c("gray","black")} 
lines(c(lft-.0625*md,lft,lft),c(bot,bot,bot+.1),col=cp[1],lwd=2) 
lines(c(rgt,rgt,rgt+.0625*md),c(top-.1,top,top),col=cp[2],lwd=2) 
} 
## performance curves 
if(plotWRS==TRUE)lines(diff,probcleanw,col="black",lwd=1) 
if(plotWelchst==TRUE)lines(diff,probcleanwt,col="blue",lty=2) 
if(plotStudentst==TRUE)lines(diff,probcleanst,col="green",lty=3,lwd=2) 
if(plotQuantile==TRUE)lines(diff,probcleanq,lwd=2,col="orange",lty=4) 
if(plotWRSplusQuantile==TRUE)lines(diff,probcleanc,col="brown",lty=3,lwd=3) 
if(plotWelchslogt==TRUE)lines(diff,probcleanl,lwd=2,col="purple",lty=4) 
if(plotSampleMean==TRUE)lines(diff,probcleanm,col="red",lty=3,lwd=3) 
 
## plot legend 
plot(0:1,0:1,type="n",xaxt="n",yaxt="n",xlab="",ylab="",axes=FALSE) 
legend(0,1.05, 
  legend=c("WRS","Student's t","Welch's t","Quantile Test", 
    "WRS+Quantile","Welch's log t","Sample Mean"), 
  lwd=c(1,2,1,2,3,2,3), 
  col=c("black","green","blue","orange","brown","purple","red"), 
  bty="n",cex=1.1,lty=c(1,3,2,4,3,4,3))  
 
text(.5,.42,paste(bsamsize,"Background Samples"))   
text(.5,.34,paste(ssamsize,"Site Samples"))    
text(.5,.26,paste("Background mean =",bmean))  
 
## reset graphics parameters and layout 
par(mgp=c(3,1,0)) 
layout(c(1,1))  
 
## prepare data for output 
filename=paste("Perf data",bsamsize,ssamsize,frac*100,"--
",format(Sys.time(),"%b %d %H%M"),.”csv") 
pw=round(probcleanw,3) 
pwt=round(probcleanwt,3) 
pst=round(probcleanst,3) 
pq=round(probcleanq,3) 
pc=round(probcleanc,3) 
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pl=round(probcleanl,3) 
pm=round(probcleanm,3) 
out=data.frame(diff,pw,pwt,pst,pq,pc,pl,pm) 
names(out)=c("Diff","WRS","Welch","Student","quantile","WRS.quantile","Welch.
log","sample.mean") 
print(filename) 
print(out) 
a=read.delim("parameters.r",sep="|",header=TRUE) 
a=data.frame(a[,1]) 
names(a)="Input.Parameters" 
## Write output file 
 
write.csv(out,filename,append=TRUE,row.names=FALSE) 
write.csv(a,filename,append=TRUE,row.names=FALSE) 
########### End Script ########################## 
 
                                   
APPENDIX 4 – Script file: sort.data.frame.r. 
 
This script was written by Kevin Wright and kindly made available on the internet 
(http://tolstoy.newcastle.edu.au/R/help/04/09/4300.html).  Mr. Wright’s script has been 
evaluated by the author, who is solely responsible for its validity in this application.    
 
This script looks different than the scripts in the two previous appendices because R recognizes 
two alternative symbols as the assignment operator: “=” and “<-.”  The command a = b + c has 
the identical meaning as a <- b + c, namely, to replace the value of the variable (a) to the left of 
the assignment operator symbol with the result obtained by evaluating the expression (b+c) to 
the right of the symbol.  The choice of symbol is just a matter of personal preference.  
 
 
########### Begin Script ############################## 
sort.data.frame <- function(form,dat){  
  # Author: Kevin Wright  
  # Some ideas from Andy Liaw  
  # http://tolstoy.newcastle.edu.au/R/help/04/07/1076.html  
 
 
  # Use + for ascending, - for decending.  
  # Sorting is left to right in the formula  
    
  # Useage is either of the following:  
  # sort.data.frame(~Block-Variety,Oats)  
  # sort.data.frame(Oats,~-Variety+Block)  
    
  # If dat is the formula, then switch form and dat  
  if(inherits(dat,"formula")){  
    f=dat  
    dat=form  
    form=f  
  }  
  if(form[[1]] != "~")  
    stop("Formula must be one-sided.")  
 
 
  # Make the formula into character and remove spaces  
  formc <- as.character(form[2])  
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  formc <- gsub(" ","",formc)  

http://tolstoy.newcastle.edu.au/R/help/04/09/4300.html


   
  # If the first character is not + or -, add +  
  if(!is.element(substring(formc,1,1),c("+","-")))  
    formc <- paste("+",formc,sep="")  
  # Extract the variables from the formula  
  vars <- unlist(strsplit(formc, "[\\+\\-]"))  
  vars <- vars[vars!=""] # Remove spurious "" terms  
 
 
  # Build a list of arguments to pass to "order" function  
  calllist <- list()  
  pos=1 # Position of + or -  
  for(i in 1:length(vars)){  
    varsign <- substring(formc,pos,pos)  
    pos <- pos+1+nchar(vars[i])  
    if(is.factor(dat[,vars[i]])){  
      if(varsign=="-")  
        calllist[[i]] <- -rank(dat[,vars[i]])  
      else  
        calllist[[i]] <- rank(dat[,vars[i]])  
    }  
    else {  
      if(varsign=="-")  
        calllist[[i]] <- -dat[,vars[i]]  
      else  
        calllist[[i]] <- dat[,vars[i]]  
    }  
  }  
  dat[do.call("order",calllist),]  
 
 
}  
 
 
 
d = data.frame(b=factor(c("Hi","Med","Hi","Low"),levels=c("Low","Med","Hi"),  
               ordered=TRUE),  
               x=c("A","D","A","C"),y=c(8,3,9,9),z=c(1,1,1,2))  
sort.data.frame(~-z-b,d)  
sort.data.frame(~x+y+z,d)  
sort.data.frame(~-x+y+z,d)  
sort.data.frame(d,~x-y+z)  
########### End Script ########################## 
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