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Executive Summary 

 
Introduction 
 
In the field of bioassessment, tolerance has traditionally referred to the degree to which 
organisms can withstand environmental degradation.  This concept has been around for 
many years and its use is widespread.  In numerous cases, tolerance values (TVs) have 
been assigned to individual taxa or groups of taxa to represent their tolerance to 
pollution.  The TVs are then often combined into metrics which describe characteristics 
of aquatic communities.  Perhaps the most familiar example is the Hilsenhoff Biotic 
Index (HBI) (Hilsenhoff, 1977), an index that has been incorporated into many 
bioassessment programs.  The HBI is typically very useful in distinguishing among sites 
of higher and lower water quality.  To calculate the HBI, each environmental agency or 
organization typically uses its own set of tolerance values.  However, the origins of 
these values, and rationales for their selection, are often obscure and unverifiable.  
Available methods for deriving TVs more objectively vary substantially in approach and 
complexity.  Therefore, this study conducted systematic comparisons of existing lists of 
macroinvertebrate TVs and their resulting HBI scores.  It also compared several 
objective TV derivation approaches, as well as bioassessment metrics derived from 
each, to determine their repeatability and sensitivity to disturbance.  All analyses were 
run at the family and genus levels. 
 
Comparison of Tolerance Values 
 
Existing lists of macroinvertebrate TVs from Delaware, Kentucky, Maryland, 
Massachusetts, and a U.S. Environmental Protection Agency lab were assembled into a 
single database for the purpose of direct comparisons.  At the family level, there were 
not systematic differences in TVs, and correlations were high among lists.  However, at 
the genus level, the Kentucky list differed significantly from all other lists, although 
correlations among lists were only slightly lower overall.  In both cases, considerable 
variation was observed in bivariate plots of TVs from all possible pairs of lists.  This 
variation was somewhat muted when TVs were incorporated into HBI scores, 
particularly at the genus level, but systematic differences among lists were more 
obvious for family level HBI scores.  In both cases, the lowest correlations for HBI 
scores occurred between the EPA list and other TV lists.  As much as HBI scores and 
TVs varied among lists, the processes used to develop TVs by individual organizations 
also seem to vary and often depend on professional judgment.  Although such 
processes may provide effective tools for bioassessment, they are not repeatable, and 
confidence in the TVs assigned to individual taxa is therefore limited.   
 
Comparison of Methods to Derive Tolerance Values 
 
Several more objective approaches to developing TVs have been proposed, and this 
study compared and evaluated several for repeatability.  To compare objective TV 
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development approaches, data from a single stream study in the mid-Atlantic highlands 
were divided randomly into calibration and validation sets, and each approach was 
carried out on both data sets.  All but one approach consisted of first defining a 
disturbance gradient and then using one of two procedures to calculate the TV.  One 
approach used EPT richness to describe the disturbance level, another used a principal 
components analysis (PCA), and a third used PCA with generalized additive modeling 
(GAM) to more precisely model the relationship between the probability of taxon 
presence and disturbance.  A fourth approach relied on the observed frequency of a 
taxon compared to its expected frequency using predictive modeling.  For the EPT, 
PCA, and GAM approaches, two procedures each for calculating TVs were examined, 
one based on a single value from the gradient defined and the other a weighted 
average.  The mechanics of carrying out each approach are covered in detail and 
examples are provided.  The TVs generated with each approach were compared 
between the calibration and validation data sets.  Three tolerance-based 
macroinvertebrate metrics based on these two sets of TVs were compared over the 
same set of sites.  In addition, the ability of these metrics to distinguish between 
reference and impaired sites was evaluated for each method.   
 
Results of analysis varied across the four broad approaches that were evaluated.  The 
EPT approach resulted in strong correlations between data sets, but there were also 
significant shifts in TVs from one data set to the other.  In addition, the EPT approach 
was the least defensible approach because of its circular nature.  The PCA approach 
tended to differ less between data sets, but correlations were not as strong.  The 
predictive modeling approach as applied in this study exhibited high correlations 
between data sets and allowed calculation of TVs for the largest number of taxa.  
However, this approach only produced TVs for taxa that would be expected to be found 
at reference sites.  The GAM approach provided TVs for a much more limited number of 
taxa and required more observations than any of the other methods.  In this way, the 
GAM approach “selected” those taxa that showed a relatively strong relationship with 
the stressor gradient and excluded those without a strong association of some kind.  In 
general, weighted procedures for calculating TVs from the defined disturbance gradient 
resulted in higher repeatability than procedures that identified a specific value from a 
distribution.     
 
Although absolute metric values varied widely across approaches, general patterns 
tended to be similar among most methods.  The distinction between reference and 
impaired sites typically improved from family- to genus-level data.  Among the metrics 
evaluated, intolerant taxa richness was most useful overall because it consistently 
distinguished most strongly between reference and impaired and was repeatable across 
most approaches.  HBI scores also discriminated well between reference and impaired 
sites but was slightly more variable than intolerant taxa richness.  Percent intolerant 
individuals exhibited the most variability in values when calculated for the same set of 
sites using TVs based on calibration and validation data sets.   
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Recommendations  
 
All of the approaches evaluated exhibited some degree of repeatability but varied with 
respect to the type of data and the degree of statistical experience or training required.  
Ultimately, these characteristics are most important in choosing an approach.  When 
abiotic data are available that adequately characterize the gradient of disturbance in the 
region of interest, employing an approach that incorporates these data is more 
desirable.  The PCA and GAM approaches both utilize extensive abiotic data to 
characterize sites having corresponding macroinvertebrate data.  In addition, the GAM 
approach benefits from additional site information (e.g., watershed area, elevation, etc.) 
to account for natural variability.  These approaches more directly relate taxonomic 
occurrence or abundance with the level of disturbance, and this may make the resulting 
TVs more defensible.  For both the PCA and GAM approaches, the procedures for 
calculating TVs that used all available count data (i.e., weighted and weighted average, 
respectively), rather than just an optimum or percentile, produced more consistent 
results.  Of the statistical techniques employed by these two approaches, PCA is 
simpler to perform and is available widely in statistical software packages, but GAMs 
may more precisely describe the relationship between individual taxa and environmental 
gradients.  However, neither approach will be as valuable if the abiotic data lack 
variables that are important in describing the disturbance gradient.  
 
If biotic and certain abiotic data are available on a set of samples identified as 
representing reference condition, the predictive modeling approach may be most useful.  
This is particularly true if the variables included in the abiotic data can be used to 
characterize natural classes of samples.  Predictive modeling is particularly attractive in 
situations where limited or no data are available to describe the disturbance gradient 
itself, as the gradient is dealt with indirectly in this approach.  However, this approach 
involves several steps that require the use of potentially complex multivariate statistical 
techniques.  The techniques required can be found in many statistical software 
packages, but a lot of movement of data among different programs may be necessary 
to complete the development of TVs.  In addition, some specialized statistical training or 
experience may be required to carry out the necessary techniques and interpret the 
results. 
 
The EPT approach is the least desirable in terms of defensibility because it results in a 
somewhat circular process.  If no other approach is feasible, using EPT as the 
disturbance gradient could be considered a last resort.  Still, there must be confidence 
in how well EPT values represent the full range of conditions occurring in the region.  In 
addition, there must be a rationale for defining the disturbance gradient using EPT for 
the specific region of interest.  Although this approach appears to be the simplest and 
most straightforward one, it has many drawbacks and limitations in practice. 
 
No approach described in this report can be selected and carried out blindly.  All require 
careful evaluation of the data available and the statistical techniques involved.  The data 
set to be used in developing TVs is often the most limiting factor in terms of the choice 
of approach.  Typically, data has already been collected, and the variables in that data 
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set may or may not include those that are necessary to carry out a particular approach.  
The statistical techniques necessary for a particular methodology can also limit the 
choices available.  Not only must the user have access to and familiarity with the 
appropriate software package to run analyses, but he/she must also be able to 
understand and interpret the results obtained.  If suitable attention is given to these 
issues, an approach to developing TVs can be identified that is defensible and 
appropriate
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1 Introduction 

The concept of tolerance is a cornerstone of the field of bioassessment.  Within  
this field, tolerance has traditionally meant the degree to which organisms can withstand 
environmental degradation. On a gradient of environmental impairment, very tolerant 
organisms are most common at the degraded end, whereas very intolerant organisms 
are expected to be most common at the pristine, natural end of the gradient.  The 
terminology can be semantically confusing because tolerance means similar, yet 
different things in bioassessment and ecology.  In ecology, a tolerant organism can 
withstand a wide range of environmental conditions.  Tolerance refers to the breadth of 
the occurrence of an organism along an environmental gradient (Putman and Wratten 
1984).  Within bioassessment, it is the position on this scale at which the organism is 
most likely to occur that defines its tolerance (Johnson et al. 1993).  Since the word 
optimum more accurately reflects the meaning of this idea and there is no potentially 
confusing homonym in ecology, the term is being furthered as a replacement for 
tolerance in bioassessment.  However, for the purposes of this paper, we will assume 
that a taxon’s tolerance value (TV) represents its optimal position on a gradient of 
disturbance rather than the breadth of its occurrence.   
 
The use of such information on the tolerances of individual taxa to determine water 
quality is not a recent concept.  The Saprobien System of the early 1900’s is the first 
documentation of an empirical approach that evaluated the condition of a water body by 
the resident assemblages, incorporating assemblages from algae to fish (Kolkwitz & 
Marsson 1909).  Since then, the concept has evolved and diversified to eventually 
become the basis of many indispensable tools of modern bioassessment.  In 1972, 
Chutter developed an index in South Africa that assigned values to species on a scale 
of 0-10.  A zero was given to those species in the cleanest streams, while a 10 was 
given to species found in the most polluted streams. The value assigned to a species 
was then multiplied by the number of individuals in that taxon found in a stream.  The 
product was summed across all taxa, and the sum was then divided by the total number 
of individuals in the stream.  Hilsenhoff adopted Chutter’s approach to create the 
Hilsenhoff Biotic Index (HBI)  for North American streams but subjectively assigned 
index values on a scale of 0-5 based on “previous experience and knowledge“ and then 
adjusted the values when the HBI score didn’t correlate well with physical and chemical 
parameters (Hilsenhoff 1977).  Later, Hilsenhoff (1982) used data collected from over 
1000 Wisconsin streams to add new tolerance values for additional species and to 
refine the tolerance values developed in Hilsenhoff (1977) to a 0-10 scale.  
Furthermore, Hilsenhoff coined the common term “tolerance value” to quantitatively 
represent a taxon’s tolerance.  In the last 25 years, the HBI and other similar indices 
have become a staple of stream biotic evaluation (Flotemersch et al. 2001).  The HBI 
has been incorporated into the U.S. Environmental Protection Agency’s Rapid 
Bioassessment Protocols, and has become ubiquitous in national, state and regional 
monitoring programs and multi-metric indices used to assess the integrity of streams 
and lakes (Barbour et al. 1999, Lewis et al 2001, Blocksom et al. 2002). 
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Due to the widespread use of the HBI in bioassessment, it is important to examine the 
components that define the Index.  With some minor variations, the HBI is generally 
calculated by summing the product of the proportion of individuals of each taxon in a 
sample by its assigned pollution tolerance value.  Although some contend that the HBI 
is defined by the tolerance values originally developed by Hilsenhoff, similar indices 
derived using region-specific TVs are also commonly referred to as the HBI.  For the 
purposes of this report, we use the term HBI to represent a modified HBI in which the 
general formula of the original HBI is applied to any set of TVs.  The accuracy of this 
index relies on the tolerance values assigned to each taxon.  Although many methods 
exist for independently deriving tolerance values (e.g., best professional judgment or 
literature research of life histories) many regulatory agencies adopt or modify values 
from a few sources of published tolerance values such as Hilsenhoff (1977, 1982, 1987, 
1988a), Green (1990), Lenat (1993) and Bode (1996), or they rely on those values that 
are in use by another agency.  Such practices for developing lists of tolerance values 
are widely used and accepted, although many concerns exist.   
 
The tolerance value of any particular taxon may vary depending on the list consulted 
and may even incorporate completely different scales to score pollution tolerance.  
Tolerance values have been shown to return HBI scores that correlate well with other 
measures of stream quality (Klemm et al. 2002), but the element of subjectivity is a 
weakness that subjects the HBI to scrutiny and liability.  Also, many values are used for 
purposes other than their original published purpose.  Hilsenhoff’s values (1977, 1982, 
1987), which were created for identifying organic pollution in Wisconsin, are used widely 
throughout the country to identify general disturbance regardless of source.  Even when 
regional refinements are made, the tolerance values may range widely within a region, 
or may differ greatly depending on the list from which the value was originally derived.  
For example, recent respective lists of genus-level TVs used in the states of Delaware, 
Maryland, Vermont, Massachusetts, and in EPA’s Environmental Monitoring and 
Assessment Program (EMAP) Mid-Atlantic Highlands Assessment (MAHA) differ by as 
many as 8 points for the same taxon (Table 1).  Of these lists of TVs, about 40% of 
genera and families have values that differ by at least two points across lists.   
 
Table 1.  Genus-level tolerance values from several lists for taxa with a difference across 
lists of 2 points or greater.  Only genera occurring in all 5 lists are included. 

Genus Delaware Maryland Vermont Massachusetts
EMAP-
MAHA 

Ablabesmyia 7 8 8 8 5.3 
Acroneuria 0 0 0 0 2.7 
Agapetus 0 2 0 0 3.0 
Ameletus 0 0 0 0 3.7 
Antocha 3 5 3 3 3.7 
Argia 6 8 6 6 5.0 
Atherix 2 2 2 4 3.7 
Baetis 6 6 6 6 2.7 
Brachycentrus 1 1 1 1 4.5 
Brillia 5 5 5 5 3.0 
Caenis 7 7 7 6 3.8 
Callibaetis 9 9 9 9 4.0 
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Chrysops 7 7 6 5 6.0 
Cladotanytarsus 7 7 6 5 5.5 
Clinotanypus 8 8 8 8 5.0 
Corynoneura 7 7 4 4 6.7 
Crangonyx 4 4 8 6 6.0 
Cryptochironomus 8 8 8 8 6.0 
Cryptotendipes 6 8 6 6 5.2 
Culicoides 10 10 10 10 7.0 
Dicrotendipes 8 10 8 8 6.7 
Diplocladius 7 7 8 8 3.7 
Dixa 1 4 1 1 6.0 
Dolophilodes 0 0 0 0 3.3 
Endochironomus 10 10 10 10 6.0 
Ephemerella 1 2 4 1 2.7 
Eukiefferiella 8 8 6 6 5.0 
Eurylophella 4 4 2 2 3.3 
Glossosoma 0 0 0 0 3.3 
Glyptotendipes 10 10 10 10 6.7 
Hexatoma 2 4 2 2 5.3 
Hydrobaenus 8 8 8 8 4.7 
Hydropsyche 4 6 5 4 4.3 
Kiefferulus 10 10 10 10 5.3 
Lepidostoma 1 3 1 1 3.0 
Leucrocuta 1 1 1 1 3.0 
Leuctra 0 0 0 0 2.3 
Micropsectra 7 7 6 7 5.0 
Molanna 6 6 6 6 3.0 
Nanocladius 3 3 3 7 3.5 
Natarsia 8 8 8 8 5.3 
Nigronia 2 0 0 0 3.3 
Oecetis 8 8 4 5 4.3 
Orthocladius 6 6 7 6 5.0 
Parachaetocladius 2 2 2 2 4.3 
Paratendipes 8 8 8 6 4.7 
Phaenopsectra 7 7 7 7 4.5 
Pisidium 8 8 8 6 8.0 
Potthastia 2 2 2 2 4.0 
Procladius 9 9 9 9 6.3 
Prosimulium 2 7 2 2 5.3 
Psectrocladius 8 8 8 8 5.7 
Rheotanytarsus 6 6 6 6 4.0 
Rhyacophila 1 1 1 1 3.7 
Sialis 4 4 6 4 7.0 
Simulium 6 7 5 5 5.6 
Somatochlora 1 1 1 9 4.3 
Sphaerium 8 8 8 6 8.0 
Stempellinella 4 4 4 2 4.7 
Stenacron 4 4 7 7 4.0 
Sympotthastia 2 2 3 2 4.7 
Tanypus 10 10 10 10 5.0 
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Tipula 4 4 6 6 5.7 
Tribelos 5 5 5 7 4.3 
Zavrelimyia 8 8 8 8 5.0 

 
  
There is also evidence showing that seasonality affects HBI scores and that seasonal 
adjustments are made in some cases (Hilsenhoff 1987, Lenat 1993).  This occurs, in 
part, from seasonal shifts in community structure due to phenological events in taxa life 
histories.  HBI scores that change with season may also reflect changes in 
environmental stress stemming from seasonal factors such as stream flow and water 
temperature.  For example, the spring season generally affords macroinvertebrates with 
cooler and more oxygenated water conditions and greater dilution of pollutants.  By 
contrast, the summer low-flow period often concentrates pollutants while higher stream 
temperatures tend to cause oxygen stress and harsher overall conditions for 
macroinvertebrates.  Both Lenat (1993) and Hilsenhoff (1988b) found that indices based 
on tolerance values may be higher during summer months, and both used index-level 
correction factors to adjust for this difference among seasons.  Furthermore, the notion 
that a taxon’s sensitivity to stress may vary with these seasonal environmental factors 
could also confound our perception of a taxon’s tolerance.  Agency monitoring programs 
that sample communities throughout the year should evaluate whether biotic index 
scores vary significantly by season.  In this report, we do not explicitly examine 
differences in TVs due to seasonal effects, although this may be an important factor in 
our comparisons among lists of TVs. 
 
The purpose of this report is twofold.  The first objective is to compare and characterize 
differences among various lists of TVs for macroinvertebrates currently in use.  Our 
comparison is limited to those TVs intended to represent tolerance to a general 
disturbance gradient.  As an extension of this analysis, we will compare the potential 
effects of the differences among lists when used in a biotic index, such as the HBI, for 
bioassessment.  The second objective of this report is to describe and evaluate several 
methods that have been developed for empirically deriving TVs.  The pros and cons of 
each method will be presented, with guidance on selecting an appropriate method for 
developing tolerance values for a particular region or state. 
 

2 Comparison of tolerance values and HBI scores 

2.1 Methods 
 
For the purposes of making a useful comparison across several lists of tolerance 
values, we selected a subset of five available lists.  Four of the lists are used at the 
state level in Delaware (DE), Kentucky (KY), Maryland (MD), and Massachusetts (MA).  
The fifth list is one maintained by a USEPA lab (EPA) that has processed large 
numbers of macroinvertebrate samples, primarily from the eastern United States.  The 
TVs in the EPA list were based largely on available literature and best professional 
judgment.  The various lists were compiled into a single list including all taxa found in 
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any of the five lists.  Tolerance values were examined separately for family and genus 
taxonomic levels, and only TVs already at the family or genus level were used in 
analyses.  No calculation or estimation of TVs was made based on those available at 
higher levels of taxonomic resolution (e.g., species level).  Across the five TV lists, there 
were a total of 119 family-level values and 467 genus-level values.   
 
To compare lists at each taxonomic level (family and genus), we performed an 
unbalanced repeated measures ANOVA with Tukey pairwise comparisons of least 
squares means, using TV list source (i.e., DE, KY, MD, MA, EPA) as the factor.  Each 
pairwise comparison was based on all of the taxa occurring in both lists of the pair, 
resulting in a different number of observations for each pairwise comparison.  To ensure 
approximate normality and equal variance in the data, we examined plots of residuals, 
including histograms, normal probability plots, and scatter plots.  Lacking a consistent 
directional difference, we would not expect a significant difference between TV lists.  To 
examine the variability in the relationship between TV lists, we ran Pearson correlations 
and created scatter plots of values from all possible pairs of lists.  
 
After the comparison of tolerance values, we calculated HBI scores for two sets of 
samples in the West Virginia Department of Environmental Protection (WVDEP) 
wadeable stream macroinvertebrate assemblage database.  In the past, WVDEP 
identified macroinvertebrates only to family level or above.  However, more recent 
samples have been identified to the genus level.  We used one set of samples to reflect 
family-level data and another data set to reflect genus-level data.  For family level data, 
we used all benthic samples collected between April and October during 1997-1999.  
For genus level data, we used samples collected during the same months of 2002-
2003.  In each case, we used only taxa that occurred in all five lists to calculate HBI 
scores.  Although this means the HBI scores calculated do not reflect true sample or 
site condition, we are comparing a consistent sample across the five TV lists and getting 
a more accurate representation of the differences among lists.  For family level 
analyses, there were 51 of a total of 117 taxa matching across the five lists over 498 
samples.  In genus level analyses, in which family level observations were included, 
there were 127 of a total of 251 taxa matching across lists and 134 samples.  We 
excluded observations for which taxonomic resolution was less than family from HBI 
calculations.  We then ran a repeated measures ANOVA with Tukey pairwise 
comparisons of least squares means, again with list source as the factor.  We examined 
residuals for large deviations from assumptions of normality and homogeneous 
variance.  Finally, variability between HBI scores among list sources was examined 
using Pearson correlations and scatter plots of HBI scores from all possible pairs of 
lists. 
 

2.2 Results 
 
Although the overall test for differences among TV lists was marginally significant 
(F=2.27, df=4,342, p=0.0617), there were no consistent differences among TV lists at 
the family level (Table 2).  At the genus level, there were highly significant differences 
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among TV lists (F=6.92, df=4, 1145, p<0.0001), but only the Kentucky list differed 
significantly from the other lists (Table 3).  At the family level, all pairs of lists were 
highly significantly correlated at 0.70 or above, but the lists for DE, MD, and MA were 
correlated at about 0.90 and above (Table 2).  At the genus level, correlations were 
again all highly significant, but correlations were above 0.70 only among the DE, MD, 
and MA lists (Table 3).  When tolerance values in different lists were plotted against one 
another, much more variability was evident (Figures 1 and 2).  At the genus level, the 
variation in TVs from one list to another is even more evident.  At both the genus and 
family levels, the EPA TVs have a tendency toward more central values that any other 
set of TVs, resulting in higher EPA values at the low end of other lists and lower values 
at the high end of other lists (Figures 1 and 2).  The striations evident in some of the 
plots of genus level TVs are created by the pairing of the KY or EPA TVs, which have 
values based on 0.1 increments, with TVs in one of the three other lists, which are 
limited to integer values. 
 
Table 2.  Family level results for multiple comparisons of least squares means of five 
different tolerance value lists.  Tests are based on 342 degrees of freedom.   
Difference Difference 

Estimate 
Standard 

Error 
t-statistic Adjusted 

p-value 
Pearson r (N) 

DE-KY -0.881 0.404 -2.18 0.189 0.776 (62) 
DE-MD -0.232 0.414 -0.56 0.980 0.900 (61) 
DE-MA 0.018 0.424 0.04 1.000 0.942 (57) 
DE-EPA -0.652 0.413 -1.58 0.512 0.767 (62) 
KY-MD 0.648 0.357 1.82 0.366 0.737 (94) 
KY-MA 0.898 0.369 2.44 0.108 0.837 (85) 
KY-EPA 0.228 0.356 0.64 0.968 0.745 (95) 
MD-MA -0.250 0.380 -0.66 0.965 0.903 (82) 
MD-EPA -0.420 0.368 -1.14 0.784 0.721 (85) 
MA-EPA -0.670 0.379 -1.77 0.394 0.801 (74) 
 
Table 3.  Genus level results for multiple comparisons of least squares means of five 
different tolerance value lists.  Tests are based on 1145 degrees of freedom.  
Difference Difference 

Estimate 
Standard 

Error 
t-statistic Adjusted 

p-value 
Pearson 

correlation, r 
DE-KY -0.680 0.203 -3.35 0.008 0.603 (199) 
DE-MD -0.033 0.225 -0.14 1.000 0.940 (175) 
DE-MA 0.198 0.214 0.93 0.887 0.875 (192) 
DE-EPA -0.001 0.199 0.00 1.000 0.620 (221) 
KY-MD 0.648 0.199 3.25 0.010 0.623 (213) 
KY-MA 0.879 0.187 4.70 <0.001 0.710 (253) 
KY-EPA 0.679 0.170 4.01 <0.001 0.695 (378) 
MD-MA -0.231 0.211 -1.10 0.808 0.873 (195) 
MD-EPA 0.032 0.195 0.16 1.000 0.639 (224) 
MA-EPA -0.199 0.183 -1.09 0.811 0.680 (289) 
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Figure 1 .  Comparison of family level tolerance values from five different sources.  
Random jitter was used in plots so that overlapping points could be seen.  The diagonal 
line represents a one-to-one relationship between TV lists.   
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Figure 2.  Comparison of genus level tolerance values from five different sources.  
Random jitter was used in plots so that overlapping points could be seen. The diagonal 
line represents a one-to-one relationship between TV lists.   
 
HBI scores showed strong differences among most family-level TV lists when applied 
over a consistent set of taxa to a set of samples (F=69.15, df=4,1988, p<0.0001, Table 
4).  In addition, the relationships of HBI scores based on EPA TVs with those based on 
other lists were the most variable (Figure 3), and correlations among HBI scores based 
on the EPA TV list had the lowest correlations with those based on other lists (Table 4).  
Based on genus and family level TVs combined, HBI scores did not differ significantly 
among lists (F=1.71, df=4,532, p=0.1469), and none of the pairwise differences were 
significant (Table 5).  However, HBI scores based on the EPA TV list again varied 
widely in their relationship to HBI scores based on other lists (Figure 4).  Likewise, 
correlations with other HBI scores were always lowest for those based on the EPA TV 
list (Table 4).   
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Table 4.  Family level results for multiple comparisons of least squares means of HBI 
scores based on taxa occurring in all five TV lists. 
Difference Difference 

Estimate 
Standard 

Error 
t-statistics Adjusted 

p-value 
Pearson r 
(N=498) 

DE-KY -0.431 0.048 -8.93 <0.001 0.728 
DE-MD -0.479 0.048 -9.94 <0.001 0.898 
DE-MA -0.060 0.048 -1.24 0.730 0.848 
DE-EPA -0.657 0.048 -13.63 <0.001 0.489 
KY-MD -0.048 0.048 -1.00 0.853 0.756 
KY-MA 0.371 0.048 7.70 <0.001 0.863 
KY-EPA -0.227 0.048 -4.70 <0.001 0.492 
MD-MA -0.420 0.048 -8.70 <0.001 0.830 
MD-EPA -0.178 0.048 -3.70 0.002 0.565 
MA-EPA -0.598 0.048 -12.40 <0.001 0.608 
 
Table 5.  Genus level results for multiple comparisons of least squares means of HBI 
scores based on taxa occurring in all five TV lists. 
Difference Difference 

Estimate 
Standard 

Error 
t-statistics Adjusted 

p-value 
Pearson r 
(N=134) 

DE-KY -0.172 0.151 -1.14 0.785 0.895 
DE-MD -0.256 0.151 -1.70 0.437 0.987 
DE-MA 0.002 0.151 0.01 1.000 0.992 
DE-EPA -0.294 0.151 -1.95 0.295 0.709 
KY-MD -0.084 0.151 -0.56 0.981 0.884 
KY-MA 0.174 0.151 1.15 0.777 0.913 
KY-EPA -0.122 0.151 -0.80 0.929 0.788 
MD-MA -0.258 0.151 -1.71 0.429 0.977 
MD-EPA -0.038 0.151 -0.25 0.999 0.720 
MA-EPA -0.296 0.151 -1.96 0.288 0.726 
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Figure 3 .  Comparison of family level HBI scores based on five different TV lists.  
Random jitter was used in plots so that overlapping points could be seen. The diagonal 
line represents a one-to-one relationship between HBI scores. 
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Figure 4 .  Comparison of genus level HBI scores based on five different TV lists.  
Random jitter was used in plots so that overlapping points could be seen. The diagonal 
line represents a one-to-one relationship between HBI scores. 
 

2.3 Discussion  
 
These results show that tolerance values for a given taxon do vary among different TV 
lists, and the effect on HBI scores may or may not be important.  They show that, in 
spite of the smaller differences in TVs among lists at the family level, differences in HBI 
scores among lists were larger at the family level. This may be the result of fewer taxa 
at the family level, such that small differences in the TVs for common taxa may be 
extrapolated over a larger proportion of the sample and lead to larger differences in HBI 
scores.  At the genus level, individuals are distributed among many more taxa, and 
differences in TVs may not result in such large HBI differences.   The slight 
compression of family level TVs for the EPA list (1 to 9.8) relative to other lists (0 to 10) 
may have contributed slightly to the further compression of HBI scores (3.0 to 7.0) 
compared to those from other lists (1.8 to 9.0).  More likely, the EPA TVs for the more 
common and abundant taxa were compressed around the middle of the range of 
values, causing HBI scores to also be concentrated around the middle of the range.  A 
similar pattern of compression of EPA TVs and HBI scores occurred at the genus level 
as well.  Because the EPA TVs were derived mainly from literature and best 
professional judgment, there may have been a tendency to assign new tolerance values 
away from the extremes and more towards the middle of the TV range.   
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The fact that HBI scores may not be affected by differences in TVs is somewhat 
counterintuitive.  We realize that the list of TVs used to calculate the HBI may be highly 
variable among states or regions.  This may be due to differences in the component 
taxa that comprise that genus or family in different geographic areas or the season in 
which the data were collected (i.e., taxa TVs may be influenced by the time of year they 
are collected).  This variation among TV lists is also likely due at least in part to the 
original combination of sources used to compile TVs for a particular agency or 
organization.  However, we also recognize that the HBI is often highly discriminating 
between reference and impaired sets of sites.  It would seem that the differences at the 
individual taxon level are cancelled out when combined across all taxa at a site and 
across all sites in a data set.  Still, given the wide variability of TVs across lists, our 
confidence in the tolerance value assigned to a particular taxon is low, even though we 
have relatively high confidence in the HBI that incorporates that taxon TV.  Thus, the 
development and use of a repeatable, transparent method of deriving TVs is highly 
desirable because it increases the confidence in the TVs of individual taxa.  
 
Currently, there has been an effort associated with the National Wadeable Streams 
Assessment (WSA) to create a single list of TVs to apply to streams nationwide.  This 
approach uses an algorithm to calculate a value based on lists from around the U.S. 
and fills in gaps in data as needed (Michael T. Barbour, Tetra Tech, Inc., personal 
communication).  
 

3 Comparison of Methods to Derive Tolerance Values 

Several approaches have been developed to generate tolerance values for 
bioassessment.  In many cases, TVs have been developed using professional 
judgment.  However, in this section, four approaches which are largely objective are 
compared for repeatability.  The first two examined are really ways to define the 
disturbance gradient and include two different ways of calculating TVs based on those 
disturbance gradients.  The third method is an approach to calculating TVs but depends 
on a disturbance gradient that has already been defined.  Finally, the fourth method is 
an approach to generating TVs that does not rely on directly defining the disturbance 
gradient and includes two procedures for calculating TVs.  Thus, this report does not 
contend to explore all possible combinations of ways to define the disturbance gradient 
and calculate tolerance values but rather a subset that represents the predominant 
approaches being proposed currently.  The manner of defining the disturbance gradient 
and procedures to calculate TVs that are included in this report are provided in Table 6. 
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Table 6.  A summary of each approach evaluated in this report with respect to defining 
the disturbance gradient and calculating tolerance values.  

Disturbance gradient Approach 
Explicitly 
defined? 

How defined? 
Calculation of tolerance value for 

given taxon 

1) 75th percentile of EPT richness 
based on proportion at each EPT 
richness value 

Ephemeroptera, 
Plecoptera, 
Trichoptera (EPT) 

Yes EPT richness 
(representing 
underlying 
gradient) 2) Weighted average based on 

proportion at each EPT richness 
value 

1) 75th percentile of PC axis 
based on proportion at each axis 
value 

Principal  components 
analysis (PCA) 

Yes PCA axis 

2) Weighted average based on 
proportion at each axis value 

Predictive modeling No Conditions in non-
reference sites 
relative to 
reference sites 

Frequency observed across sites 
relative to expected frequency 

1) Maximum probability of 
occurrence along PC axis 

Generalized Additive 
Models (GAM) 

Yes PCA axis 

2) Weighted average of 
probability along PC axis 

 
  

3.1 Data Sets 
 
A single data set consisting of macroinvertebrate assemblage samples from the EMAP-
MAHA study of wadeable streams in the mid-Atlantic region of the U.S. was divided 
randomly into calibration and validation data sets of 256 observations each.  The data 
sets were each used to develop tolerance values for the same set of taxa, and 
correlations between the two sets of values were used to measure the repeatability of 
each method.  Although both riffle and pool macroinvertebrate samples were collected 
at most sites, only riffle samples were used for analysis.  In addition to biological data, 
physical habitat (using Rapid Bioassessment Protocols approach (Plafkin et al. 1989)) 
and water chemistry data were also collected at each site.  Each approach to 
developing TVs was carried out on family- and genus-level data.  The number of taxa 
for which TVs could be developed for a given method was dependent on criteria specific 
to that method, resulting in differing numbers of TVs for each method. 
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To evaluate the repeatability of a given method, the TVs generated from the calibration 
and validation data sets were compared using a paired t-test and the Pearson 
correlation.  In addition, tolerance-related metrics were calculated for each sample in 
the combined data set based on TVs generated from the two data sets and for all 
methods.  Thus, the influence of method on final metric values could be assessed as 
well.   
  

3.2 Methods 
 

3.2.1 EPT Approach 
 
First, a simple approach based on the richness of Ephemeroptera, Plecoptera, and 
Trichoptera (EPT) taxa was used to develop TVs.  In this approach, which is based on 
that of Lenat (1993), EPT richness is treated as a surrogate for the disturbance 
gradient.  First, the proportion of each sample represented by each taxon and the 
number of samples in which each taxon occurred were calculated.  Within each data set 
(calibration and validation), tolerance values were only estimated for those taxa with at 
least 25 observations.  For each site in the data set, the total richness of EPT taxa was 
calculated using all distinct taxa identified to the lowest possible taxonomic level in 
these orders.  For each value of EPT richness observed, the average proportion of 
individuals represented by a given taxon was calculated across all samples with that 
EPT richness.  The average proportion values were used as weights for the cumulative 
distribution of EPT richness.   
 
Lenat (1993) found that the 75th percentile produced the greatest separation of 
intolerant and tolerant species.  Thus, the 75th percentile values generated in the 
manner described above were identified and then rescaled to a 0-10 range, with 10 as 
most tolerant and 0 as least tolerant, using the formula: 
 

10
minmax

max ×
−
−

=
TVTV
TVTV

TV init
final        (Equation 1.1) 

 
where TVinit is the initial TV of a taxon, calculated in this approach as the 75th percentile 
of the EPT cumulative distribution, TVmin is the minimum TVinit value across all taxa, and 
TVmax is the maximum TVinit value across all taxa.  In other approaches, TVmin and TVmax 
are the minimum and maximum TVinit values across all taxa based on the particular 
disturbance gradient used.  An example is provided in Box 1. 
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Box 1.  Example of EPT approach with 75th percentile procedure for Perlidae. 

Collected at 115 sites with 24 different values for EPT richness 

EPT richness 
value 

Mean 
proportion  
individuals 

5 0.009 
6 0.019 
7 0.010 
9 0.046 

10 0.007 
11 0.015 
12 0.015 
13 0.017 
14 0.015 
15 0.017 
16 0.021 
17 0.021 
18 0.020 
19 0.024 
20 0.040 
21 0.015 
22 0.018 
23 0.019 
24 0.020 
26 0.031 
27 0.009 
28 0.010 
29 0.018 
32 0.035 

  

 
75th percentile = 24 EPT taxa = TVinit 
 
Across all taxa: 
Maximum EPT-based TVinit = TVmax = 27  
Minimum EPT-based TVinit = TVmin = 5 
 
For Perlidae: 
TVfinal = (27-24)/(27-5)*10 = 1.4 
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A second procedure for developing TVs based on weighted EPT richness was applied 
to the data.  The initial TV was calculated as: 
 

∑
∑ ×

=

i
i

i
ii

initial proportion

EPTproportion
TV

)(
   (Equation 1.2) 

  
where proportioni is the proportion of a given taxon in sample i and EPTi is the EPT 
richness at that same site.  Then, this initial TV was rescaled to a 10-point range using 
Equation 1.1.  The entire procedure described above was repeated for the validation 
data set.  An example of this procedure is provided in Box 2. 
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Box 2.  Example of EPT approach using weighted procedure for the family 
Perlidae. 
For Perlidae, the calculations were calculated as below (ordered by EPT richenss): 

[ ]
[ ] 67.17

62.2
30.46

035.0028.0...004.0014.0
)035.0*32()028.0*29(...)004.0*5()014.0*5(

==
++++

++++
=initTV  

Across all taxa:  TVmax = 20.84  TVmin = 5.38 

For Perlidae:  TVfinal = (20.84 – 17.67)/(20.84 – 5.38)*10 = 2.1 

 

3.2.2 Principal Components Analysis (PCA) Approach 
 
The second approach to developing TVs used a principal components analysis (PCA) 
on physical habitat and water chemistry data to represent the disturbance gradient.  
This approach was used in developing TVs for the Mississippi Department of 
Environmental Quality (MDEQ, 2003).  In an effort to include as many sites as possible 
in the analysis, only abiotic variables collected at most if not all sites were selected for 
the analysis.  This meant that only the Rapid Bioassessment Protocols (RBP) habitat 
variables were included to represent habitat condition, as many other quantitative 
habitat variables were only collected at a subset of sites.  The variables included in the 
PCA were conductivity, total phosphorus, total nitrogen, pH, RBP instream cover score, 
RBP embeddedness score, RBP bank condition score.  All four water chemistry 
variables were transformed with log10 to reduce skewness.  The PCA was run using a 
correlation matrix to account for the different units of the variables.  A separate PCA 
was run for the calibration and validation data sets.  All PC 1 scores were rounded to 
the nearest 0.1 for analyses.   
 
Next, tolerance values were calculated for calibration and validation data sets 
separately using parallel procedures.  As with the EPT approach, TVs were only 
developed for taxa with at least 25 observations in each data set, and for each taxon 
used, the proportion of each sample represented by that taxon was calculated.  The 
remainder of the procedure is similar to that for the EPT approach.  Tolerance values 
were calculated using both the 75th percentile and weighted procedures described 
above, replacing EPT richness with the rescaled PC 1 score.  Because higher PC 1 
scores were associated with poorer quality conditions for both the calibration and 
validation data sets, rescaling TVs to a 0-10 range did not require reversing the scale as 
with the EPT approach.  Rescaling was carried out using the equation: 
 

10
minmax

min ×
−
−

=
TVTV

TVTV
TV init

final  

 
where TVinit was the initial TV calculated from PC 1 axis scores, TVmax and TVmin were 
the maximum and minimum TVs, respectively, across taxa.  Again, the procedure 
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outlined above was rerun using the validation data set.  An example of both procedures 
of this approach for the family Perlidae is provided in Box 3. 
 
Box 3.  Example calculation of TVs using the 75th percentile and weighted 
procedures for the PCA approach for Perlidae. 

75th percentile procedure

139 samples with Perlidae 

PC 1 axis 
scores 

Mean 
proportion 

-4.1 0.010 
-3.4 0.004 
-3.2 0.022 
-3.0 0.008 
-2.7 0.002 
-2.5 0.042 
-2.4 0.010 
. . 
. . 
. . 
2.1 0.020 
2.4 0.024 
2.5 0.006 
2.9 0.008 
3.1 0.015 
3.4 0.004 
3.8 0.004  

75th percentile = 1.0 PC 1 score = TVinit 
Maximum PC 1 score = TVmax = 4.9 
Minimum PC 1 score = TVmin = -0.4 
 
TVfinal = (1.0 – (-0.4))/(4.9 – (-0.4))*10 = 2.64 

Weighted procedure 
 

Calculation for Perlidae, ordered by rounded PC 1 score: 
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75th percentile

1.0 PC 1 
score

( )[ ]
[ ] 0.22

0.0040.003...0.0040.010
0.004)*(3.80.003)*(3.4...0.004)*3.4(0.010*4.1

−=
++++

+++−+−
=initTV  

TVmax = 2.94  TVmin = -1.39 
 
TVfinal = (-0.22 - (-1.39))/(2.94 - (-1.39))*10 = 2.70 
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3.2.3 Predictive Modeling (O/E) Approach 
 
The predictive modeling approach relies on the development of predictive models to 
determine the proportion of observed to expected taxa at a given site.  These models 
have been largely in use in Great Britain (Moss et al. 1987, Wright 1995) and Australia 
(Turak et al. 1999), but they have been developed for parts of the U.S. as well (Hawkins 
et al. 2000).  For this study, the procedures in Hawkins et al. (2000) were generally 
followed to develop predictive models from which TVs could be estimated.   
 
The first step of the approach is to develop a predictive model, from which TVs for 
individual taxa can then be inferred.  The model depends on the use of reference site 
data to determine the expected taxonomic composition under natural conditions.  A 
subset of all sites in the mid-Atlantic data set were identified as reference based on 
water chemistry and habitat criteria developed previously (Klemm et al. 2003).  Since 
there were only 88 reference sites across both the calibration and validation data sets, 
all reference sites were combined to develop a single predictive model.  Then 
observations from the calibration and validation data sets were used independently to 
develop TVs.   
 
To develop a predictive model, two major steps are required initially.  First, cluster 
analysis divides sites into natural groupings based on similarity of the macroinvertebrate 
assemblages.  For this step, only reference sites are used so that groupings are based 
on natural factors and not disturbance gradients.  Following common practice for 
predictive models, clustering was performed on only presence-absence data for each 
taxon.  To avoid clustering based on taxa that are only present in a few samples or 
those that are ubiquitous, taxa present in 5% or fewer or 95% or more of samples were 
excluded (Hawkins et al. 2000).  Flexible beta clustering was performed  in PC-ORD for 
Windows (version 4.25, MjM Software, Gleneden Beach, Oregon, 
http://home.centurytel.net/~mjm/) on the data with β = -0.5 and using the Sorensen 
distance measure on presence-absence data.  The number of clusters used in the next 
step of analysis was based partly on the percent of information remaining and partly on 
the size of the smallest cluster.   
 
In the second major step in developing a predictive model, discriminant function 
analysis (DFA) is used to determine the combination of abiotic variables that can 
separate sites into different groups most accurately.  The abiotic variables were chosen 
to represent natural factors describing stream reaches that might affect 
macroinvertebrate composition.  Only a limited number of abiotic variables were 
available at most sites in this data set.  These variables included latitude, longitude, 
watershed area, elevation, approximate distance to the ocean, estimated annual runoff, 
Julian day, and estimated aspect (direction) of the longest dimension of the stream 
reach.  A few variables were transformed to reduce skewness, including log10 
transformation of watershed area and runoff and square root transformation of aspect.  
Only reference sites were used in the DFA, with the clusters defined in the previous 
step serving as the grouping variable.  A stepwise discriminant analysis was performed 
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to develop discriminant functions 
to predict membership of test 
sites in each of the cluster 
groups.  All DFA runs were 
performed in SAS (v. 9.1, SAS 
Institute Inc., Cary, North 
Carolina).   

Box 4.  Example calculation of probability of 
capture (Pc) for Perlidae at site MD003. 
 

Using reference site data: 
 
• Three groups of sites were identified using cluster 

analysis.   
 
• Discriminant function analysis (DFA) was used to 

develop a model to classify sites based on abiotic 
variables. 

 
• The probabilities of occurrence of Perlidae among 

reference sites in clusters 1, 2, and 3 were calculated 
(Prefcluster). 

 
Using data from site MD003 (a test site): 
 
• The DFA model was used to predict the probabilities 

that the site belongs to clusters 1, 2, and 3 (Pcluster). 
 
• The probability of capture was calculated as the sum of 

Prefcluster*Pcluster across all clusters. 
 

Cluster Prefcluster Pcluster Pcluster*Prefcluster
1 

 
To determine the expected 
number of taxa at a particular 
test site, the probability of 
capture (Pc) of each taxon must 
first be calculated.  First, for 
each taxon in the reference site 
data set, the proportion of sites 
at which that taxon is observed 
(Prefcluster) is calculated for each 
reference site cluster group.  
Next, the discriminant functions 
are used to calculate the 
probability of membership of the 
test site in each reference site 
cluster (Pcluster).  The probability 
of capture (Pc) of a taxon in a 
test sample is the product of 
Pcluster and Prefcluster for each 
cluster, then summed across 
clusters.  An example of the Pc 
is provided in Box 4. 

0.583 0.404 0.236 
2 0.704 0.233 0.164 
3 0.826 0.363 0.300 

 
( ) 700.0300.0164.0236.0 =++=∗= ∑

cluster
refclusterclusterc PPP  

 
The final value calculated for a test site is the ratio of observed to expected taxa 
richness (O/E).  The sum of Pc values across taxa determines the expected number of 
taxa (E) for that site.  Only taxa having Pc ≥ 0.50 were used in calculations of O and E, 
as limiting the calculation to these more common taxa has been shown to result in lower 
variability of O/E values at reference sites (Hawkins et al. 2000).  The O/E values were 
calculated for all sites in the data set with the abiotic variables necessary to apply the 
discriminant functions. 
 
The approach to estimating the responsiveness of each taxon as a sort of tolerance 
value was based on Hawkins (2004).  For a given taxon, the Pc values are summed 
across all sites (reference and otherwise) to obtain the predicted number of sites at 
which that taxon is expected to occur (Se).  The number of sites at which the taxon is 
actually found is So.  The ratio of So to Se is an index of responsiveness to stress.  All 
taxa found at reference sites were considered regardless of Pc, but responsiveness was 
only estimated for those taxa with a So or Se of at least 15.  A ratio of less than 1 
indicates that the taxon decreases in response to stress and a ratio of greater than 1 
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indicates an increase in response to stress.  By definition, TVs can only be calculated 
for taxa expected at reference sites, as other taxa lack Pc values.  In order to compare 
them to TVs, these ratios were rescaled to a range of 0-10 using the same method as 
for the PCA approach.  The calculation of the TV for Perlidae is again provided as an 
example in Box 5. 
 

Box 5.  Example calculation of TV for Perlidae using predictive modeling approach. 

4.196== ∑
allsites

ce PS (expected sites with Perlidae)  So = 162 (observed at 162 sites) 

TVinit = So/Se = 162/196.4 = 0.825 TVmin = 0.448  TVmax = 8.337 

TVfinal = (0.825 – 0.448)/(8.337 – 0.448)*10 = 0.477 

 

3.2.4 Generalized Additive Model (GAM) Approach 
 
Generalized Additive Models (GAMs) are a generalization of Generalized Linear Models 
(GLMs) in which some predictors are modeled nonparametrically along with linear and 
polynomial terms for other predictors (Guisan et al. 2002).  The GAM approach allows 
for nonlinear relationships between responses and multiple predictors.  Various types of 
smoothers can be applied in these models in order to more precisely approximate the 
relationship between a response and a particular predictor variable, and different types 
of relationships can be simultaneously described within a single model.  For the 
purposes of developing tolerance values, the process involves first identifying a 
predictor variable that serves as a disturbance gradient, along with other variables 
representing natural factors that may influence relationships.  Then, a GAM is used to 
describe the nature of the relationship between an individual taxon and the disturbance 
gradient.  The uses and fitting of GAMs are covered in detail in Hastie and Tibshirani 
(1990).   
 
The GAM approach followed for this study is based on work by Yuan (2004).  However, 
Yuan (2004) was interested primarily in developing tolerance values for individual 
stressors, and this report is focused on developing TVs for a general disturbance 
gradient.  Thus, the gradients of phosphorus and sulfate concentrations in Yuan (2004) 
are replaced here by the first principal component axis of a PCA based on abiotic 
variables.  Only a definable abiotic gradient was of interest for this analysis, so the 
analysis was not run using an EPT gradient.  The same calibration and validation first 
PC axis scores generated for the PCA approach were used as the gradients in this 
approach.  As with the predictive modeling approach and in Yuan (2004), only 
presence-absence data were used in the analysis.  The model for each taxon was 
generated in SAS using PROC GAM and a binomial distribution for the response 
variable (presence or absence: 1 or 0).  The binomial nature of the data means that the 
response modeled was actually the logit of the probability of occurrence (i.e., ln(p/(1-p)), 
where p is the probability of occurrence).  As in Yuan (2004), additional variables were 
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included in each model as covariates, including latitude, watershed area (log-
transformed), elevation, and estimated annual runoff.   
 
In determining the form of the model for each taxon, Yuan (2004) recommends sample 
sizes which allow at least ten observations for each degree of freedom in the model.  
For most taxa, the term observation refers to samples containing the taxon.  However, 
because both presence and absence of a taxon are required to model its probability of 
occurrence, for very common taxa, the term observation refers to samples from which 
the taxon is absent.  For the purposes of this analysis, the minimum of the two values 
representing the number of sites with and without a taxon can be used as the number of 
observations.  For each predictor included in the model, a smoothing (regression) spline 
with 90% confidence limits was specified with 2 degrees of freedom, such that the 
minimum degrees of freedom was 2 and the maximum was 10, if all four covariates 
were included.  In order to maximize the number of models for taxa, we grouped taxa by 
the number of observations and developed more complex models for taxa with more 
observations (Yuan 2004).  For taxa with 20 to 59 observations, only the first PC axis 
was included in the model.  For taxa with 60 to 99 observations, the first PC axis, 
latitude, and watershed area were included in the model, and for taxa with 100 or more 
observations, the model included PC axis 1, latitude, watershed area, elevation, and 
annual runoff.  The additional covariates only served to reduce the unexplained 
variability in the relationship between PC axis 1, the generalized stressor gradient, and 
the logit of taxon probability of occurrence, and are not of general interest here.  This 
grouping of taxa was applied at the genus and family levels to both the calibration and 
validation data sets.  At a given taxonomic level, the grouping with the fewest variables 
in the model was used for both the calibration and validation data sets in order to allow 
for comparisons of TVs generated from the two data sets.  
 
Two important features were evaluated for each model.  First, each model was 
evaluated for the significance of the relationship between taxon presence and the PC 
axis 1 scores at the α=0.05 level.  In SAS, one degree of freedom is automatically 
removed to account for the linear portion of the model, and the output provides separate 
significance tests for linear and nonlinear components of each relationship.  Next, the 
nature of the relationship was evaluated.  In Yuan (2004), the significance of 
unimodality with the PC axis 1 was determined graphically as cases where the 
maximum predicted logit value was greater than the 90% confidence limits at the 
minimum and maximum PC axis 1 values.  Because of generally smaller sample sizes 
than Yuan used, unimodality was considered significant if the maximum value for the 
upper 90% confidence limit, rather than the maximum predicted value itself, was greater 
than the upper 90% confidence limits on the maximum and minimum PC axis 1 values.  
If the linear relationship between PC axis 1 and the probability of occurrence was 
significant but unimodality was not, a monotonic relationship was assumed and the 
direction was determined using the linear slope estimate.  If a taxon was significantly 
related to PC axis 1 nonlinearly but was not unimodal, TVs were still calculated for that 
taxon.   
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The goal of this work was to generate tolerance values, in contrast to Yuan (2004), for 
which the primary goal was to evaluate the ability of the GAM approach to determine 
the general type and direction of the relationship.  Tolerance values were calculated as 
both the optimum and the weighted average, based on the predicted probability of 
occurrence.  The predicted probability was calculated as the inverse of the predicted 
logit.  The optimum value was determined as the PC axis 1 score at which the predicted 
probability of occurrence of that taxon was highest.  The weighted average was 
calculated using presence and absence data from all sites as 
 

∑
∑ ×

=
p
PCp

TVwtd
1

 

 
where PC1 is the PC axis 1 score for a given site and p is the predicted probability of 
occurrence at that value.  Each TV was rescaled to a 0 to 10 range using the method 
described for the PCA approach.  If no relationships were significant between taxon 
occurrence and PC axis 1, no TV was calculated for that taxon.  Likewise, if the 
relationship was U-shaped, no TV was calculated.  This process was repeated for the 
validation data set, but only taxa with significant relationships for calibration data were 
evaluated.  Box 6 contains an example calculation of both the optimum and the 
weighted average for the GAM approach with Perlidae. 
 
Box 6.  Example calculation of TV for Perlidae using GAM optimum and weighted 
average approaches. 

 
• Perlidae was observed in 139 of 256 samples. 
 
• In a GAM that included PC 1 axis scores, log(watershed area), latitude, elevation, and annual 

runoff, the logit of the probability of occurrence was significantly negatively related to PC 1 axis 
scores. 

 
• For each site in the analysis, a predicted probability of occurrence was determined using the 

inverse of the predicted logit value (i.e., ln[p/(1-p)]). 
 
• Optimum: The maximum predicted probability was 0.818, and the PC 1 axis score 

corresponding to the site with this logit value was -3.409 (=TVinit). 
 

• TVmax = 4.825  TVmin = -4.146 
 
• TVfinal = (-3.409 – (-4.146))/(4.825 – (-4.146))*10 = 0.822 

 
• Weighted average:  The sum of the product of the predicted probability X PC axis 1 scores for 

Perlidae was -45.224, and the sum of the predicted probabilities was 139.0, resulting in a TVinit 
of -0.325.   

 
• TVmax = 1.249  TVmin = -1.021 

 
• TVfinal = (-0.325 – (-1.021))/(1.249 – (-1.021))*10 = 3.063 
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3.2.5 Comparison of Tolerance Metrics 
 
Recognizing that the TVs generated eventually would be used to derive 
macroinvertebrate metrics, a comparison of three metrics -- HBI, number of intolerant 
taxa (TV ≤ 3), and percent intolerant individuals -- was performed.  First, all sites in the 
validation and calibration data sets were combined.  Then, data were aggregated to the 
family and genus levels.  The three metrics were calculated for each site using TVs 
generated from each approach based on both the calibration and validation data sets.  
Only taxa having TVs for all of the methods were used in calculations to ensure an 
equitable comparison of metric values.  At the very large sample sizes of over 500 sites, 
even small mean differences in metric values would be significant in simple paired t-
tests because of the extremely large degrees of freedom.  Thus, comparisons between 
the metrics calculated from calibration- and validation-based TVs were assessed 
qualitatively using bivariate scatter plots.  Next, sites were identified that had been 
previously classified as reference or impaired using water chemistry and habitat 
variables (Klemm et al. 2003).  Of interest were differences in metric values between 
reference and impaired sites, to determine which metric discriminates the two types of 
sites most strongly.  Comparisons among approaches were made by examining the 
overlap of the interquartile ranges (25th to 75th percentiles) of box plots to determine the 
approach that best separates reference and impaired sites.  For these plots, only metric 
values calculated from calibration-based TVs were included.  All comparisons were 
carried out separately for genus- and family-level data.  
 

3.3 Results 

3.3.1 EPT Approach 
 
The range of EPT richness observed for both the calibration and validation data sets 
was 0 to 32 taxa.  The distributions of TVs from both the 75th percentile and weighted 
procedures are provided in Table 7.  The average TVs were higher for the weighted 
adjustment procedure than for the 75th percentile procedure.  When comparing the TVs 
created from the calibration and validation data sets, differences were significant 
regardless of taxonomic level or scoring procedure (Table 8), but correlations were also 
highly significant.  Correlations between values at the genus level were lower than for 
the family level (Table 8).  From scatter plots of the validation against the calibration 
TVs (Figure 5), there was more variability in the genus level data, but the plots did not 
differ obviously between the 75th percentile and weighted procedures.  The differences 
detected in the paired t-tests were evident but not strong in these bivariate plots.  
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Table 7.  Comparison of distributions between the calibration and validation data sets for 
family and genus, as well as both the 75th percentile and weighted procedures.  Values 
are based on the EPT approach. 
  Calibration Validation
Taxonomic 
level 

Scoring 
procedure Mean Standard 

deviation Mean Standard 
deviation 

75th 3.39 2.34 3.93 2.21 Family (N=44) 

 Weighted 4.29 2.40 3.82 2.38 

75th 3.79 1.95 4.65 1.75 Genus (N=116) 
 Weighted 3.94 1.92 4.45 1.94 

 
Table 8.  Differences and correlations between calibration and validation tolerance values 
at the family and genus levels for the 75th percentile and weighted procedures using the 
EPT approach.  Values for t are from the paired t-test for differences. 
Taxonomic 
level 

Scoring 
procedure 

Mean 
difference 

t-statistic  
(p-value) 

Pearson r  
(p-value) 

Family (df=43) 75th -0.53 -3.33 (0.0018) 0.893 (<0.0001) 

 Weighted 0.47 3.53 (0.0010) 0.931 (<0.0001) 

Genus (df=115) 75th -0.86 -5.81 (<0.0001) 0.775 (<0.0001) 

 Weighted -0.51 -4.19 (<0.0001) 0.629 (<0.0001) 
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Figure 5.  Calibration and validation tolerance values, matched by taxon for a) family and 
b) genus levels, based on the EPT approach using the 75th percentile and weighted 
procedures.  The diagonal line represents the same TV for a taxon in both the validation 
and calibration data sets.
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3.3.2 PCA Approach 
 
The PCA resulted in two axes with eigenvalues larger than 1.  The first axis of the 
calibration PCA explained about 41% of variation and the second about 20%.  For the 
validation PCA, the first explained 41% and the second 18%.  All of the variables were 
significantly correlated with the first principal component (PC1), but pH and the RBP 
bank condition score had weaker correlations than the other variables (Table 9).  
Because all variables were correlated with the first principal component, the first axis 
was used to represent a general disturbance gradient across sites.   
 
Table 9.  Spearman rank correlations between abiotic variables used in PCA and 
principal component axes.   
 Calibration Validation 
Variable PC1 PC2 PC1 PC2 
Conductivity  0.68 0.36 0.71 0.38 
Total Phosphorus 0.69 0.32 0.60 0.33 
Total Nitrogen 0.73 0.36 0.75 0.33 
pH 0.45 0.49 0.52 0.40 
RBP bank condition -0.55 0.58 -0.58 0.37 
RBP embeddedness -0.68 0.46 -0.71 0.46 
RBP instream cover -0.68 0.48 -0.60 0.64 
 
Average TVs for the PCA approach tended to have similar magnitudes and standard 
deviations to those for the EPT approach (Table 10).  The weighted procedure resulted 
in slightly smaller mean TVs, regardless of taxonomic level.  The difference between 
validation and calibration TVs was significant only for the genus level 75th percentile 
procedure, although the average difference was still less than 0.5 point (Table 11, 
Figure 6).  Correlations between calibration and validation TVs were lower for the 75th 
percentile scoring procedure, regardless of taxonomic level (Table 11), and family level 
correlations were much lower than those seen for the EPT approach.   
 
Table 10.  Comparison of distributions between the calibration and validation data sets 
for family and genus, as well as both the 75th percentile and weighted procedures.  
Values are based on the PCA approach. 
  Calibration Validation
Taxonomic 
level 

Scoring 
procedure Mean Standard 

deviation Mean Standard 
deviation 

75th 3.34 2.02 3.32 2.40 Family (N=44) 

 Weighted 3.19 1.98 3.16 2.17 

75th 4.55 1.58 4.14 1.79 Genus (N=116) 
 Weighted 3.97 1.65 4.06 1.81 
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Table 11.  Differences and correlations between calibration and validation tolerance 
values at the family and genus levels for the 75th percentile and weighted procedures 
using the PCA approach.  Values for t are from the paired t-test for differences. 
Taxonomic 
level 

Scoring 
procedure 

Mean 
difference 

t-statistic  
(p-value) 

Pearson r  
(p-value) 

Family (df=43) 75th 0.03 0.11 (0.9119) 0.776 (<0.0001) 

 Weighted 0.03 0.17 (0.8638) 0.808 (<0.0001) 

Genus (df=115) 75th 0.40 3.04 (0.0029) 0.647 (<0.0001) 

 Weighted -0.09 -0.88 (0.3798) 0.789 (<0.0001) 
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Figure 6.  Validation and calibration TVs matched by taxon for a) family and b) genus 
levels, based on the PCA approach using the 75th percentile and weighted procedures.  
The diagonal line represents the same TV for a taxon in both the validation and 
calibration data sets.
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3.3.3 Predictive Modeling Approach 
 
The initial step of clustering sites was performed separately for genus- and family-level 
data.  At the family level, 57 taxa were used in clustering, and at the genus level, 172 
taxa were included in the cluster analysis.  Initial clustering resulted in three sites 
forming very small groups.  Upon further examination, these sites were determined to 
be in poor condition based on previous assessments of macroinvertebrates.  Therefore, 
the reference data set was reduced by these three outliers to 85 sites for clustering at 
both the genus and family levels.     
 
At the family level, three clusters left approximately 30% information remaining.  The 
clusters consisted of 12, 27, and 46 sites.  Watershed area, longitude, runoff, Julian 
day, and aspect were selected in stepwise DFA, and a pooled covariance matrix was 
used.  The error rate of the model was 25% and the cross-validation error rate was 
39%.  The mean O/E score for reference sites was 1.01, with a standard deviation of 
0.16.  The mean very close to 1 indicates an unbiased estimate of the number of taxa 
expected to occur at a site, and the level of variation is on par with that found in 
Hawkins et al. (2000).  There were 58 families in the calibration data set and 60 in the 
validation data set with Se or So of at least 15, and 57 families occurred in both data 
sets.   
 
At the genus level, four clusters resulted in approximately 30% information remaining.  
The clusters were made up of 13, 26, 29, and 17 sites.  In stepwise DFA, watershed 
area, latitude, runoff, Julian day, and elevation were selected to best separate sites into 
clusters, and a pool covariance matrix was again used.  The error rate of the model was 
29%, with a cross-validation error rate of about 36%.  The mean O/E score among 
reference sites was 1.04, with a standard deviation of 0.18, again indicating unbiased 
estimates and reasonable variation among reference sites (Hawkins et al. 2000).  There 
were 173 taxa in the calibration data set and 179 in the validation data with Se or So 
values of at least 15, with 171 taxa overlapping between the two data sets. 
 
The average TVs based on the predictive modeling approach were much smaller than 
for the EPT or PCA approaches (Table 12).  This skewing of values toward the low end 
is likely due at least in part to the limitation of analyses to taxa found at reference sites.  
Differences between the calibration and validation data sets were significant but small, 
and correlations were extremely high (Table 13).  From the plots, it is obvious that 
although the relationships between the calibration and validation TVs were very strong, 
the slopes of those relationships were far from 1, such that larger values tended to be 
more different and smaller values tended to be more similar (Figure 7).   
 

 29 



Table 12.  Comparison of TV distributions between the calibration and validation data 
sets for family and genus levels, based on the predictive modeling approach. 
 Calibration Validation
Taxonomic 
level Mean Standard 

deviation Mean Standard 
deviation 

Family (N=57) 0.80 0.92 1.13 1.50 

Genus (N=171) 2.08 1.64 1.29 0.98 
 
Table 13.  Differences and correlations between calibration and validation tolerance 
values at the family and genus levels using the predictive modeling approach.  Values for 
t are from the paired t-test for differences. 
Taxonomic 
level 

Mean 
difference 

t-statistic  
(p-value) 

Pearson r  
(p-value) 

Family (df=56) -0.33 -3.84 (0.0003) 0.968 (<0.0001) 

Genus (df=170) 0.79 12.77 (<0.0001) 0.932 (<0.0001) 
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Figure 7.  Validation and calibration TVs matched by taxon for family and genus levels, 
based on the predictive modeling approach.  The diagonal line represents the same TV 
for a taxon in both the validation and calibration data sets. 
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3.3.4 Generalized Additive Model Approach 
 
Only the family Chironomidae was excluded from analysis because of too many 
occurrences (i.e., too few observations).  In the calibration and validation data sets, 68 
and 69 families, respectively, had too few occurrences.  Of the remaining families, 48 
overlapped between the two data sets and were included in analyses.  Only 26 taxa 
exhibited a significant relationship of some kind with the general stressor gradient (PC 
axis 1) for both the calibration and validation data sets.  However, one of these taxa 
showed a U-shaped relationship with PC axis 1 for both data sets and was excluded 
from calculation of TVs.  There were 35 families in the calibration data set (2 U-shaped) 
and 31 in the validation data set (1 U-shaped) that showed a relationship between the 
probability of occurrence (as a logit) and PC axis 1.   
 
At the genus level, 350 (of 496) and 331 (of 476) taxa had too few observations in the 
calibration and validation data sets, respectively.  Of those taxa remaining, 139 were 
observed in both data sets.  Only 83 taxa in the calibration data set and 80 in the 
validation data set had significant relationships with PC axis 1.  Of these, 63 taxa had 
significant relationships for both data sets. 
 
The mean TVs for this approach were comparable to those of other approaches, but the 
standard deviations tended to be considerably larger (Table 14), indicating a broader 
distribution of values than for other approaches.  Differences between the calibration 
and validation TVs were small and nonsignificant, regardless of scoring procedure and 
taxonomic level (Table 15).  Values were highly correlated between the calibration and 
validation TVs (Table 15), but there was more variability in the relationship for optima 
than for weighted average (Figure 8).  
  
 
Table 14.  Comparison of TV distributions between the calibration and validation data 
sets for family and genus levels, based on the GAMs approach. 
  Calibration Validation
Taxonomic 
level 

Scoring 
procedure Mean Standard 

deviation Mean Standard 
deviation 

Family (N=26) Optimum 3.35 3.37 3.22 3.56 
Weighted 
average 3.74 3.13 3.40 2.69  

Genus (N=63) Optimum 4.79 3.58 4.42 3.96 
Weighted 
average  4.57 2.35 4.41 2.73 
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Table 15.  Differences and correlations between calibration and validation tolerance 
values at the family and genus levels using the GAMs approach.  Values for t are from 
the paired t-test for differences. 
Taxonomic 
level 

Scoring 
procedure 

Mean 
difference 

t-statistic  
(p-value) 

Pearson r  
(p-value) 

Family (df=24) Optimum 0.12 0.37 (0.7142) 0.885 (<0.0001) 

 Weighted 
average 0.34 1.50 (0.1460) 0.936 (<0.0001) 

Genus (df=61) Optimum 0.36 1.77 (0.0817) 0.911 (<0.0001) 
Weighted 
average  0.17 1.52 (0.1341) 0.952 (<0.0001) 
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Figure 8.  Validation and calibration TVs matched by taxon for a) family and b) genus 
levels, based on the GAM approach.  The diagonal line represents the same TV for a 
taxon in both the validation and calibration data sets. 
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3.3.5 Comparison of Tolerance Metrics 
 
At the family level, the results varied greatly across metrics tested.  HBI scores based 
on calibration- and validation-based TVs showed a strong, tight trend with a slight shift 
in values and good separation between reference and impaired for the EPT approach 
(Figures 9 and 10).  Relationships were also strong for the PCA, predictive modeling 
and GAM weighted average approaches, but trends were not always linear with a slope 
of 1 (Figure 9), and discrimination between reference and impaired sites was much 
weaker or non-existent compared to the EPT approach (Figure 10).  Intolerant taxa 
richness performed most consistently and favorably overall, with little variability between 
the validation- and calibration-based values (Figure 11) and strong separation between 
reference and impaired sites (Figure 12), regardless of the approach or scoring 
procedure used.  Percent intolerant individuals was most variable, particularly for both 
scoring procedures of GAM approach (Figure 13).  The EPT weighted approach 
showed the tightest relationship between the validation- and calibration-based values 
and was the only approach resulting in a strong separation between reference and 
impaired sites (Figure 14).   
 
Results were similar for genus level data.  Very strong relationships were observed 
between HBI scores using on calibration- and validation-based TVs for all approaches 
(Figure 15).  There were clear shifts in HBI scores toward slightly higher values using 
the validation-based TVs for the EPT approaches but toward slightly lower values for 
the PCA 75th percentile and GAM optima approaches (Figure 15).  Separation between 
reference and impaired sites based on HBI scores was observed for all approaches but 
strongest for both  scoring procedures of the EPT approach (Figure 16).  Tight 
relationships between calibration- and validation-based intolerant taxa richness values 
were observed for genus level data, but shifts were more evident for all approaches 
except the PCA weighted approach (Figure 17).  Strong separation between reference 
and impaired sites was observed for all approaches for this metric (Figure 18).  Percent 
intolerant individuals exhibited large variability between calibration- and validation-
based values for all approaches but showed the tightest relationship for the EPT 
weighted approach (Figure 19).  Discrimination between reference and impaired sites 
was strongest for the two EPT approaches but still evident for the PCA 75th percentile, 
predictive modeling, and GAM weighted average approaches (Figure 20). 
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Figure 9.  Plots of HBI scores based on TVs generated from calibration and validation 
data sets for family level data.  Diagonal line represents matching values between the 
calibration and validation scores. 
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Figure 10.  Distributions of family-level HBI scores for each approach using calibration-
based TVs for reference and impaired sites.  
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Figure 11.  Plots of intolerant taxa richness based on TVs generated from calibration and 
validation data sets for family level data.  Diagonal line represents matching values 
between the calibration and validation scores. 
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Figure 12.  Distributions of family-level intolerant taxa richness for each approach using 
calibration-based TVs for reference and impaired sites.  
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Figure 13.  Plots of percent intolerant individuals based on TVs generated from 
calibration and validation data sets for family level data.  Diagonal line represents 
matching values between the calibration and validation scores. 
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Figure 14.  Distributions of family-level percent intolerant individuals for each approach 
using calibration-based TVs for reference and impaired sites.  
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Figure 15.  Plots of HBI scores based on TVs generated from calibration and validation 
data sets for genus level data.  Diagonal line represents matching values between the 
calibration and validation scores. 
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Figure 16.  Distributions of genus-level HBI scores for each approach using calibration-
based TVs for reference and impaired sites. 
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Figure 17.  Plots of intolerant taxa richness based on TVs generated from calibration and 
validation data sets for genus level data.  Diagonal line represents matching values 
between the calibration and validation scores. 
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Figure 18.  Distributions of genus-level intolerant taxa richness for each approach using 
calibration-based TVs for reference and impaired sites. 
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Figure 19.  Plots of percent intolerant individuals based on TVs generated from 
calibration and validation data sets for genus level data.  Diagonal line represents 
matching values between the calibration and validation scores. 
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Figure 20.  Distributions of genus-level percent intolerant individuals for each approach 
using calibration-based TVs for reference and impaired sites. 
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3.4 Discussion 
 
Each of the four approaches evaluated for the development of generalized tolerance 
values performed a little differently in analyses.  The EPT approach resulted in strong 
correlations between data sets, but there were also significant shifts in TVs from one 
data set to the other.  The PCA approach tended to differ less between data sets, but 
correlations were not as strong.  The predictive modeling approach as applied in this 
study exhibited high correlations between data sets and allowed calculation of TVs for 
the largest number of taxa.  However, this approach only produced TVs for taxa that 
would be expected to be found at reference sites.  The GAM approach provided TVs for 
a much more limited number of taxa and required more observations than any of the 
other methods.  In this way, the GAM approach “selected” those taxa that showed a 
relatively strong relationship with the stressor gradient and excluded those without a 
strong association of some kind.  Each approach has its own strengths and 
weaknesses, and the utility of a given approach is dependent on the data available and 
the ultimate use of the TVs produced from it. 
 
The EPT approach is somewhat circular in nature because it does assume that EPT 
taxa are the ultimate signal of the quality of a water body.  Inherently, this approach 
presumes that there is some underlying abiotic (stressor) gradient that is reflected in the 
EPT taxa richness.  To remove the circular nature, however, one needs to use the 
underlying abiotic gradient rather than the biological measure associated with it.  For 
this reason, use of the EPT approach must be accompanied by a caveat explaining that 
the TVs generated in this way are only worthwhile if the actual correspondence between 
EPT taxa richness and the general stressor gradient is strong.  Even with this caveat, 
this approach may be particularly undesirable in calculating TVs for EPT taxa because it 
is truly circular to use EPT taxa as both the gradient and the response to that gradient.  
In general, the EPT method was best at discriminating reference and impaired sites, but 
there were also obvious, albeit slight, discrepancies between the validation and 
calibration data sets.  Metrics based on TVs generated from the EPT approach 
produced the most consistent results between TVs based on calibration and validation 
data sets. 
 
The PCA approach is dependent on existence or collection of potentially large amounts 
of abiotic data in order to effectively define the generalized stressor gradient existing 
across water bodies.  In addition, these data need to be co-located with the biological 
data of interest (e.g., macroinvertebrates).  This approach combined with the weighted 
procedure is very similar to the technique of weighted averaging, as described in ter 
Braak and Looman (1995).  One disadvantage for weighted averaging that applies to 
this approach in general is that absences of a taxon are not taken into account as they 
are with the GAM approach.  Therefore, the approach assumes a homogeneous 
distribution of samples along the environmental gradient and may generate misleading 
TVs if samples are unevenly apportioned to part of the gradient (ter Braak and Lookman 
1995).  As long as a state or tribe believes it has adequate data to effectively describe 
the general range of biological conditions found across a particular type of water 
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resource (e.g., wadeable streams) and samples are relatively well-distributed along the 
gradient, the PCA approach may be a useful one.  At the level of HBI scores and 
intolerant taxa richness, the PCA approach performed almost as well as the EPT 
approach at separating reference and impaired sites.  There was slightly better 
correspondence of HBI scores using validation- and calibration-based TVs for the PCA 
approach than for the EPT approach.  However, this was not true for other metrics.  
 
A major advantage of the predictive modeling approach is that a disturbance gradient 
does not need to be defined explicitly.  However, the types of sites included in the 
analysis to represent “reference” condition can affect the results strongly.  This 
approach resulted in TVs for the largest number of taxa overall and effectively 
reproduced TVs from the calibration to validation data sets, although shifts in values 
were observed.  However, because of the nature of this approach, TVs were developed 
only for those taxa that tend to occur in reference sites.  This approach could likely be 
modified to include other taxa as well, but it is not clear how well the resulting TVs 
would reflect conditions.  Used in its current form, the HBI and percent intolerant 
individuals metrics were of very limited ranges, and discrimination between reference 
and impaired sites was restricted by these features.  The intolerant taxa richness metric 
was much more consistent between calibration- and validation-based TVs, had larger 
ranges, and discriminated well between reference and impaired sites.  In general, 
effective use of this approach requires extensive data on natural factors that affect the 
expected fauna at sites, and its use may be limited by the number and quality of 
reference sites available.   
 
The GAM approach can provide more precise information on the nature of the 
relationship of a taxon to a gradient, and the number of taxa that could be used with this 
method was greater than for the EPT and PCA methods.  This approach requires many 
sites in order to effectively determine the type of relationship, if any, that a taxon has 
with a generalized stressor gradient.  Like the PCA approach, this method relies on the 
collection of additional information at each site in order to characterize the stressor 
gradient, and this may be a limitation for some data sets.  Using the PCA axis as the 
gradient in the GAM models may not be as effective as using the individual variables in 
this approach, but using a large number of individual variables to replace the 
generalized gradient would require far more sites than were available.     
 
The variations on scoring procedures examined for some approaches also showed 
differences.  For both the EPT and PCA approaches, the weighted procedure performed 
better overall than the 75th percentile procedure.  Weighted TVs generally resulted in 
less variability between the two data sets at the TV and the metric levels of comparison.  
In addition, metrics based on the weighted procedure tended to discriminate between 
reference and impaired sites better.  Results were similar for the weighted average 
procedure for the GAM approach in comparison to the optimum procedure for 
calculating TVs.  The weighted scoring procedures may exhibit lower variability because 
they integrate information over the whole gradient.  In contrast, the 75th percentile and 
optimum procedures rely on identification of a single value, and this process should be 
associated with more error. 
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Among the three tolerance-based metrics examined, intolerant taxa richness was the 
most useful overall.  It discriminated well and was generally repeatable across most 
approaches.  This metric is based on grouping taxa into more broad categories, rather 
than relying on the precision of TVs for individual taxa.  This feature likely leads to 
greater repeatability when compared to HBI scores.  Both metrics seemed to 
discriminate well between reference and impaired sites, but not as strongly as expected 
or as typically seen for the HBI.  This may be due to the fact that only a subset of taxa 
were used to calculate metrics in order to provide a more equitable comparison across 
approaches.  However, this issue is a general limitation of any approach used to 
develop TVs because some taxa were excluded from each approach.  This results in 
exclusion from tolerance-related metrics potentially large numbers of taxa that are 
relatively rare overall.  If these excluded taxa are always found in small numbers in 
samples the effect on the HBI for any given sample might be affected very little.  
However, if those relatively rare taxa occur in large or even moderate proportions in a 
given sample, the effect on the HBI could be relatively large.  The effect of these 
exclusions on the assessment of a site must be understood and addressed.   
 
Finally, there was not a clear difference in the precision of family-level TVs when 
compared to those generated at the genus level.  The ultimate ability of metrics to 
discriminate between reference and impaired sites was somewhat better overall at the 
genus level.  However, tolerance values could be developed for a higher proportion of 
families than genera because a larger proportion of families had adequate sample 
sizes.  It makes sense that the genus level data would provide more precise TVs, 
because it is less likely that there will be taxa with vastly different tolerances within a 
single genus than within a family.  When taxa with different tolerances are lumped 
together into a single group, the breadth of tolerance values may no longer be 
adequately represented.  In such cases, either the tolerances of some taxa are ignored 
or masked, or an average tolerance which represents the group no longer represents 
any of the individual taxa in the group.  This is a limitation of using family level data to 
develop tolerance values, but it also applies to a lesser extent to genus level data. 
 

3.5 Recommendations  
 
The choice of approach to use depends largely on the type of data available for 
development of tolerance values.  When abiotic data are available that adequately 
characterize the gradient of disturbance in the region of interest, employing an approach 
that incorporates these data is more desirable.  The PCA and GAM approaches both 
utilize extensive abiotic data to characterize sites having corresponding 
macroinvertebrate data.  In addition, the GAM approach benefits from additional site 
information (e.g., watershed area, elevation, etc.) to account for natural variability.  
These approaches more directly relate taxonomic occurrence or abundance with the 
level of disturbance, and this may make the resulting TVs more defensible.  For both the 
PCA and GAM approaches, the procedures for calculating TVs that used all available 
count data (i.e., weighted and weighted average, respectively), rather than just an 
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optimum or percentile, produced more consistent results.  Thus, if either the PCA or 
GAM approach is used to develop TVs, the weighted procedure is recommended over 
the other procedures evaluated.  Of the statistical techniques employed by these two 
approaches, PCA is simpler to perform and is available widely in statistical software 
packages, but GAMs may more precisely describe the relationship between individual 
taxa and environmental gradients.  However, neither approach will be as valuable if the 
abiotic data lack variables that are important in describing the disturbance gradient.  
 
If biotic and certain abiotic data are available on a set of samples identified as 
representing reference condition, the predictive modeling approach may be most useful.  
This is particularly true if the variables included in the abiotic data can be used to 
characterize natural classes of samples.  Predictive modeling is particularly attractive in 
situations where limited or no data are available to describe the disturbance gradient 
itself, as the gradient is dealt with indirectly in this approach.  However, this approach 
involves several steps that require the use of potentially complex multivariate statistical 
techniques.  The techniques required can be found in many statistical software 
packages, but a lot of movement of data among different programs may be necessary 
to complete the development of TVs.  In addition, some specialized statistical training or 
experience may be required to carry out the necessary techniques and interpret the 
results. 
 
The EPT approach is the least desirable in terms of defensibility because it does result 
in a somewhat circular process.  If no other approach is feasible, using EPT as the 
disturbance gradient could be considered a last resort.  Still, there must be confidence 
in how well EPT values represent the full range of conditions occurring in the region.  In 
addition, there must be a rationale for defining the disturbance gradient using EPT for 
the specific region of interest.  In some types of streams, EPT richness may not be well-
represented in general and specifically may not represent stream condition well.  For 
example, in the EMAP-West study, samples from streams in the Plains region of the 
United States had a median EPT richness of only 5 and a 75th percentile of only 9 taxa 
(T. Whittier, Oregon State University, personal communication).  Although this approach 
appears to be the simplest and most straightforward one, it has many drawbacks and 
limitations in practice.   
 
No approach described in this report can be selected and carried out blindly.  All require 
careful evaluation of the data available and the statistical techniques involved.  The data 
set to be used in developing TVs is often the most limiting factor in terms of the choice 
of approach.  Typically, data has already been collected, and the variables in that data 
set may or may not include those that are necessary to carry out a particular approach.  
The statistical techniques necessary for a particular methodology can also limit the 
choices available.  Not only must the user have access to and familiarity with the 
appropriate software package to run analyses, but he/she must also be able to 
understand and interpret the results obtained.  If suitable attention is given to these 
issues, an approach to developing TVs can be identified that is defensible and 
appropriate.
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