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Statistical Disclosure Limitation (SDL)
for Tabular Data

Tabular data
* frequency (count) data organized in contingency tables
* magnitude data (income, sales, tonnage, # employees, ..)

organized in sets of tables
Tables

* there can be many, many, many tables (national
censuses)

* tables can be 1-, 2-, 3-, .........up to many dimensions
* tables can be linked
* table entries:  cells (industry = retail shoe stores &

location = Washington DC)
* data to be published:  cell values (first quarter sales

for shoe stores in Washington DC = $17M)

What is disclosure?

Count data: disclosure = small counts (1, 2, ...)
Magnitude data: disclosure = dominated cell value

Example: Shoe company # 1: $10M
Shoe company # 2: $  6M
Other companies (total): $  1M

Cell value:       $17M

# 2 can subtract its contribution from cell
value and infer contribution of #1 to within
10% of its true value = DISCLOSURE
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Cells containing disclosure are called sensitive cells

How is disclosure in tabular data limited by statistical agencies?
* identify cell values representing disclosure
* determine safe values for these cells

Example: If estimation of any contribution to within 20% is safe
(policy decision), then a safe value above would be $18M

* traditional methods for statistical disclosure limitation
Count data: 

- rounding
- data perturbation
- swapping/switching
- cell suppression

Magnitude data:
- cell suppression

What is cell suppression?
  * replace each disclosure-cell value by a symbol (variable)

* replace selected other cell values by a symbol (variable)
to prevent narrow estimates of disclosure-cell values

* process is complete when resulting system of equations
divulges no unsafe estimates of disclosure-cell values

Some properties of cell suppression:
* based on mathematical programming
* very complex theoretically, computationally, practically
* destroys useful information
* thwarts many analyses; favors sophisticated users
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How does cell suppression addresses data quality?

Cell suppression employs a linear objective function to control
oversuppression

Namely, the mathematical program is instructed to minimize:

* total value suppressed
* total percent value suppressed
* number of cells suppressed
* logarithmic function related to cell values
* etc.

These are overall (global) measures of data distortion

Further, individual cell costs or capacities can be set to control
individual (local) distortion

These are all sensible criteria and worth doing

However, they do not preserve statistical properties (moments)

Moreover, suppression destroys data and thwarts analysis 
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Controlled Tabular Adjustment (CTA)

* new method for SDL in tabular data
* perturbative method–changes, does not eliminate, data
* alternative to complementary cell suppression
* attractive for magnitude data & applicable to count data

Original CTA Method (Dandekar and Cox 2002)

* identify sensitive tabulation cells
* replace each disclosure cell by a safe value–namely,

move the cell value down or up until safety is reached
* use linear programming to adjust nonsensitive values

in order to restore additivity (rebalancing)
         * if second and third steps are performed simultaneously,

a mixed integer linear program (MILP) results.
MILP is extremely computationally demanding

* otherwise (most often), the down/up decision is made
heuristically, followed by rebalancing via
linear programming (LP).
LP computes efficiently even for large problems



6

(Nearly) Actual Example of Magnitude Table with Disclosures

167      317    1284 587  4490 3981 2442 1150      70 (21) 14488
57(1) 1487     172 667   1006   327 1683 1138      46 (7)    6583

616       202    1899  1098      2172 3825 4372  300(40)  787       15271
0     36(10)     0 16(4)       0       0     65 0  140(40)     257

840      2042      3355  2368      7668 8133 8562 2588     1043      36599

Example 1: 4x9 Table of Magnitude Data & Protection Limits for the 7 Disclosure Cells (red)

 D       317    1284 D   4490 3981 2442 1150      D    14488
D     1487     172 667   1006   327 1679   D       D      6583

616       D   1899  1098      2172 3825 4371  D     787       15271
0     D          0 D         0       0     70 0  D        257

840      2042      3355  2368      7668 8133 8562 2588     1043      36599

Example 1a: After Optimal Suppression: 11 Cells (30%) & 2759 Units (7.5%) Suppressed

 167       317    1276 587   4490 3981 2442 1150       91    14501
56     1487      172 667   1006   327 1683 1138         39        6571

617       196    1899  1095      2172 3825 4372  260      797     15232
0     26          0   12         0       0     65 0  180        288

840      2026      3347  2361      7668 8133 8562 2548      1107     36592

Example 1b: After Controlled Tabular Adjustment
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167      317    1284 587  4490 3981 2442 1150      70 (21) 14488
57(1) 1487      172 667   1006   327 1683 1138      46 (7)    6583

616       202    1899  1098      2172 3825 4372  300(40)  787       15271
0     36(10)     0 16(4)       0       0     65 0  140(40)     257

840      2042      3355  2368      7668 8133 8562 2588     1043      36599

Example 1: 4x9 Table of Magnitude Data & Protection Limits for the 7 Disclosure Cells (red)

 167       317    1276 587   4490 3981 2442 1150       91    14501
56     1487      172 667   1006   327 1679 1138         39        6571

617       196    1899  1095      2172 3825 4371  260      797     15232
0     26          0   12         0       0     70 0  180        288

840      2026      3347  2361      7668 8133 8562 2548      1107     36592

Example 1b: Table After Controlled Tabular Adjustment

 167       317    1276 587   4490 3981 2442 1150       91    14501
56     1487      172 667   1006   327 1683 1138         35       6571

617       202    1899  1098     2172 3825 4372  260      787      15232
0     20          0     9         0       0     65 0  194        288

840      2026      3347  2361      7668 8133 8562 2548      1107     36592

Example 1c: Table After Optimal Controlled Tabular Adjustment (Regression)
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MILP for Controlled Tabular Adjustment
(Cox 2000)

Original data:  nx1 vector a
Adjusted data:  nx1 vector a � y���� ���� y����
T denotes the coefficient matrix for the tabulation equations
Denote  y � y ����

� y ����

Cells i = 1, ..., s are the sensitive cells
Upper (lower) protection for sensitive cell i denoted pi (�pi)

MILP for case of minimizing sum of absolute adjustments

min ˆ
n

i�1
(yi

�
� yi

�)

Subject to:
T (y) � 0

 i = 1, ... , s (sensitive cells)
yi
�
� pi(1 � Ii)

yi
�
� piIi

         ,       i = s+1, ..., n0 @ yi
� , yi

� @ ei
       (nonsensitive cells)

Ii  binary,                 i = 1, ..., s

Capacities  on adjustments to nonsensitive cells typicallyei
small, e.g., based on measurement error 
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Data Quality Issues

Based on mathematical programming, just like cell
suppression CTA can minimize:

* total value suppressed
* total percent value suppressed
* number of cells suppressed
* logarithmic function related to cell values
* etc.

In addition, adjustments to nonsensitive cells can be
restricted to lie within measurement error

Still, this may not ensure good statistical outcomes, namely,

analyses on original vs adjusted data yield comparable results
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Towards Ensuring Comparable Statistical Analyses

Verification of “comparable results” is mostly empirical
Many, many analyses are possible: Which analysis to choose?

Instead, we focus on preserving key statistics and linear models

* mean values
* variance
* correlation
* regression slope

between original and adjusted data

Can do this using direct (Tabu) search

I will describe how to do so well in most cases using LP

For simplicity, assume that the down/up decisions for
sensitive cells have already been made (by heuristic)
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Preserving Mean Values

When the LP holds a total fixed, it preserves the mean of the
cell values contributing to the total
e.g., fixing the grand total preserves the overall mean

In general, to preserve a mean, introduce (new) constraint:
(adjustments to cells contributing to the mean) = 0ˆ

A criticism of CTA is that it introduces too much distortion into
the values of the sensitive cells

In general the intruder does not necessarily know which cells
are

sensitive nor cares to analyze only sensitive data, so
focusing on distortions to sensitive values may be a bit of
a red herring

Still, it is useful to demonstrate how to preserve the mean
of the sensitive cell values, as the method applies to
preserving the mean of any subset of cells
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Preserving the mean of the sensitive cell values is equivalent
to constraining net adjustment to zero:

ˆ
s

i�1
(yi

�
� yi

�) � ˆ
s

i�1
yi � 0

If, as in the original Dandekar-Cox implementation, we allow
only two choices for , this is unlikely to be feasibleyi

However, satisfying this constraint is not a problem if we
simply expand the set of possible y-values
viz., if we permit slightly larger down/up adjustments

The MILP is:
min c(y)

Subject to:
T (y) � 0

ˆ
s

i�1
(yi

�
� yi

�) � 0

i = 1, ... , s
pi(1 � Ii) @ yi

� @ qi(1 � Ii)
piIi @ yi

� @ qiIi

i = s+1, ..., n0 @ yi
� , yi

� @ ei
Ii  binary, i = 1, ..., s

 are appropriate upper bounds on changes to sensitive cells qi
 is a linear cost function, typically involving sum ofc(y)
absolute adjustments

If the down/up directions are pre-selected, this is an LP
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Preserving Variances

Seek:  , assuming Var(a ���� y) ï Var(a) ȳ � 0

Var(a ���� y) � Var(a) � 2Cov(a, y) � Var(y)

Define   L(y) � Cov(a, y)/Var(a) � (1/(sVar(a)))ˆ
s

i�1
(ai � ā)yi

L(y) is a linear function of the adjustments y

Var(a ���� y)/Var(a) � 2L(y) � (1 � Var(y)/Var(a))

G Var(a ���� y)/Var(a) � 1 G� G 2L(y) � (Var(y)/Var(a)) G

Var(y) is nonlinear, but can be linearly approximated

Alternatively:  typically Var(y)/Var(a) is small
Thus, variance is approximately preserved by minimizing
GL(y)G

The absolute value is minimized as follows:

 * incorporate two new linear constraints in the system:

w A L(y)
w A �L(y)

* minimize w
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Assuring High Positive Correlation

Seek:  Corr(a, a ���� y) ï 1

Corr (a, a + y) = Cov(a, a ���� y) ÷ Var(a) Var(a ���� y)

After some algebra, 

Corr (a, a + y) = (1 � L(y)) ÷ Var(a ���� y) / Var(a)

Again:   yields a good approximation becausemin GL(y)G
it drives both numerator and denominator to one
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Assuring Slope of Regression Line(s)

Seek:  under ordinary least squares regression
 Y � β1 X � β0
of adjusted data Y = a + y on original data X = a,
we want:    and  β1 ï 1 β0 ï 0

β1 � Cov(a � y, a) / Var(a) � 1 � L(y),
β0 � (ā � ȳ) � β1 ā

As , then   if   ȳ � 0 β0 ï 0 β1 ï 1

This corresponds to   (if feasible)L(y) ï 0
Note again:  this is achieved via min GL(y)G
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The Compromise Solution

Variance is preserved by minimizing L(y)
Correlation is preserved by minimizing L(y)
Regression slope preserved by   (if feasible)L(y) ï 0
All subject to  ȳ � 0

If Var(y)/Var(a) is small (typical case), imposing objective
function  assures good results simultaneouslymin GL(y)G

- for variance
- for correlation
- for regression slope

Shortcut is to incorporate the constraint L(y) = 0 (if feasible)

Choosing   is motivated statistically because it impliesL(y) ï 0
(near) zero correlation between values a and adjustments y
viz., as solutions  y and  -y are interchangeable, this
        correlation should be zero
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Examples
4x9 Table          
          
Original  Table         

167500 317501 1283751 587501 4490751 3981001 2442001 1150000 70000 14490006
56250 1487000 172500 667503 1006253 327500 1683000 1138250 46000 6584256

616752 202750 1899502 1098751 2172251 3825251 4372753 300000 787500 15275510
0 35000 0 16250 0 0 65000 0 140000 256250

840502 2042251 3355753 2370005 7669255 8133752 8562754 2588250 1043500 36606022

Protection (+/-)
0 0 0 0 0 0 0 0 21000

625 0 0 0 0 0 0 0 7800
0 0 0 0 0 0 0 40000 0
0 10500 0 4875 0 0 0 0 42000

Table 1: 4x9 Table of Magnitude Data and Protection Limits for Its Seven Sensitive Cells (in red)

         min ˆ̂̂̂ GGGGyiGGGG

166875 307001 1283751 587501 4490751 3981001 2442001 1150000 91000 14499881
56875 1487000 172500 667503 1006253 327500 1683000 1141875 38200 6580706

616752 202750 1899502 1103626 2172251 3825251 4372753 260000 816300 15269185
0 45500 0 11375 0 0 65000 36375 98000 256250

840502 2042251 3355753 2370005 7669255 8133752 8562754 2588250 1043500 36606022
min  |L-Bnd|
 (Variance)

         

167500 317501 1283751 587501 4490751 3981001 2442001 1150000 91003 14511009
55625 1487000 172500 667503 1006253 327500 1683000 1146675 38200 6584256

616752 202750 1899502 1098751 2172251 3825251 4372753 260000 787498 15235508
0 18791 0 8125 0 0 65000 0 191756 283672

839877 2026042 3355753 2361880 7669255 8133752 8562754 2556675 1108457 36614445

     max L      
     (Corr.)

         

167500 317501 1283751 587501 4490751 3981001 2442001 1129000 91000 14490006
55313 1499637 172500 667503 1006253 327500 1683000 1138250 34300 6584256

616752 202750 1899502 1098751 2172251 3825251 4372753 359884 787500 15335394
937 19250 0 8938 0 0 65000 0 94815 188940

840502 2039138 3355753 2362693 7669255 8133752 8562754 2627134 1007615 36598596
   min |L|
(Regress.)

         

167500 317501 1276439 587501 4490751 3981001 2442001 1150000 91000 14503694
55625 1487000 172500 667503 1006253 327500 1683000 1138250 34420 6572051

616752 202750 1899502 1106063 2172251 3825251 4372753 260000 787500 15242822
0 19250 0 8938 0 0 65000 0 194267 287455

839877 2026501 3348441 2370005 7669255 8133752 8562754 2548250 1107187 36606022

Table 2: Original Table After Various Controlled Tabular Adjustments Using Linear Programming
                       To Preserve Statistical Properties of Sensitive Cells Only
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Results for 4x9 Table

Summary: 4x9 Table Linear Programming

Sensitive Cells Corr. Regress.
Slope 

New Var. /
Original Var.

0.98 0.82 0.70min GyiG
min |L-Bound| (Var.) 0.95 0.93 0.94

max L (Cor.) 0.97 1.20 1.52
min |L| (Reg.)* 0.95 0.93 0.95

All Cells Corr. Regress.
Slope

New Var. /
Original Var.

All 4 Functions 1.00 1.00 1.00

Table 3: Summary of Results of Numeric Simulations on
  4x9 Table Using Linear Programming

* = compromise solution
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Results for 13x13x13 (Dandekar) Table

Summary:   13x13x13 Table Linear Programming

Sensitive Cells Corr. Regress.
Slope

New Var. /
Original Var.

0.995 0.96 0.94min GyiG
min |L-Bound| (Var.) 0.995 1.00 1.00

max L (Cor.) 0.995 1.00 1.21
min |L| (Reg.)* 0.995 1.00 1.01

All Cells
All 4 Functions 1.00 1.00 1.00

Table 4: Summary of Results of Numeric Simulations on
  13x13x13 Table Using Linear Programming

* = compromise solution
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Concluding Comments

* statistical agencies have responsibilities
- to respondents (to maintain confidentiality)

 - to data users (to deliver high-quality data products)

* these responsibilities
- are often in opposition
- nevertheless, are not mutually exclusive
- have, in the past, been approached separately 

* research indicates these responsibilities can be addressed
- simultaneously
- using systematic, computationally efficient methods


