FCSM/CDAC Disclosure Limiting Auditing Software: DAS

> Mark A. Schipper Ruey-Pyng Lu Energy Information Administration

BTS Confidentiality Seminar Series June 11, 2003

Background

- To protect confidentiality, agencies suppress table cells that might reveal individual data.
- Software exists to select cells for suppression, provides no evaluation (http://www.eia.doe.gov/oss/disclosure.html).
- Auditing finds the lower and upper bounds on the values of a withheld (suppressed) cell.
- EIA lead an inter-agency project to prepare table auditing software, produced FCSM DAS.

Common Problem Seeking A Common Solution

- Seven Agencies Funded Software (\$250k)
 - Bureau of Labor Statistics
 - Bureau of Economic Analysis
 - Bureau of the Census
 - National Center for Education Statistics
 - Internal Revenue Service
 - National Science Foundation
 - Energy Information Administration

Planned Uses of DAS

- Bureau of Labor Statistics (BLS)
 - DAS was tested and approved for use on Windows NT
 - Future BLS Statistical Order will require the use of DAS with the following:
 - ES-202 Covered Employment and Wages
 - OSHS Occupational Safety and Health Statistics
 - CES Current Employment Statistics
 - OES Occupational Employment Statistics

Planned Uses Continued...

- Energy Information Administration

 Joint project with US Bureau of the Census working on developing auditing tools for processing of the 2002 Manufacturing Energy Consumption Survey
- National Science Foundation

 Initial contact with NSF's contractor on executing DAS software

SWP Paper 22: Report on Statistical Disclosure Limitation Methodology Auditing Software (mid 1970's) – U.S. Census Bureau (Cox, 1980) - Statistics Canada (Sande, 1984) • Audit systems produce upper and lower estimates for the suppressed cell based on linear combinations of published cells

• If software is already available, why DAS?

Software Requirements

- must be written in SAS[©] code, using macros language;
- must use the **PROC LP** (SAS/OR Software) as the linear optimizer;
- must be able to specify (as a LP model) and efficiently audit tables of up to 5 dimensions;

Requirements Continued...

- must display model results (e.g., minimum, maximum, protection range, and appropriate quality warnings) for all suppressed values;
- must use ASCII format for model statement input files; and,
- must pre-verify internal consistency of audit tables.

Modules of Software

- Front-End User Interface
- Pre-Verification of Audit Table(s)
 - Ensure Feasible Linear Model
 - Published Cell Values Sum to Published Totals
 - Rounding of Continuous Cell Values
 - Negative Cell Values
- Linear Program Modeling
- Results Display

Auditing Schematic

Pre-Verification

- Verify Aggregates
 - Dimension Totals and Marginal Totals

Assume Maximum from Rounding Process

•
$$e = Max \{e_i\} \forall i$$

- e is dictated by the rounding process; if rounded to integer e = 0.5
- e is a variable defined by the user
- Pre-Verification Satisfies Inequality
 - $X_i ne \le X_i \pm e \le X_i + ne$

2-D Example: Unrounded Table Total 0.6 0.6 2.2 3.4 1.0 1.0 0.6 2.6 1.0 3.0 1.0 1.0 2.6 2.6 3.8 9.0 Total

2.	-D Exa	ample:	Unrou	nded and	
Suppressed Table					
				Total	
	0.6	0.6	2.2	3.4	
	1.0	V1	V2	2.6	
	1.0	V3	V4	3.0	
Total	2.6	2.6	3.8	9.0	

Operations Research

- Linear Programming (LP) Model
 - Objective Min or Max v; Subject to:
 - 1.0 + v1 + v2 = 2.6 (1)
 - 1.0 + v3 + v4 = 3.0 (2)
 - 0.6 + v1 + v3 = 2.6 (3)
 - 2.2 + v2 + v4 = 3.8 (4)
 - 0.6 + 0.6 + 2.2 + 1.0 + 1.0 + v1 + v2 + v3 + v4 = 9.0(5)
 - $v \ge 0$
 - Feasible LP Model

LP Model Solutions

	Maximum	Minimum
V1	1.6	0.0
V2	1.6	0.0
V3	2.0	0.4
V4	1.6	0.0

2-D Example: Suppressed and Rounded

4

Total

9

- 1 1 2 **3**
- 1 V1 V2 **3**
- 1 V3 V4 **3**
- Total 3 3

16

Operations Research

- Linear Programming (LP) Model 1

 Objective Min or Max v; Subject to:
 1+v1+v2=3
 1+v3+v4=3
 (2)
 1+v1+v3=3
 (3)
 2+v2+v4=4
 (4)

 1+1+2+1+1+v1+v2+v3+v4=9

 (5)
 - $v \ge 0$
 - Infeasible LP Model 1 due to Independent Rounding!

Infeasibility via Rounding

- Adding LP Constraints (1) and (2)
 - v1 + v2 + v3 + v4 = 4
- Adding LP Constraints (3) and (4)
 - v1 + v2 + v3 + v4 = 4
- However, reducing Constraint (5) yields
 - v1 + v2 + v3 + v4 = 3
- Hence, the LP model is <u>not</u> feasible.
- What to do?

How To Ensure Feasibility?

- Accounting for Independent Rounding
 - Add Surplus and Slack Variables to LP
 Equality Constraints Not Used
 - Directly Adjust Table(s) Not Used
 - Represent Rounding Found in Each Published
 Cell Option in Current Use
 - "Best Fit" table approach (Stephen F. Roehrig, Carnegie Mellon University) – Future ?

From Tables to Constraints

For each non-zero, unsuppressed cell value (u), create a new variable x and add the following constraint for each non-zero, unsuppressed cell.

 $u - e \le x \le u + e$

• For withheld cells, associate a variable *x*, constrained only by non-negativity.

New LP Model Format Total X1 X2 X3 **X10** X5 X11 X4 X6 X7 X8 X9 **X12 X13 X14 X15 X16** Total

Revised LP Model

- Linear Programming (LP) Model 2
 Objective Min or Max x; Subject to:
 - $x1 + x2 + x3 = x10 \pmod{1}$
 - $x4 + x5 + x6 = x11 \pmod{2}$
 - $x7 + x8 + x9 = x12 \pmod{3}$
 - ...and so forth
 - $u e \le X \le u + e$ or X is non-negative
 - where *u* denotes non-zero, unsuppressed cell values and *e* is the max (+) rounding value

Revised Model Solutions				
		Bounds Expand		
	Maximum	Minimum		
V1	2.985648844	2.58562E-05		
V2	2.985648844	2.58562E-05		
V3	2.985648844	2.58562E-05		
V4	2.985648844	2.58562E-05		

Is there a another way?

- Assuming all *e*'s take the maximum value has some ill effects
 - With large tables (i.e., large n) likely to obtain wide inequality bounds in verification and optimal solution sets (Kirkendall, Lu, Schipper, Roehrig 2001)
- Is there a better ways to assign values to e_i ?
 - Heuristically assign a value to e
 - Best-Fit Approach

One Approach – Best-Fit Continuous Table (Roehrig)

- Directly adjust table cells in the LP model
 - Goal: Produce an additive table that generates
 the published table, given independent rounding
- "Best-Fit" table exists where objective function is the sum of absolute deviations
 - Minimize $Z = |a_{ij} x_{ij}|$ where i, j range over table rows and columns, a_{ij} are the published values, and x_{ij} are the LP variables

Software Status

- Distributed Beta Version in August 2000 to agencies on CDAC Sub-Committee
- Demonstration at EIA March 2, 2001
 - Test files (csv format) provided by BEA and EIA
- Potential Additions
 - Add a user-friendly display manager system
 - Add a make-tables-add function (e.g., "Best Fit")
 - Add a non-SAS optimizer for optimization speed CPLEX (<u>www.cplex.com</u>)
- Completed inter-agency agreements in August 2001 and distributed copies to those agencies.

26

System Requirements

Operating Systems

Windows 95, 98, NT, and 2000
UNIX

Operating Platforms

Stand-Alone PC
Windows "box"
UNIX "box"