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Letter from the Editor-in-Chief

Dear JTS Readers,

As guest editors Keith Ord and Peg Young point out, forecasting is at the
heart of policymaking. To make policy, one must forecast what will happen if
current policies continue, and one must then forecast what will happen if pol-
icies change. The papers in this issue give policymakers—and those who pro-
vide analysis for them—a variety of approaches to forecasting outcomes
under various policy scenarios.

The structural forecasting models offer the most complex analysis of the inter-
action of the various factors in the evolution of a policy outcome, and are
helpful in analyzing what happens when several policy variables are changing
simultaneously. Auto-regressive models, like ARIMA, sometimes perform bet-
ter as pure forecasting models, in the sense that they often can produce excep-
tionally high predictive accuracy and are particularly well-suited to modeling
the influence of interventions of varying degrees of duration.

In some cases, the models are useful not so much for forecasting the future,
but for “forecasting” the present—or even the past. The Liu and Vilain paper
shows how a forecasting model can be employed to estimate data at a more
disaggregated geographical level than the reported data permit. In the world
of transportation data, where the water glass of data often seems more empty
than full, this application of forecasting may be extremely valuable. 

The application of forecasting to policymaking will be of even greater interest
to me as I leave the Bureau of Transportation Statistics (BTS) to take a new
position as Chief Economist in DOT’s Office of Policy. The Department is
investigating a variety of policy proposals—truck-only lanes, congestion pric-
ing, and increased private sector financing of transportation infrastructure, for
example—and forecasting techniques will be essential in determining the
likely effects of these proposals. 

Editing a journal is a wonderful intellectual experience, and I leave the editor-
ship with considerable regret. I will continue to participate as one of the jour-
nal’s family of reviewers and readers and will continue to make use of the
journal’s papers in my work. Just this month, for example, I used the esti-
mates of price-elasticities of demand for tolled highways that Anna Matas and
José-Luis Raymond presented in their recent article in volume 6 numbers 2/3.
Congestion pricing is a topic of considerable interest in the policymaking cir-
cles of the Department of Transportation.

I am delighted that I leave the Journal of Transportation and Statistics in the
capable hands of Peg Young as Editor-in-Chief and Marsha Fenn as Managing
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Editor. Peg has worked closely with me as Associate Editor, and we have edu-
cated each other in economics and statistics in a mutually edifying partnership.
Marsha Fenn, of course, has been with JTS since the beginning, and the high
quality of the journal is primarily due to her hard work, painstaking thorough-
ness, and high standards. Peg and Marsha will be assisted by David Chien and
Caesar Singh as Associate Editors, by Jennifer Brady as the Data Review Edi-
tor, and by Alpha Glass as the Editorial Assistant.

I want to thank the members of the JTS Editorial Board, our reviewers, our
authors, and our readers, along with the staff, for making my work on the
journal such an enjoyable experience. I look forward to joining our readership
and benefiting from the work of our new editorial staff.

JOHN V. WELLS
Editor-in-Chief
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INTRODUCTION TO THE SPECIAL ISSUE 

ON FORECASTING

The key to effective decisionmaking, in transportation as elsewhere, is to
understand the workings of the system in order to make accurate assessments
of future developments. In this special issue of JTS on transportation forecast-
ing, we have tried to select papers that both examine transportation issues of
interest and provide examples of state-of-the-art approaches to forecasting. 

SUMMARY OF TOPICS IN THIS ISSUE

The six papers in this special issue are grouped into three areas: economic
modeling, surface transportation, and air transportation. The forecasting
methods range from single equation time series procedures to detailed econo-
metric models, and the forecast horizons include the short term (typically a
few months) through to the long term (five years or more).

Economic Studies

Time series methods typically emphasize effective forecasting, whereas
econometric models allow the decisionmaker to gain a deeper understanding
of the structure of a system. Thus, the two approaches are complementary
and, of course, partially overlapping. In the first paper, Fullerton develops an
econometric forecasting system to study two cross-border metropolitan
areas: El Paso, Texas, and Ciudad Juárez, Mexico. Within this system, the
author models two blocks of transportation equations: northbound surface
traffic across the bridge at Ciudad Juárez; and passenger, cargo, and mail
flows at the El Paso airport. The model is then used to forecast surface and
air traffic in the region.

Liu and Vilain use input-output analysis to estimate commodity inflows in the
United States. Using data from the 1993 Commodity Flow Survey (CFS), the
authors demonstrate a method for estimating freight inflows on a smaller,
substate, regional basis and base the estimates on the industrial structure of
the region. Because the CFS only disaggregates data to the state level, Liu and
Vilain test the accuracy of their method by estimating flows at the state level
and then comparing their results to the actual state results.

Surface Transportation

Surface transportation systems often require rather detailed forecasts of pas-
senger flows over relatively short time horizons. García-Ferrer et al. develop
forecast models for monthly bus and Metro ticket demand in Madrid, Spain.
Incorporating changing seasonality, calendar effects, and several interven-
tions, the authors compare forecast results from a dynamic transfer-function
model and a variant of an unobserved component model.
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In an article that studies safety concerns, Raeside studies trends in highway
casualties in Great Britain for both travelers and pedestrians. From these time
series models, he provides forecasts through 2010 of the casualty rate per kilo-
meter and then compares these forecasts to government-set targets to assess if
they are achievable.

Air Transportation

Estimating the impact of September 11, 2001, on U.S. air travel, Ord and
Young provide a method for quickly estimating three aspects of the interven-
tion for monthly time series measures of air travel. By creating three separate
components of the event—an additive outlier, a level shift, and a temporary
decay—the authors illustrate how the combination of the three interventions
can be used to adjust a time series only a few months after a major event
occurs.

The paper by Bhadra and Texter examines changes in the structure of airline
networks in the United States. The growth of low-cost airlines and the
increased use of regional jets have provided the impetus for the industry to
reconsider the value of the traditional hub-and-spoke system and the authors
examine the impact of these changes on airline networks.

TERMS AND ISSUES UNIQUE TO FORECASTING

If the reader is a novice to the forecasting literature, he or she may be con-
fronted with vocabulary or ideas that are new. We hope the following brief
synopsis of some of the terms used in this issue will be helpful.1

Calendar Effects

In addition to measures of seasonality of the data, some models incorporate
additional interventions that reflect consequences of the calendar. Terms such
as trading days and holiday effects indicate interventions that reflect the dif-
fering number of business days in a particular month (trading days) and the
differing position of some holidays in the month (e.g., Easter and Thanks-
giving do not fall on the same date every year). Some seasonality procedures
may not be able to handle the changes in these effects, so dummy variables
may be introduced to reflect their impact.

Hold-Out Samples

In order to measure a model’s ability to forecast unknown future values, a set
of data points from the end of the series is sometimes withheld during model
estimation. The withheld data points, called hold-out observations, can then
be compared with forecasted values of this period to evaluate the accuracy of
the forecast. 

1 An excellent glossary of forecast terms can be found in Makridakis et al. (1998) or
on the Principles of Forecasting website maintained by Professor Scott Armstrong of
the University of Pennsylvania, available at http://morris.wharton.upenn.edu/fore-
cast/dictionary, as of November 2004.
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Ex-Ante and Ex-Post Forecasts

In ex-ante forecasting, a hold-out sample of both the explanatory and depen-
dent variables is created and removed. Forecasts are generated for the
explanatory variables and then used to forecast the dependent variables. The
result is a true forecast. Ex-post forecasts typically use the actual values of the
explanatory variables. In addition, models producing ex-post forecasts may
not use any hold-out sample at all, resulting in all the data being included in
the model estimation. 

Information Criteria

Model fit measures like MSE (mean square error) may not be very informa-
tive when trying to compare models that have different numbers of parame-
ters. In order to compare models, measures such as Akaike’s Information
Criterion (AIC) and Bayesian Information Criterion (BIC) may be used. The
general structure of such measures is: “goodness of fit measure” + “penalty
function” and represents a tradeoff between fit and model complexity.  For
example, the AIC may be written as

The coefficient k denotes the number of parameters fitted. These measures
allow quality-of-fit comparisons across models with differing numbers of
variables.2 

Measures of Fit and Accuracy

In addition to the familiar figures of MSE and R2 (the coefficient of determi-
nation or proportion of variance explained), forecast procedures employ sta-
tistics that measure different aspects of the quality of the model. Since model
fit is not an adequate way to assess forecasting performance, in these articles
forecast performance may be assessed either by using information criteria or
by using measures based on the hold-out sample. In addition to MSE,
authors also use the mean absolute deviation (MAE) and the mean absolute
percent error (MAPE).3 

Theil’s U

If the researcher has developed only one model, he or she could still compare
the results against the simplest of the forecast methods—termed the “naïve”
model—which usually consists of a forecast repeating the most recent value of
the variable (e.g., the best forecast of a stock price today is the price of that
stock yesterday). The model underlying this naïve forecast is the random
walk, which can be specified as

,  where  ~ i.i.d. N (0, ) .

2 For an interesting series of forecast competitions, we suggest the reader pursue the
literature on the M-competition (e.g., Makridakis et al. 1982, 1993; and Makridakis
and Hibon 2000).
3 Armstrong (2001), Harvey (1997), and Kennedy (1998) are just a small subset of
articles dealing with the model fit versus forecast accuracy debate.

AIC n MSE 2k+elog=

yt yt 1– εt+= εt σ2
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That is, each value in the time series is the previous value plus some noise. We
may then compare a selected model to the random walk. Behind this notion is
the belief that if a forecasting model cannot do better than a naïve forecast,
then the model is not doing an adequate job. Theil’s U is a statistic that uses the
random walk as a benchmark for comparing the quality of forecast models.

UPCOMING FORECASTING ARTICLES

As expected, we received more articles than could be incorporated into one
issue. We want to call your attention to three articles, in particular, that we
expect to publish in the near future. We originally thought this issue would
contain both general transportation forecasting research as well as special
articles describing current forecasting models used by the Department of
Transportation (DOT). But space required that we delay publishing the two
articles dealing with the DOT models until a later issue. A paper by David
Chien of the Bureau of Transportation Statistics will present an evaluation of
some of the models for greenhouse gas emissions. Roger Schaufele will sum-
marize the models used by the Federal Aviation Administration to forecast
large U.S. air carrier domestic revenue passenger-miles, domestic passenger
enplanements, and domestic revenues.  

The third article we plan to publish is by Miriam Scaglione (Institute of
Economy and Tourism, Switzerland) and Andrew Mungall (Lausanne Insti-
tute for Hospitality Research, Switzerland), who study interventions with
respect to international air travel. They analyzed the impact on Swiss air traf-
fic of Swissair’s decision to concentrate all long-haul flights through Zurich
and its subsequent filing for bankruptcy. They also look at how air traffic in
Switzerland was affected by the terrorist attacks in the United States.

The special issue has generated considerable interest in transportation and
forecasting in such groups as the Transportation Research Board and the
International Institute of Forecasters. We expect this interest to result in a
number of forecasting papers in future issues of JTS. 

Keith Ord 

Guest Editor
The McDonough School of Business
Georgetown University

Peg Young

Guest Editor
Bureau of Transportation Statistics
U.S. Department of Transportation 
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Borderplex Bridge and Air Econometric Forecast Accuracy

THOMAS M. FULLERTON, JR.

Department of Economics & Finance
University of Texas at El Paso, 
El Paso, TX 79968-0543
Email: tomf@utep.edu

ABSTRACT

El Paso, Texas, and Ciudad Juárez, Mexico, jointly
comprise a large cross-border metropolitan econ-
omy. El Paso is an important port-of-entry for inter-
national cargo, as well as a key transit point for
regional trade flows in the southwestern United
States. Reflective of those traits, the borderplex
econometric forecasting system includes two blocks
of transportation equations. One subsystem models
northbound surface traffic across the international
bridges from Ciudad Juárez. The other deals with
passenger, cargo, and mail flows at El Paso Interna-
tional Airport. To gauge model reliability, an analy-
sis of borderplex transportation variable forecast
accuracy relative to a random walk benchmark is
completed. Empirical evidence is mixed with respect
to model precision for the 1998 to 2003 sample
period for which data are currently available.

INTRODUCTION

Given the historical importance of regional and
international trade flows through El Paso, Texas,
transportation variables have formed part of the
borderplex econometric model from its inception in
1997. Currently comprising 218 individual equa-
tions, two sets of transportation equations are

KEYWORDS: Econometric forecasts, air transportation,
border economics. JEL Category R15: Regional
Econometrics
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included in the borderplex model (Fullerton 2001).
One block of transportation equations is for north-
bound traffic categories on the international bridges
connecting El Paso with Ciudad Juárez, Mexico.
Another subsystem models passenger, cargo, and
mail flows at El Paso International Airport.

Fullerton and Tinajero (2003) and others gener-
ated short-term cyclical forecasts of borderplex
business and economic conditions using the model
from 1998 forward. The three-year out-of-sample
forecast period for transportation variables is
included in these publications. For some other vari-
ables, the effective simulation period is longer due to
lags in data collection and dissemination. When
missing values for the last historical period of any
series occur, a model simulation provides estimates
of the missing observations. Data release delays
occasionally contribute to that circumstance. To
date, formal prediction accuracy assessments have
not been conducted for the transportation variables
included in the border region system of simulta-
neous equations.

This paper first examines the accuracy of the bor-
derplex transportation variable forecasts published
for 1998 through 2003. Predictive accuracy is
assessed relative to a random walk benchmark. Sub-
sequent sections of the paper include discussions of
regional econometric forecasting research, border-
plex model attributes, and an empirical analysis of
transportation forecast accuracy between 1998 and
2003. A summary and suggestions for future
research are provided in the conclusion.

REGIONAL AND BORDER ECONOMETRIC 
FORECASTING RESEARCH

Structural model forecasting analysis for regional
and national economies can be traced back to 1936
(Dhane and Barten 1989). Overall design flexibility
makes it a widely used tool for corporate planning
efforts and public policy analysis. Structural models
have been applied to a wide variety of regional and
metropolitan economies in the United States,
Europe, and Asia (Klein 1969; Bolton 1985; Kim
1995; Hunt and Snell 1997). Since 1997, one such
model has been utilized to simulate economic and
business conditions in the cross-border regional
economy comprised by El Paso, Texas; Las Cruces,

New Mexico; Ciudad Juárez, Mexico; and Ciudad
Chihuahua, Mexico (Fullerton 2001).

Several authors have suggested that out-of-sam-
ple forecasting accuracy and simulation analyses
can be important tools for assessing econometric
model reliability (Leamer 1983; West 1995;
Granger 1996; McCloskey and Ziliak 1996). Out-
of-sample forecasts are model simulations that go
beyond the end of the sample period for which his-
torical data are available. A growing number of
studies have used these forecasts for the regional
class of structural equation models (West and Ful-
lerton 1996; Fullerton and West 1998; Fullerton et
al. 2000; Lenze 2000; Fullerton et al. 2001; West
2003). Those studies indicate that regional forecasts
for many variables, such as employment, income,
and population, are relatively accurate. However,
the track records for regional housing activity are
less successful.

Infrastructure planning has long required system-
atic forecasting efforts for transportation systems.
Numerous methodologies have been examined over
the years (Schneider 1975; Beenstock and Vergottis
1989; Matthews 1995; Caves 1997; Dennis 2002).
However, to date, relatively few regional transporta-
tion forecasting programs have been examined for
historical accuracy. This gap in the literature is par-
tially addressed in this paper by examining the accu-
racy of borderplex air and bridge traffic forecasts
published between 1998 and 2003.

Figure 1 depicts the basic strategy deployed in
the borderplex system of simultaneous equations.
In addition to being affected by national economic
trends in the United States, El Paso feels the effects
of the national business cycle fluctuations in Mex-
ico, as well as regional business cycles in Ciudad
Juárez. The reverse circumstance also holds true
for Ciudad Juárez. Consequently, individual equa-
tion specifications in the model may contain
national macroeconomic, domestic regional, inter-
national macroeconomic, and/or cross-border met-
ropolitan variables (Fullerton 2001). 

Recent economic history along the Mexican bor-
der in Texas succinctly reflects the attributes shown
in figure 1. The “Tequila Effect” peso devaluation
of December 1994 precipitated a severe loss in
Mexican consumer purchasing power that led to a
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decline in international bridge crossings and a
reduction in retail sales in El Paso (Fullerton 1998;
Fullerton 2000). Macroeconomic shocks on the
north side of the border also affect the local econ-
omy. The 2001 U.S. recession hurt manufacturing
plants throughout the borderplex. In response to
that, plus a changed inspection environment subse-
quent to September 11, 2001, cargo vehicle traffic
from Mexico sagged (Fullerton and Tinajero 2002).

The borderplex model is used for a variety of
purposes, with the most important being regional
business trend monitoring and econometric fore-
casting analysis. While there are a small number of
commercially available forecasts for El Paso County
(Leppold 2002; Shankar 2003), those efforts gener-
ally ignore cross-border business conditions and
omit transportation flows. The model is also used in
a variety of public policy analysis exercises, such as
the provision of simulation data utilized in testi-
mony provided to Texas State Senate committees
regarding local income trends and North American
Free Trade Agreement (NAFTA) adjustment efforts.
Local governmental units and public utilities have
engaged a series of annual contracts with the Uni-
versity of Texas at El Paso Border Region Modeling
Project for special simulation exercises designed to
assist infrastructure planning efforts. Access to com-
prehensive forecasts involving both sides of the bor-
der using a common set of exogenous variable
assumptions are critical to those endeavors.

To accomplish the model’s goals, sectoral cover-
age is necessarily broad. Twelve separate equation
blocks are utilized: demographics, employment, per-
sonal income, labor earnings, disaggregated retail
sales, residential real estate, nonresidential construc-
tion, maquiladora activity, northbound interna-
tional border crossings, air transportation, water
consumption, and regional bankruptcy trends. The

structure of the model contains numerous direct and
indirect feedback loops connecting the various
equation blocks (Fullerton 2001). Because annual
data are used, lag structures are fairly short in all of
the different blocks. They are confirmed every year
via goodness-of-fit tests. 

The 218 equations in the current version of the
border forecasting system offer at least partial detail
for each of the 12 blocks of endogenous equations.1

The 218 equations contain 40 identities and 178
stochastic equations. Over the years, some equation
specifications have remained unchanged, while mul-
tiple variations have been tested for others. Specifi-
cation updates occur due to new data acquisitions,
alternative possibilities identified in the literature,
and/or as a consequence of previous relationships
not performing well following the annual data bank
updates and parameter re-estimation exercises.
Heightened security inspection efforts and post-9/11
travel disruptions also caused equation modifica-
tions in both 2002 and 2003. Of the 178 fitted
results ultimately selected every year, most exhibit
good statistical traits, but nearly all contain at least
partial design and/or empirical flaws.

Of the 178 regression equations, 51 required
serial correlation correction techniques. Three cate-
gories of data generating processes can be seen in
the affected residual series: 18 autoregressive, 28
moving average, and 5 mixed autoregressive-
moving average sets of parameters. Given the vari-
ety of autocorrelation processes involved, parameter
estimation was accomplished using a nonlinear
ARMAX procedure (Pagan 1974). That more than
one-fourth of all the border model stochastic specifi-
cations required serial correlation correction in part
reflects widespread data constraints that have long
affected regional econometric modeling efforts.
Unavailable data series occasionally prevent some
systematic variation in dependent variables from
being handled as satisfactorily as they can be in
macroeconometric models (Fullerton and West
1998). As with national econometric models, persis-
tence effects probably also contribute to the preva-

FIGURE 1  Borderplex Model Design

U.S. national 
economy

Mexico
national economy

El Paso
metropolitan economy

Ciudad Juárez
metropolitan economy

1 Statistical output for the econometric equations cur-
rently comprising the borderplex model are available from
the author.
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lence autocorrelation in borderplex equation
residuals (Fair 1984; Campbell and Mankiw 1987).

Table 1 lists and describes the variables included
in the transportation blocks of the border model
and empirical summaries for all of the air and
bridge equation parameter estimates. Table 2, which
reports Border Region Modeling Project historical
data used to estimate those blocks of equations, can

TABLE 1  Borderplex Model Variables

Series Description

Endogenous variables

AIRP U.S. Air Travel Price Index1 
(1982–1984 = 100)

ELAFDT El Paso International Airport Inbound 
Freight Shipments (1,000 tons)

ELAFET El Paso International Airport 
Outbound Freight Shipments 
(1,000 tons)

ELAMD El Paso International Airport Inbound 
U.S. Mail (1,000 tons)

ELAME El Paso International Airport 
Outbound U.S. Mail (1,000 tons)

ELBAC Bridge of the Americas Northbound 
Light Vehicle Traffic (millions)

ELBAT Bridge of the Americas Northbound 
Cargo Vehicle Traffic (millions)

ELBAW Bridge of the Americas Northbound 
Pedestrian Traffic (millions)

ELBPC Paso del Norte Northbound Light 
Vehicle Bridge Traffic (millions)

ELBPW Paso del Norte Northbound 
Pedestrian Bridge Traffic (millions)

ELBTC Total Northbound Light Vehicles 
(millions)

ELBTT Total Northbound Cargo Vehicles 
(millions)

ELBTW Total Northbound Pedestrians 
(millions)

ELBYC Ysleta-Zaragoza Northbound Light 
Vehicle Bridge Traffic (millions)

ELBYT Ysleta-Zaragoza Northbound Cargo 
Vehicle Bridge Traffic (millions)

ELBYW Ysleta-Zaragoza Northbound 
Pedestrian Bridge Traffic (millions)

ELAPDD El Paso International Airport Domestic 
Passenger Arrivals (thousands)

ELAPDI El Paso International Airport 
International Passenger Arrivals 
(thousands)

ELAPDT El Paso International Airport Total 
Passenger Arrivals (thousands)

ELAPED El Paso International Airport Domestic 
Passenger Departures (thousands)

ELAPEI El Paso International Airport 
International Passenger 
Departures (thousands)

ELAPET El Paso International Airport Total 
Passenger Departures (thousands)

MAILP U.S. Air Mail Price Index (1996 = 100)
1 This index is the Consumer Price Index Component for Personal 
Travel. U.S. Department of Commerce, U.S. Census Bureau, Statisti-
cal Abstract of the United States (Washington, DC: Various issues).

Series Description

Exogenous variables

CESTRNPI U.S. Consumption Expenditures, 
Intercity Travel (billion $)

CJMQM Ciudad Juárez Maquiladora 
Employment (thousands)

CJPOP Ciudad Juárez July 1 Population 
(thousands)

DV911 International Bridge Security Dummy 
Var. = 1 for 2001, 2002, …

ELBDC Dedicated Commuter Lane 
Northbound Light Vehicles (millions)

ELGMP96 El Paso Gross Metropolitan Product 
(billion 1996 $)

ELPPOP El Paso July 1 Population (thousands)

ELYWSD El Paso Wage and Salary 
Disbursements (million $)

ELYLP El Paso Labor and Proprietor 
Earnings (million $)

GDP96 U.S. Gross Domestic Product (GDP) 
(billion 1996 $)

MXREX Mexico, Real Exchange Rate Index, 
Peso/$ (1997 = 100)

PDCCESTRNPI U.S. Intercity Chained Travel Deflator 
(1996 = 100)

PDCGDP U.S. GDP Chained Price Deflator 
(1996 = 100)

Equation statistics

SUM SQ Error Sum of Squares
STD ERR Standard Error of Regression
LHS MEAN Left Hand Side Dependent Variable 

Sample Mean
R SQ R-Squared Coefficient of 

Determination
R BAR SQ Adjusted R-Squared Coefficient of 

Determination
F F Statistic for Joint Slope Coefficient 

Equality to Zero Hypothesis
DW Durbin Watson Serial Correlation 

Statistic for logs 1 (DW(1)) and 2 
(DW(2))

H Durbin H Lagged Dependent Variable 
Serial Correlation Statistic

TABLE 1  Borderplex Model Variables
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TABLE 2  Borderplex Bridge and Air Equation Estimation Results 

EQUATIONS 1–2 are Air Transportation Identities
EQUATIONS 3–12 are Air Transportation Stochastic Equations

Equation 1 Air Passengers, Total Departures (thousands)
ELAPET = ELAPED + ELAPEI

Equation 2 Air Passengers, Total Arrivals (thousands)
ELAPDT = ELAPDD + ELAPDI

Equation 3 U.S. Air Travel Price Index, 1982–1984 = 100
AIRP = f(AIRP.1, PDCGDP)
Ordinary Least Squares, annual data for 39 periods from 1964–2002
airp = 0.84754 * airp[–1] + 44.5066 * pdcgdp – 8.24792

(17.0174) (3.72458) (2.51809)

Sum Sq 946.932 Std Err 5.1287 LHS Mean 105.877
R Sq 0.9955 R Bar Sq 0.9952 F  2, 36 3947.49
DW(1) 1.8062 DW(2) 2.5556 H 0.5858

Equation 4 Air Passengers, Domestic Departures (thousands)
ELAPED = f(ELAPED.1, ELYWSD/AIRP, DV 911)
Nonlinear Least Squares, annual data for 22 periods from 1981–2002
Elaped = 0.82612 * elaped[–1] + 21.0483 * elywsd/airp – 150.688 * dv911 – 324.617

(7.04844) (1.03279) (1.98167) (0.60654)

Sum Sq 128582 Std Err 86.9694 LHS Mean 1482.80
R Sq 0.9322 R Bar Sq 0.9163 F 4, 17 58.4537
DW(1) 2.2001 DW(2) 2.0029 H –0.6211
AR_0   = 0.27511 * AR_1

(1.06312)

Equation 5 Air Passengers, International Departures (thousands)
ELAPEI   =   f(ELAPEI.1, MXREX, PDCCESTRNPI/PDCGDP)
Ordinary Least Squares, annual data for 23 periods from 1980–2002
elapei = 0.49491 * elapei [–1] – 0.19892 * mxrex –6.81160 * dv911 – 13.6134 * pdccestrnpi/pdcgdp + 41.6922

     (3.23979)  (2.54669)   (1.48202) (1.15825)   (2.61212)

Sum Sq 445.716 Std Err 4.9761 LHS Mean 11.9377
R Sq 0.6691 R Bar Sq 0.5956 F 4, 18 9.1001
DW(1) 1.2223 DW(2) 1.8125 H 0.5157

Equation 6 Air Passengers, Domestic Arrivals (thousands)
ELAPDD   =   f(ELAPDD.1, CESTRNPI/PDCCESTRNPI, DV911)
Ordinary Least Squares, annual data for 23 periods from 1980–2002
elapdd   = 0.91955 * elapdd[–1] + 0.88772 * cestrnpi/pdccestrnpi  – 121.591 * dv911 + 115.683
 (9.43567) (0.16531) (1.57280) (1.13256)

Sum Sq 158515 Std Err 91.3394 LHS Mean 1422.51
R Sq 0.9206 R Bar Sq 0.9080 F 3, 19 73.3817
DW(1) 1.7249 DW(2) 1.6678 H 0.4568

Equation 7 Air Passengers, International Arrivals (thousands)
ELAPDI   =   f(ELAPDI.1, MXREX, PDCCESTRNPI/PDCGDP)
Ordinary Least Squares, annual data for 23 periods from 1980–2002
elapdi   =   0.77877 * elapdi[–1] – 0.11833 * mxrex + 0.21759 * pdccestrnpi/pdcgdp + 14.4671

(6.00170) (1.89065)  (0.01736)  (1.09570)

Sum Sq 493.062 Std Err 5.0942 LHS Mean 15.3853
R Sq 0.8035 R Bar Sq 0.7725 F  3, 19 25.8982
DW(1) 1.6222 DW(2) 1.7017 H –0.4845

(continued on next page)
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Equation 8 Air Freight, Outbound (thousand tons)
ELAFET   =   f(ELAFET.1, GDP96, DV911)
Ordinary Least Squares, annual data for 28 periods from 1975–2002
elafet   = 0.34113 * elafet[–1] + 0.00576 * gdp96 – 6.9705 * dv911 – 25.2374

(2.02867) (4.38056) (3.70933) (4.19841) 

Sum Sq 89.6066 Std Err 2.1717 LHS Mean 20.8295
R Sq 0.9687 R Bar Sq 0.9637 F  3, 19 195.943
DW(1) 1.4562 DW(2) 1.8892 H 2.0793

Equation 9 Air Freight, Inbound (thousand tons)
ELAFDT   =   f(ELAFDT.1, ELYLP/PDCCESTRNPI, ELGMP96, DV911)
Ordinary Least Squares, annual data for 23 periods from 1980–2002
elafdt = 0.41934 * elafdt[–1] + 0.00034 * elylp/pdccestrnpi + 5.25436 * elgmp96 – 5.90542 * dv911 – 43.0747

(4.22055) (0.30584) (3.24465) (3.66921) (4.5494)

Sum Sq 62.8499 Std Err 1.9073 LHS Mean 26.7198
R Sq 0.9900 R Bar Sq 0.9871 F 5, 17 337.956
DW(1) 1.8939 DW(2) 2.3568 H 0.1479
MA_0   =   – 0.93588 * MA_1

(3.38261)

Equation 10 Air Mail Price Index (1996 = 100)
MAILP   =   f(MAILP.1, PDCGDP)
Ordinary Least Squares, annual data for 39 periods from 1964–2002
mailp   =   0.06430 * mailp[–1] + 32.1832 * pdcgdp – 3.01038

(0.43204) (6.34350) (4.71268)

Sum Sq 21.9588 Std Err 0.7810 LHS Mean 19.2099
R Sq 0.9946 R Bar Sq 0.9943 F  2, 36 3299.64
DW(1) 1.9237 DW(2) 2.1208 H 0.4443

Equation 11 Air Mail, Outbound (thousand tons)
ELAME   =   f(ELAME.1, ELGMP96, MAILP/PDCGDP, DV911)
Ordinary Least Squares, annual data for 28 periods from 1975–2002
elame   =  0.65473 * elame[–1] +  0.04247 * elgmp96 – 0.01800 * mailp/pdcgdp – 1.14069 * dv911 + 0.75765

(3.94033) (1.44456) (0.54124) (6.30882) (0.92028)

Sum Sq 1.0553 Std Err 0.2142 LHS Mean 1.7473
R Sq 0.7345 R Bar Sq 0.6883 F  4, 23 15.9039
DW(1) 1.9430 DW(2) 2.1283 H 0.1106

Equation 12 Airmail, Inbound (thousand tons)
ELAMD   =   f(ELAMD.1, ELGMP96, MAILP/PDCGDP, DV911)
Ordinary Least Squares, annual data for 28 periods from 1975–2002
elamd = 0.83160 * elamd[–1] + 0.06354 * elgmp96 + 0.01042 * mailp/pdcgdp – 1.44147 * dv911 – 0.40496

(6.21740) (0.95369) (0.14702) (3.70439) (0.22777)

Sum Sq 4.8725 Std Err 0.4603 LHS Mean 2.8202
R Sq 0.7252 R Bar Sq 0.6774 F  4, 23 15.1713
DW(1) 1.6837 DW(2) 1.8787 H 1.0486

EQUATIONS 13–15 are International Bridge Identities
EQUATIONS 16–23 are International Bridge Stochastic Equations

Equation 13 International Bridges, Total Cargo Vehicles (millions)
ELBTT   =   ELBAT + ELBYT

Equation 14 International Bridges, Total Light Vehicles (millions)
ELBTC   =   ELBAC + ELBDC + ELBYC + ELBPC

TABLE 2  Borderplex Bridge and Air Equation Estimation Results  (Continued)
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Equation 15 International Bridges, Total Pedestrians (millions)
ELBTW   =   ELBAW + ELBYW + ELBPW

Equation 16 Bridge of the Americas, Cargo Vehicles (millions)
ELBAT   =    f(ELBAT.1, CJMQM, DV911)
Ordinary Least Squares, annual data for 26 periods from 1977–2002
elbat   =   0.72275 * elbat[–1]   +   0.00042 * cjmqm – 0.01454 * dv911 +   0.02716

(5.27650) (1.53320) (0.31027) (1.06493) 

Sum Sq 0.0733 Std Err 0.0577 LHS Mean 0.2438
R Sq 0.8138 R Bar Sq 0.7885 F  3, 22 32.0614
DW(1) 1.7214 DW(2) 2.0725 H 0.9385

Equation 17 Bridge of the Americas, Light Vehicles (millions)
ELBAC   =   f(MXREX, ELPPOP.1 + CJPOP.1, DV911)
Ordinary Least Squares, annual data for 26 periods from 1977–2002 
elbac   =   –0.01704 * mxrex + 0.00165 * elppop[–1] + cjpop[–1]  – 2.44885 * dv911 + 6.78609

(2.12403) (3.23975) (4.05759) (6.36514)

Sum Sq 10.9309 Std Err 0.7049 LHS Mean 7.1934
R Sq 0.4886 R Bar Sq 0.4189 F  3, 22 7.0068
DW(1) 1.6757 DW(2) 1.9535

Equation 18 Bridge of the Americas, Pedestrians (millions)
ELBAW   =   f(ELBAW.1, CJMQM, DV911)
Ordinary Least Squares, annual data for 26 periods from 1977–2002
elbaw   = 0.36724 * elbaw[-1]   +   0.00047 * cjmqm + 0.33277 * dv911 + 0.30128

(2.33034) (1.32460) (3.45088) (2.99741)

Sum Sq 0.3336 Std Err 0.1179 LHS Mean 0.5942
R Sq 0.5671 R Bar Sq 0.5130 F 3, 24 10.4817
DW(1) 1.5787 DW(2) 1.6586 H 0.9508

Equation 19 Paso del Norte Bridge, Light Vehicles (millions)
ELBPC   =   f(ELBPC.1, ELPPOP.1+CJPOP.1, MXREX, DV911)
Ordinary Least Squares, annual data for 33 periods from 1970–2002 
elbpc   =   0.50442 * elbpc[–1] + 0.00001 * elppop[–1] + cjpop[–1] + 0.00141 * mxrex – 0.48639 * dv911 + 2.14509

(3.00439)  (0.03346) (0.30880) (1.33118)  (2.55494)

Sum Sq 5.2607 Std Err 0.4335 LHS Mean 4.5782
R Sq 0.2961 R Bar Sq 0.1955 F  4, 28 2.9441

DW(1) 1.7126 DW(2) 2.4887 H 2.6796

Equation 20 Paso del Norte Bridge, Pedestrians (millions)
ELBPW   =   f(ELBPW.1, CJMQM, DV911)
Ordinary Least Squares, annual data for 33 periods from 1970–2002
elbpw   = 0.59209 * elbpw[–1] + 0.00113 * cjmqm + 1.35238 * dv911 + 1.79973

(4.29580) (0.47648) (2.15409) (2.25472) 

Sum Sq 13.9889 Std Err 0.7635 LHS Mean 4.9874
R Sq 0.5408 R Bar Sq 0.4834 F 3, 24 9.4228
DW(1) 1.5463 DW(2) 1.9588 H 1.4861

Equation 21 Ysleta-Zaragoza Bridge, Cargo Vehicles (millions)
ELBYT   =   f(ELBYT.1, CJMQM, MXREX, DV911)
Ordinary Least Squares, annual data for 33 periods from 1970–2002
elbyt   =   0.89245 * elbyt[–1] + 0.00033 * cjmqm – 0.00046 * mxrex – 0.04697 * dv911 + 0.03436

(10.9453) (2.39713) (1.60623) (2.17479) (1.33619)

Sum Sq 0.0180 Std Err 0.0253 LHS Mean 0.1041
R Sq 0.9691 R Bar Sq 0.9646 F  4, 28 219.208
DW(1) 1.6956 DW(2) 2.4523 H 0.9429

TABLE 2  Borderplex Bridge and Air Equation Estimation Results  (Continued)

(continued on next page)
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be accessed via the University of Texas at El Paso
College of Business Administration website
(www.utep.edu). The statistical diagnostics for these
two groups of equations worsened notably once
2001 observations were included in the historical
sample set in 2002. That circumstance continued in
2003 even after 2002 data became available. Most
notably, the 18 stochastic equations include 22 sep-
arate slope coefficients that fail to satisfy the 5 per-
cent significance criterion. This development is most
likely temporary and is expected to fade eventually
as the aftermath of the post-September 11, 2001, air
travel and border disruptions dissipates.

Multi-equation regional econometric forecasting
systems usually omit air transportation activities. The
borderplex model partially overcomes this customary
gap with a 12-equation subsystem encompassing air
passenger, freight, and mail flows through the El Paso
International Airport. Domestic passenger arrivals
and departures are modeled as functions of metro-
politan real wage and salary disbursements and a real
price variable for air travel (Howry 1969). Interna-
tional passenger traffic flows are dependent on the
inflation-adjusted value of the peso and the relative
price index for air transportation (González and
Moral 1995). Equations 1 through 12 in table 2
show that a combination of national and border
region variables are used to model both freight and
airmail shipments and deliveries.

International bridge traffic from Mexico is mod-
eled with a block of 11 equations, 8 of which are
stochastic. Coverage in this portion of the model is
confined to northbound border commuting across
the three bridges within the El Paso city limits and
excludes other regional crossings data as a conse-
quence of time series information constraints.
Merchandise trade statistics for El Paso extend
back only to 1993, precluding the estimation of
trade flow equations that might otherwise be of
interest to policy analysts and corporate planners.
Three categories of traffic flows are included in the
current version of the border model: pedestrians,
personal automobiles, and cargo vehicles. More
than 9 million pedestrians, 11 million light vehicles,
and 700,000 cargo vehicles crossed the border
using these arteries in 2001 (Fullerton and Tinajero
2003). Not surprisingly, a mixture of national and
international exogenous variables, plus border
region endogenous data, is used in the specifica-
tions shown in equations 13 through 23 in table 2
(Sawyer and Sprinkle 1986; Cobb et al. 1989;
Fullerton 2001).

In addition to the transportation endogenous
variables that are analyzed for historical predictive
accuracy, air travel and air mail price indices are
also included in the borderplex model. Similar to
other equations in the transportation blocks of the
model, their respective empirical traits continued to

Equation 22 Ysleta-Zaragoza Bridge, Light Vehicles (millions)
ELBYC   =   f(ELBYC.1, CJPOP.1, DV911)
Nonlinear Least Squares, annual data for 33 periods from 1970–2002
elbyc = 0.73020 * elbyc[–1] + 0.00109 * cjppop[–1] – 0.27012 * dv911 + 0.17834

(4.67118) (2.31758) (1.59233) (1.39335) 

Sum Sq 0.7507 Std Err 0.1769 LHS Mean 2.2453
R Sq 0.9585 R Bar Sq 0.9533 F 3, 24 184.796
DW(1) 1.5615 DW(2) 2.0065 H 1.9514
MA_0   = 0.20841 * MA_1

 (0.75853)

Equation 23 Ysleta-Zaragoza Bridge, Pedestrians (millions)
ELBYW   =   f(ELBYW.1, MXREX, CJMQM, DV911)
Ordinary Least Squares, annual data for 33 periods from 1970–2002
elbyw   =   0.82936 * elbyw[–1]   +   0.00143 * mxrex   +   0.00020 * cjmqm + 0.25096 * dv911 – 0.11255

(7.42629) (2.26824) (0.83996) (5.25357) (1.92377)

Sum Sq 0.0931 Std Err 0.0577 LHS Mean 0.2314
R Sq 0.9226 R Bar Sq 0.9116 F  4, 28 83.4640
DW(1) 2.0700 DW(2) 1.9894 H –1.0059

TABLE 2  Borderplex Bridge and Air Equation Estimation Results  (Continued)
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be acceptable in both 2002 and 2003. Curiously,
however, the estimated parameter for the auto-
regressive lag of the mail price index is not statisti-
cally significant. Given the nature of postal service
price increases, the partial adjustment specification
is probably correct. Prior to 2003, it obtained better
estimation results for the lagged dependent variable
regression coefficient.

HISTORICAL ACCURACY
ASSESSMENT: 1998–2003

The preceding section provides descriptive insights
with respect to the overall structure of the border-
plex model. It does not shed any light on its general
forecast reliability for the transportation equations.
To examine this question, a straightforward accu-
racy assessment was devised along the regional
modeling guidelines proposed by West (1995). His-
torically, extrapolations from univariate ARIMA
equations are regarded as the most reliable bench-
marks against which structural model performance
should be measured (Granger 1996). Because
annual data are used in the border model, small
sample sizes preclude estimating ARIMA equations.

To circumvent that obstacle, random walk projec-
tions were used to provide the backdrop against
which a comparison can be made with the previ-
ously published structural model forecasts. Figures 2
and 3 illustrate the variable growth rates observed
for many borderplex transportation series. Given
that variability, the random walks utilized only the
last historical observation available for each vari-
able. While apparently simple, this type of bench-
mark has proven surprisingly effective in other
regional forecasting contexts where sawtooth
growth patterns occur (Fullerton et al. 2001). The
1998 to 2003 outlook publications allow assembling
the original data for each dependent variable, thus
avoiding the common problem of inadvertently
handicapping the structural simulations when
revised data must be used to generate the random
walk forecasts (West and Fullerton 1996).

Using borderplex model data for 1998 to 2003,
three-year forecasts are shown for selected transpor-
tation variables (see table 3). The forecasts are ex
ante dynamic simulations and do not employ histor-
ical data for the right-hand-side variables. National

consultant service subscriptions provide forecast
data for U.S. and Mexico macroeconomic variables
used as exogenous regressors (Alemán 2003;
Behravesh et al. 2003; Zandi 2003). For the 1998 to
2003 sample period, this allows 15 observations to
be assembled for each of the air and bridge depen-
dent variables of interest.

The previously published forecasts for each
transportation variable are compared with random
walk benchmarks. As shown for four representative
variables in table 3, both sets of three-year forecasts
are listed in order of publication. Accordingly, pre-
diction data for 1998, 1999, and 2000 are followed
by similar numbers for 1999, 2000, and 2001, next,
and so forth. For the last two sets of previously pub-
lished forecasts, only two and one historical data
points are currently available for accuracy compari-
sons. Accuracy measures applied to the data include

FIGURE 2  Borderplex Air Activity: 1979–2003

FIGURE 3  Borderplex Bridge Activity: 1978–2003
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root mean square error statistics (RMSEs) and Theil
inequality coefficients, also known as U-statistics
(Pindyck and Rubinfeld 1998). U-statistics can take
values between 0 and 1. A value of 0 indicates a per-
fect fit. For the covariance proportions of the pre-
diction error second moments, the optimal values
are 0, 0, and 1. See the appendix for specific infor-
mation on the calculation of those measures.

Table 4 summarizes predictive accuracy results for
air passenger traffic, air freight, and airmail flows in
and out of El Paso International Airport. Passenger
traffic variables analyzed for out-of-sample forecast
precision include inbound passengers from domestic
flights, inbound passengers from international flights,
outbound passengers to domestic destinations, and
outbound passengers to international destinations.
The other stochastic equation series examined
include inbound freight, outbound freight, inbound
mail, and outbound mail.

TABLE 3  

Year Actual data

Structural 
model 

forecast
Random 

walk
Domestic Passenger Air Arrivals (thousands)
1998 1,590.138 1,627.3 1,600.5

1999 1,631.010 1,677.7 1,600.5
2000 1,611.738 1,729.6 1,600.5

1999 1,631.010 1,630.9 1,607.1
2000 1,611.738 1,654.9 1,607.1

2001 1,516.602 1,679.8 1,607.1

2000 1,611.738 1,664.2 1,631.0
2001 1,516.602 1,701.5 1,631.0
2002 1,414.823 1,743.5 1,631.0

2001 1,516.602 1,573.2 1,611.7

2002 1,414.823 1,560.4 1,611.7
2003 1,443.058 1,581.0 1,611.7

2002 1,414.823 1,451.1 1,451.1
2003 1,443.058 1,476.0 1,451.1

2003 1,443.058 1,413.2 1,414.8

Inbound Air Freight (thousand tons)
1998 47.396 41.475 39.273

1999 55.600 44.802 39.273
2000 55.204 48.565 39.273

1999 55.600 44.237 40.317
2000 55.204 48.800 40.317
2001 46.013 53.467 40.317

2000 55.204 58.673 56.131

2001 46.013 63.098 56.131
2002 51.637 67.427 56.131

2001 46.013 48.556 54.958
2002 51.637 47.683 54.958

2003 45.366 50.941 54.958

2002 51.637 52.066 46.013
2003 45.366 54.573 46.013

2003 45.366 46.854 51.637

Bridge of the Americas Northbound 
Light Vehicle Traffic (millions)
1998 7.553 7.870 7.421
1999 8.196 8.048 7.421
2000 8.168 8.229 7.421

1999 8.196 8.090 7.942

2000 8.168 8.209 7.942
2001 7.295 8.327 7.942

2000 8.168 8.276 8.196
2001 7.295 8.394 8.196

2002 4.708 8.534 8.196

2001 7.295 7.723 8.168
2002 4.708 7.800 8.168
2003 4.680 7.889 8.168

2002 4.708 4.655 7.295

2003 4.680 4.771 7.295

2003 4.680 4.820 3.658

Ysleta-Zaragoza Bridge Northbound
Cargo Vehicles (millions)
1998 0.294 0.327 0.289

1999 0.329 0.368 0.289
2000 0.365 0.411 0.289

1999 0.329 0.345 0.314
2000 0.365 0.374 0.314

2001 0.331 0.403 0.314

2000 0.365 0.356 0.329
2001 0.331 0.379 0.329
2002 0.329 0.400 0.329

2001 0.331 0.367 0.365

2002 0.329 0.369 0.365
2003 0.311 0.372 0.365

2002 0.329 0.319 0.331
2003 0.311 0.326 0.331

2003 0.311 0.319 0.329

TABLE 3  

Year Actual data

Structural 
model 

forecast
Random 

walk

TABLE 3  Borderplex Transportation Historical and Forecast Data
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In table 4, the first row for each variable contains
the structural model predictive summary statistics
and the second row reports the same estimates for
the random walk extrapolations. With the excep-
tion of the airmail series, U-statistics close to 0 are
obtained for both sets of airport activity forecasts.
Examination of the second moment prediction error
proportions reveals that the passenger variable
structural model forecasts tend to be biased, but the
same problem afflicts the random walk counter-
parts for those series. Similar to the regional housing
starts results obtained for Florida (Fullerton and
West 1998; Fullerton et al. 2000), the borderplex
model passenger forecasts obtain higher U-statistic

values than do their respective random walk
alternatives.

In contrast, the structural model air cargo and
airmail variables also analyzed in table 4 obtain U-
coefficients that are lower than those of their respec-
tive random walk counterparts. Those outcomes are
more in line with regional results previously
obtained for variables such as employment, popula-
tion, or personal income (West and Fullerton 1996;
Lenze 2000). Interestingly, the distributions of the
inequality coefficient second moment proportions
(U-bias, U-variance, and U-covariance) are much
closer to the optimum 0, 0, 1 distribution for the
nonpassenger variables. However, those improve-

TABLE 4  Air Series Predictive Accuracy
Sample period: 1998–2003

Series RMSE U-statistic U-bias U-variance U-covariance

El Paso International Airport Domestic Passenger Arrivals

ELAPDD1 125.9 0.004 0.51 0.01 0.48

ELAPDD2 99.7 0.003 0.33 0.02 0.65

El Paso International Airport International Passenger Arrivals

ELAPDI1 6.947 0.276 0.74 0.02 0.24

ELAPDI2 4.867 0.203 0.75 0.03 0.22

El Paso International Airport Domestic Passenger Departures

ELAPED1 140.9 0.004 0.38 0.01 0.62

ELAPED2 118.1 0.004 0.26 0.11 0.63

El Paso International Airport International Passenger Departures

ELAPEI1 5.796 0.255 0.69 0.00 0.31

ELAPEI2 4.657 0.202 0.68 0.03 0.29

El Paso International Airport Inbound Freight

ELAFDT1 8.622 0.055 0.02 0.10 0.88

ELAFDT2 9.838 0.063 0.07 0.09 0.84

El Paso International Airport Outbound Freight

ELAFET1 4.889 0.046 0.05 0.01 0.94

ELAFET2 5.399 0.052 0.03 0.02 0.95

El Paso International Airport Inbound U.S. Mail

ELAMD1 1.231 0.507 0.23 0.04 0.74

ELAMD2 1.361 0.552 0.28 0.15 0.57

El Paso International Airport Outbound U.S. Mail

ELAME1 0.934 0.957 0.25 0.06 0.69

ELAME2 1.035 0.978 0.24 0.08 0.68
1 Previously published borderplex structural model forecast.
2 Random walk forecast calculated as last available historical observation.
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ments are observed for the structural model and the
random walk data.

Table 5 reports the accuracy estimates for the
international bridge data included as part of the
borderplex modeling system. For the eight series
modeled, results point to superior accuracy by the
random walk benchmarks in only two cases. Both
of those cases, however, involve cargo vehicle traf-
fic, an increasingly important traffic category as
trade liberalization occurs under the auspices of
NAFTA (Orrenius et al. 2001; Fullerton and Tina-
jero 2002). Table 5 indicates that bias is a problem
for both sets of cargo vehicle structural forecasts.
Additional testing is obviously warranted for the
specifications associated with both of the bridge
cargo econometric specifications.

Results shown in table 5 for pedestrian and per-
sonal vehicle traffic flows from Ciudad Juárez to El
Paso all point to relatively better simulation preci-
sion by the econometric model. Those outcomes are
encouraging, because both categories influence
retail sales performance in El Paso in noticeable
ways and represent key indicators for the regional
economy (Fullerton 2001). Personal vehicles are
also important in terms of emissions impacts on the
environment (Roderick 1993; Funk et al. 2001). As
with earlier documented regional employment and
income results (West and Fullerton 1996; Fullerton
et al. 2004), outcomes shown in table 5 indicate
that borderplex model forecasts of automobile and
pedestrian categories of northbound bridge traffic
are accurate relative to random walk benchmarks.

TABLE 5  Bridge Series Predictive Accuracy
Sample period: 1998–2003

Series RMSE U-statistic U-bias U-variance U-covariance

Bridge of the Americas Northbound Light Vehicle Traffic

ELBAC1 1.573 0.181 0.31 0.02 0.67

ELBAC2 1.900 0.241 0.27 0.06 0.67

Bridge of the Americas Northbound Cargo Vehicle Traffic

ELBAT1 0.089 0.831 0.45 0.31 0.24

ELBAT2 0.026 0.269 0.08 0.01 0.91

Bridge of the Americas Northbound Pedestrian Traffic

ELBAW1 0.273 0.760 0.01 0.04 0.95

ELBAW2 0.327 0.883 0.12 0.05 0.83

Paso del Norte Bridge Northbound Light Vehicle Traffic

ELBPC1 0.430 0.091 0.26 0.01 0.73

ELBPC2 0.506 0.110 0.15 0.03 0.82

Paso del Norte Bridge Northbound Pedestrian Traffic

ELBPW1 1.237 0.228 0.62 0.00 0.38

ELBPW2 1.469 0.272 0.74 0.00 0.26

Ysleta-Zaragoza Bridge Northbound Light Vehicle Traffic

ELBYC1 0.339 0.110 0.00 0.02 0.98

ELBYC2 0.432 0.141 0.08 0.05 0.87

Ysleta-Zaragoza Bridge Northbound Cargo Vehicle Traffic

ELBYT1 0.041 0.451 0.61 0.05 0.34

ELBYT2 0.035 0.406 0.02 0.02 0.96

Ysleta-Zaragoza Bridge Northbound Pedestrian Traffic

ELBYW1 0.209 0.929 0.27 0.02 0.71

ELBYW2 0.248 0.995 0.46 0.12 0.42
1 Previously published borderplex structural model forecast.
2 Random walk forecast calculated as last available historical observation.
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These results are encouraging, because simulations
from the model are being used in transportation
planning exercises conducted by the El Paso Metro-
politan Planning Organization. The presence of bias
in two of the pedestrian and two of the automobile
sets of forecasts indicates, however, that even these
equations experience simulation flaws.

Due to the small numbers of similar studies for
regional transportation forecasting efforts and for
other border economies, it is hard to assess whether
the outcomes shown in tables 4 and 5 are unique to
the borderplex economy. Given their relatively high
U-coefficients, caution should be exercised with
respect to using the out-of-sample air passenger and
bridge cargo forecasts published using the border-
plex model. At a minimum, subscribers and other
users should use the latest available historical obser-
vations as “sanity checks” for those extrapolations
(Fullerton and West 1998). Although the random
walk approach using the latest historical observa-
tions has been presented here as a competitive
benchmark, practice has shown that the information
content of random walk forecasts frequently com-
plements that contained in structural model counter-
parts (Granger 1996). Over time, it will become
possible to assess whether structural model simula-
tion reliability improves for these variable categories.

CONCLUSION

Transportation variables have formed integral com-
ponents of the borderplex econometric forecasting
effort from its inception in 1997. Included among
the 218 equations in the border model are 2 blocks
of transportation equations. The latter cover inter-
national bridge crossings from Ciudad Juárez as
well as air traffic activity at El Paso International
Airport. To examine out-of-sample forecast reliabil-
ity, extrapolation accuracy is examined for those
variables between 1998 and 2003.

Results indicate that the air freight, airmail,
bridge auto, and bridge pedestrian series forecasts
are somewhat more accurate than random walk
benchmarks over the course of the sample period.
Outcomes for the air passenger and bridge cargo
simulations are less encouraging. In each of those
cases, the random walk benchmarks obtain lower

root mean square error statistics and Theil inequal-
ity coefficients. Care should be exercised when
assessing the usefulness of forecasts for those vari-
ables. Future forecasts for those variables should
probably be compared with the last available histor-
ical observations. That step can potentially help
ensure that the model simulations do not stray too
far what might be reasonably expected during
multi-step prediction periods.

Border region econometric forecasting analysis is
still a relatively new endeavor. As additional out-
looks are published, greater numbers of observa-
tions will eventually permit more formal testing to
be engaged. The sample used here is also geographi-
cally limited in scope. Replication for other border
areas such as San Diego-Tijuana and Laredo-Nuevo
Laredo would be helpful. Should similar efforts be
carried out for other international metropolitan
economies, evidence obtained for the borderplex
indicates that transportation forecasting accuracy
can be achieved in some cases. Because accuracy rel-
ative to random walk benchmarks is not achieved
for all of the variables examined, evidence from
other regions will help document whether that is a
problem specific to the borderplex or one that is
general in nature.

ACKNOWLEDGMENTS

Partial funding support for this research was pro-
vided by El Paso Electric Company, El Paso Metro-
politan Planning Organization, Wells Fargo Bank of
El Paso, National Science Foundation Grant SES-
0332001, and the University of Texas at El Paso
College of Business Administration. Helpful com-
ments were provided by Peg Young, Keith Ord,
Roberto Tinajero, Marsha Fenn, and three anony-
mous referees. Econometric research assistance was
provided by Armando Aguilar and Brian Kelley.

REFERENCES

Alemán, E. 2003. Síntesis. Global Insight Perspectivas Económi-
cas de México. Marzo:1.1–1.10.

Beenstock, M. and A. Vergottis. 1989. An Econometric Model
of the World Market for Dry Cargo Freight and Shipping.
Applied Economics 21:339–356.

Behravesh, N., A. Hodge, and C. Latta. 2003. So Far, So Good.
Global Insight U.S. Economic Outlook April:1–14.



20 JOURNAL OF TRANSPORTATION AND STATISTICS V7, N1 2004

Bolton, R. 1985. Regional Econometric Models. Journal of
Regional Science 25:130–165.

Campbell, J.Y. and N.G. Mankiw. 1987. Permanent and Transi-
tory Components in Macroeconomic Fluctuations. American
Economic Review Papers and Proceedings 77:111–117.

Caves, R.E. 1997. European Airline Networks and Their Impli-
cations for Airport Planning. Transport Reviews 17:121–144.

Cobb, S.L., D.J. Molina, and K. Sokulsky. 1989. The Impact of
Maquiladoras on Commuter Flows on the Texas-Mexico
Border. Journal of Borderlands Studies 4:71–88.

Dennis, N.P.S. 2002. Long-Term Traffic Forecasts and Flight
Schedule Patterns for a Medium-Sized European Airport.
Journal of Air Transport Management 8:313–324.

Dhane, G. and A.P. Barten. 1989. Where It All Began: The 1936
Tinbergen Model Revisited. Economic Modelling 6:203–219.

Fair, R.C. 1984. Specification, Estimation, and Analysis of Mac-
roeconometric Models. Cambridge, MA: Harvard University
Press.

Fullerton, T.M., Jr. 1998. Cross Border Business Cycle Impacts on
Commercial Electricity Demand. Frontera Norte 10:53–66.

______. 2000. Currency Movements and International Border
Crossings. International Journal of Public Administration
23:1113–1123.

______. 2001. Specification of a Borderplex Econometric Fore-
casting Model. International Regional Science Review
24:245–260.

Fullerton, T.M., Jr., M.M. Laaksonen, and C.T. West. 2001.
Regional Multi-Family Housing Start Forecast Accuracy.
International Journal of Forecasting 17:171–180.

Fullerton, T.M., Jr., J. Luevano, and C.T. West. 2000. Accuracy
of Regional Single-Family Housing Start Forecasts. Journal
of Housing Research 11:109–120.

Fullerton, T.M., Jr., and R. Tinajero. 2002. Cross Border Cargo
Vehicle Flows. International Journal of Transport Economics
29:201–213.

______. 2003. Borderplex Economic Outlook: 2003–2005.
Business Report SR03-2. El Paso, TX: University of Texas at
El Paso, Border Region Modeling Project.

Fullerton, T.M., Jr., R. Tinajero, and L. Waldman. 2004.
Regional Econometric Income Forecast Accuracy. Journal of
Forecasting (forthcoming).

Fullerton, T.M., Jr., and C.T. West. 1998. Regional Econometric
Housing Start Forecast Accuracy in Florida. Review of
Regional Studies 28:15–42.

Funk, T.H., L.R. Chinkin, P.T. Roberts, M. Saeger, S. Mulligan,
V.H.P. Figueroa, and J. Yarbrough. 2001. Compilation and
Evaluation of a Paso del Norte Emission Inventory. Science
of the Total Environment 276:135–151.

González, P. and P. Moral. 1995. An Analysis of the Interna-
tional Tourism Demand in Spain. International Journal of
Forecasting 11:233–251.

Granger, C.W.J. 1996. Can We Improve the Perceived Quality of
Economic Forecasts? Journal of Applied Econometrics
11:455–473.

Howry, E.P. 1969. On the Choice of Forecasting Models for Air
Travel. Journal of Regional Science 9:215–224.

Hunt, L.C. and M.C. Snell. 1997. Comparative Properties of
Local Econometric Models in the UK. Regional Studies
31:891–901.

Kim, C.H. 1995. Regional Forecasting Analysis for the Kyunggi
Province. Korean Economic Journal 11:147–162.

Klein, L.R. 1969. The Specification of Regional Econometric
Models. Papers of the Regional Science Association
23:105–115.

Leamer, E.E. 1983. Let’s Take the Con Out of Econometrics.
American Economic Review 73:31–43.

Lenze, D.G. 2000. Forecast Accuracy and Efficiency: An Evalua-
tion of Ex Ante Substate Long-Term Forecasts. International
Regional Science Review 23:201–226.

Leppold, K. 2002. El Paso, TX. Global Insight U.S. Markets
Metro Economies—South. Fall:67–72.

Matthews, L. 1995. Forecasting Peak Passenger Flows at Air-
ports. Transportation 22:55–72.

McCloskey, D.N. and S.T. Ziliak. 1996. The Standard Error of
Regressions. Journal of Economic Literature 34:97–114.

Orrenius, P.M., K. Phillips, and B. Blackburn. 2001. Beating Bor-
der Bottlenecks in U.S.-Mexico Trade. Federal Reserve Bank
of Dallas Southwest Economy. September/October: 1–8.

Pagan, A.R. 1974. A Generalised Approach to the Treatment of
Autocorrelation. Australian Economic Papers 13:260–280.

Pindyck, R.S. and D. L. Rubinfeld. 1998. Econometric Models
and Economic Forecasts. Boston, MA: Irwin/McGraw-Hill.

Roderick, L.M. 1993. A Computer Simulation of the Impact of
the Cordova Bridge Traffic Delays on the Environment.
Journal of Environmental Science & Health, Part A
28:1927–1946.

Sawyer, W.C. and R.L. Sprinkle. 1986. The Effects of Mexico’s
Devaluations and Tariff Changes on U.S. Exports. Social
Science Journal 23:55–62.

Schneider, J.B. 1975. Self-Fulfillment of Long-Range Transpor-
tation Forecasts. Traffic Quarterly 29:555–569.

Shankar, R. 2003. El Paso. Economy.com Précis: METRO.
March:1–3.

Theil, H. 1961. Economic Forecasts and Policy, 2nd edition.
Amsterdam, Netherlands: North-Holland.

West, C.T. 1995. Regional Economic Forecasting: Keeping the
Crystal Ball Rolling. International Regional Science Review
18:195–200.

______.2003. Structural Regional Factors that Determine Abso-
lute and Relative Accuracy of U.S. Regional Labor Market
Forecasts. Journal of Agricultural & Applied Economics 35
(Supplement):121–135.



FULLERTON 21

West, C.T. and T.M. Fullerton, Jr. 1996. An Assessment of the

Historical Accuracy of Regional Economic Forecasts. Jour-

nal of Forecasting 15:19–36.

Zandi, M.M. 2003. Reasons for Optimism. Economy.com

Regional Finance Review 14:11–16. April.

APPENDIX

Equation (A1) shows how the RMSEs are com-
puted. In (A1), Ys is the forecast value for variable
Y, Ya is

(A1)

the actual historical value for Y, and T is the total
number of forecasts for Y.

Equation (A2) provides the details for calculating
the U-statistics. The 

(A2)

denominator in (A2) causes inequality coefficients
to vary between 0 and 1. When U = 0,  for
all t and a perfect fit is obtained. At the other
extreme, if U = 1, the predictive performance of the
model cannot be any worse (Pindyck and Rubinfeld
1998).

Equation (A3) illustrates the formulae for the sec-
ond moment inequality proportions. UM, US, and

UC represent bias, variance, and covariance propor-
tions,

,

,

and

(A3)

respectively, of the second moment of the prediction
errors (Theil 1961). The bias proportion measures
the extent to which the average values of the simu-
lated and actual series deviate from each other. It thus
provides an indication of systematic error. Optimally,
the bias proportion will approach zero. The variance
proportion indicates the ability of the model to repli-
cate the degree of variability in the variable of inter-
est. Again, as simulation performance improves, the
variance proportion approaches 0. The covariance
proportion measures unsystematic error. As simula-
tion accuracy improves, the covariance proportion
approaches 1. As noted by Theil (1961), the optimal
distribution of the second moment inequality propor-
tions is UM = 0, US = 0, and UC = 1.
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Estimating Commodity Inflows to a Substate Region Using 

Input-Output Data: Commodity Flow Survey Accuracy Tests

ABSTRACT 

This paper describes a methodology to estimate cur-
rent U.S. commodity inflows to a substate region
using a supply-side, commodity-by-industry, input-
output model and commodity flow data for U.S.
states. Because the 1993 Commodity Flow Survey
does not capture data below the state level, the esti-
mation of commodity flows to a particular substate
region of the United States has always proven diffi-
cult. By combining state-level commodity flow data
with the supply-side, commodity-by-industry, input-
output model, an estimate of commodity flows to
smaller regions can be carried out entirely based on
the regional industrial structure. Since the actual
substate flows are typically unobserved, the accu-
racy of the methodology is unknown. However, by
applying the same methodology to larger regions,
with actual states used as the forecast region, the
estimates can be compared with actual flows while
maintaining an acceptable level of accuracy.

INTRODUCTION

A typical problem faced by transportation planners is
being able to anticipate the need for expanded or new
transportation infrastructure, facilities, or services.
Estimates of freight flows between regions can

KEYWORDS: Estimating commodity flows, freight plan-
ning, input-output model applications.
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provide much-needed information for decisionmak-
ing. In the United States, estimates of freight flows
exist between individual states,1 but little data exist
for flows between areas below the state level, which
we refer to as substate regions. Estimates of freight
flows between substate regions could be generated
based on costly direct surveys or by using secondary
sources of data to infer patterns based on characteris-
tics of the areas in question (Holguín-Veras 2000;
Ortúzar and Willumsen 1994). The approach
described here falls into the second category, deriving
estimated freight flows from secondary data on the
region’s industrial structure. As these data are often
readily and cheaply available (e.g., in the United
States down to the county level), this approach is
both simple and cost-effective.

In general, the process of estimating freight out-
flows from substate regions is fairly simple. Rela-
tively accurate estimates can be produced based on
data on the region's industrial structure and its
state-to-state trade. By mechanically assigning
freight commodity exports to the producing indus-
tries, estimates can be made of the share of a sub-
state region’s state exports based on the presence of
these industries.

However, the estimation of the second category,
freight inflows, is considerably more complicated.
While we can roughly assign the production of com-
modities to certain industries, the consumption of
commodities by various industries requires far more
detailed knowledge of their input use. Fortunately,
this type of information is readily available in input-
output models, and some simple manipulations of
standard input-output data yield a tool that can
then be used to assign state-level commodity inflows
to any substate region. 

In the following sections we outline a methodol-
ogy to estimate commodity inflows to smaller
regions, which was initially described in Vilain et al.
(1999). The methodology was devised specifically to
regionalize inflows to substate regions in the United
States, but it has also been used in other countries. In
general, the methodology can be used in any country
or region, given the availability of the requisite data
on input-output accounts described below. 

Having proposed a methodology to estimate
freight inflows that is simple to use, it is of interest
to examine the accuracy of the technique. In this
paper, we carry out a series of simulations that we
then test for their predictive accuracy. The key to
being able to determine the accuracy of simulations
is to carry them out for states as if they were smaller
substate regions. Since states are regions for which
commodity flow data does exist, we can then com-
pare the predicted inflows with the actual observed
inflows. Our results show that, excluding inflows of
mining, petroleum, or coal products, the methodol-
ogy leads to relatively accurate forecasts. Total
inflows of all commodities to a state are typically
predicted within 10% error, but the accuracy of
forecasts for individual commodities is far more
variable. Despite the mixed results, we argue that
the methodology described here is valid, yielding
predictions of commodity inflows that have an
acceptable level of accuracy. The relative accuracy
of the methodology must also be considered keep-
ing in mind that, in the absence of expensive origin-
destination surveys, there are really no alternatives
that yield reliable estimates of commodity inflows.

SUPPLY-SIDE INPUT-OUTPUT MODEL AND 
COMMODITY FORECASTING

The gravity model is a widely used technique for
estimating commodity inflows to a region. In this
approach, observed freight flows between areas are
encouraged by demand factors (e.g., concentrations
of population) and accessibility, while transporta-
tion costs between regions act to inhibit such flows.
Gravity models have been applied extensively to the
analysis of passenger trip generation, and examples
exist of their application to freight demand model-
ing (Ortúzar and Willumsen 1994). In terms of our
problem of predicting commodity inflows to a sub-
state area, this model could be estimated at the state
level and the estimated parameters used to predict
inflows to a substate region. However, data require-
ments to calibrate such a model (notably transpor-
tation costs) are significant. This same conclusion
applies to other, closely related models based on dis-
crete choice analysis, including disaggregated freight
generation models.

1 The U.S. Department of Commerce’s 1993 Commodity
Flow Survey contains state-level data on commodity flows.
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We propose an alternative approach here, one that
bases estimates of actual commodity inflows to a
substate region entirely on the region's industrial
structure. The details of the industrial structure are
themselves obtained from regional input-output data.
The procedure can be carried out fairly easily, relying
entirely on published national input-output data,
existing state-level commodity flow data from the
1993 Commodity Flow Survey (USDOC 1993), and
regional data on employment or earnings by industry.

The procedure involves two steps. First, using
regional input-output data (USDOC 1997), we
define the proportion of commodities used by vari-
ous industries in a region of interest. Then we apply
these proportions to existing state-level commodity
inflow data from the 1993 Commodity Flow Survey
to share down the state-level flows to the region.
One significant advantage of the methodology is
that it takes into account the possibility that the
input needs of a regional industry are met, in whole
or in part, by regional suppliers. By accounting for
existing patterns of regional inter-industry freight
flows, the accuracy of estimated regional freight
inflows is presumably increased greatly.2

The procedure can be represented schematically.
In essence, data on commodity inflows to a region
(e.g., a state) are divided into the various industries
(including households) that are the likely users of
these commodities as inputs. Once the inflows have
been divided among the various inflow-consuming
industries, they are then disaggregated to the appro-

priate substate regions based on their industrial
structure. Let us suppose there are three industries
and two substate regions, called I and II. This would
then produce an assignment of commodity inflows
that would follow the pattern shown in figure 1.

To describe the supply-side, commodity-by-
industry model, consider a set of accounts that
details the sales of each commodity to the various
industries that use it as inputs in production as well
as sales of that commodity to final demand. (Details
on the input-output accounts we describe are con-
tained in the literature; see, e.g., Miller and Blair
1985.) For each of the commodities consumed in
the economy we can write the following equation: 

(1)

Equation (1) defines an identity, namely that the
total production of commodity i is equal to the sales
of that commodity to each of the n industries in the
economy (e.g., ui2 is sales of commodity i to Indus-
try 2) and commodity sales to final demand, ei. In
input-output accounts, final demand is consump-
tion by households and governments as well as
investment expenditures and the difference between
imports and exports.

If there are m commodities being produced and
consumed in the economy, we can represent all sales
of commodities to industries as a matrix of dimen-
sions m x n:

(2)

U is composed of commodity sales to industries,
with each uij representing the amount of commodity
i (expressed in monetary units) used by industry j as
an input in its production. In other words, each of
the m rows of U details the total industrial destina-

FIGURE 1  Commodity Inflow

Total inflow of commodities to state

Region I

Industry 1 Industry 2 Industry 3

Region II Region I Region II Region I Region II

2 This aspect of the methodology contrasts with the
approach suggested by Memmott (1983). While also based
on input-output models, his suggested procedure for esti-
mating regional freight flows does not account for the pos-
sibility of freight inflows being supplied regionally. As a
result, the applicability of the approach for accurately esti-
mating inflows from outside the region is limited. 

qi ui1 ui2 ... uin ei+ + + +=

U uij[ ]=
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tions of each of the m commodities represented in
the accounts. 

We then transform U into a matrix  whose ele-
ments are those in U divided by their row sum. For-
mally, this is defined as

(3)

where bij is equal to the share of commodity i sold
to industry j. In matrix terms, the derivation of  is
obtained with the following simple operation: 

(4)

where Q is an m by 1 vector of all commodity gross
outputs as individually defined in equation (1), and
^ indicates a diagonalized matrix. 

By dividing row elements by their total produc-
tion for industrial or final demand uses, we obtain
the commodity-by-industry equivalent of the “sup-
ply-side” input-output model (Augustinovics 1970).
With each bij element of   representing the share of
commodity i sold to industry j, the information in 
will allow us to disaggregate state-level commodity
inflows to the appropriate industries that use the
commodities as inputs. Several further steps are
required to do so. 

The matrix , which is a matrix representing
national data, must be regionalized to the state level.
In order to share commodity inflows to the regional
level, a procedure based on location quotients is
used.3 We define a simple state-level location quo-
tient as the relative representation of a national com-
modity-producing industry in a particular state s:

(5)

Earningsi is earnings in the industry that produce
commodity i in either state s (indicated by a super-
script s) or in the nation (superscript N). Earningss

is total regional earnings and EarningsN is total
national earnings. Note that the location quotient
could also be based on employment data.

Location quotients are calculated for each of the
n industries producing the m commodities in .
These are then used to regionalize the elements of .
Generating a vector of n state-level location quo-
tients for state s, Ls, the following multiplication is
carried out:

(6)

where ^ again indicates the diagonalized matrix
formed from the vector Ls. Each element of 
adjusts the national values of  downward if the
state contains a presence of the industry that is less
than the national average. Specifically, each element
of  is equal to

(7)

A final adjustment is then carried out. The row
sums of  (as opposed to each bij s element of )
should then be adjusted to equal 1. The reason for
this is simple. Because the matrix will be used to
apportion freight flows to different industries, we
are interested in the relative values of the elements
of  rather than their absolute values. To ensure
that row sums equal 1, we carry out a balancing
procedure:

(8)

This balancing procedure now ensures that the row
sums of a new matrix, Cs, sum to 1. This procedure
is necessary in order to ensure that all commodity
inflows to state s can be assigned an end user. It
essentially reflects the following assumption: if an
industry, say industry j, is not present in state s, the
inflows of any commodity that it uses as an input
are simply assumed to be used by other industries
that are both present in the state and use the com-
modity as an input. 

This same procedure is also carried out if industry j
is present in the state but its presence is below the
national average; whatever inputs are not used by
industry j are simply allocated to all the other indus-
tries that use the commodity and are present in state s.

Each cij s element of matrix Cs now can be said to
approximate the proportion of commodity i that is
shipped to state s that will be used by industry j. In
other words, Cs directs the commodities entering

3 Location quotients are widely used as a method of
regionalizing national data, in particular input-output
data. The measure indicates the relative concentration of
an industry in a region, where values for equation (5) that
are larger than 1 indicate a greater than average concen-
tration and values less than 1 the opposite. 
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state s to the industries that can be expected to use
the commodities as inputs. Mathematically, the oper-
ation involves a simple post-multiplication of the
state-level commodity inflows by Cs, resulting in a
disaggregation of these inflows into the industries
that use them as inputs. If we define the vector 
that contains the inflows of the m commodity to state
s, we perform the following matrix multiplication:

(9)

Again, ^ indicates the vector  is converted to a
diagonalized matrix. The operation produces the
matrix  of dimension m x n, which apportions
freight inflows among the state industries that will
use them as inputs. Specifically, each  element of
matrix  details the amount of commodity i flow-
ing to industry j in state s. 

To further regionalize these flows to the substate
level, another procedure needs to be carried out. In
a manner similar to the previous regionalization, we
calculate a matrix of regional earnings shares,
Lregion, which measures the relative representation
of each industry in the substate region. Multiplying

 by a matrix produced from diagonalizing the
vector Lregion produces the matrix .

(10)

Each  element of the matrix  gives an
approximation of the amount of a commodity
shipped to state s that is used by a regional indus-
try.4 The state-level commodity inflows are, thus,
directed to a substate region, depending on the loca-
tion of industries using the commodities as inputs.
Any row sum of  gives an estimate of the total
amount of a given commodity that is shipped to the
region. The resulting vector of estimated regional
inflows is denoted as  and the total inflow of
any given commodity as .

(11)

An important assumption embodied in the use of
 is that each regional industry that uses a given

commodity as an input will use it in the same pro-
portions as the industry nationally. In other words,
it is assumed that local industries use commodity
inputs in relation to the relative proportions in , a
standard assumption when regionalizing national
input-output flows with location quotients. 

Another assumption implicit in the methodology
is that all firms purchase locally produced commod-
ity inputs in the same proportions. For example, if
commodity i is produced in the state and satisfies
10% of local state needs, it is assumed that all firms
that use commodity i will purchase 10% of their
input needs locally. This assumption can presumably
create bias in estimates of regional inflows. To the
degree that the local production of i is concentrated
in certain substate regions, some local industries
might purchase more than 10% of their needs from
the local state suppliers. Finally, in addition to assum-
ing that all firms purchase locally produced inputs in
the same proportions, the methodology further
assumes that industries purchase their extra-regional
inputs from any given region in the same proportion. 

ACCURACY TESTS

Having described a relatively simple methodology
to estimate freight inflows to a substate region, we
want to determine its accuracy. As mentioned previ-
ously, the approach suggested here is intended for
estimates of freight flows to substate regions where,
by definition, little or no data exist to permit valida-
tion of the estimates. This would imply that validat-
ing the results of the methodology would require
actual survey data on freight inflows to the region.
The lack of such surveys for small regions is pre-
cisely what motivated the elaboration of the supply-
side, commodity-by-industry methodology.5 

An alternative approach to determining the accu-
racy of the methodology is possible, however. This
involves treating states as if they were substate
regions and creating larger regions comprised of a
series of individual states. Then, the total freight4 Note that because Lreg contains simple regional shares

of an industry, no balancing procedure is required. Our
procedure differs from previous regionalizations in that
we have already apportioned commodities to industries in
state s and only need to share the flows between regions in
the state based on the presence of the industry.
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5 An exception is the for-fee Transearch® freight data
provided by Reebie Associates for the United States (avail-
able at www.reebie.com, as of Sept. 27, 2004). Future
research could carry out accuracy tests based on this data.
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inflows to these several states can be used as if they
were inflows to an individual state. In so doing, one
must be careful to remove the freight flows between
the various states that make up the larger region.
The result is data detailing all inflows of commodi-
ties to the larger region from outside this region.

It should be pointed out that the Commodity
Flow Survey is comprehensive in that all modes are
covered. For the 1993 Commodity Flow Survey, the
U.S. Census Bureau used a sample of 200,000 estab-
lishments in manufacturing, mining, wholesale, and
retail.6 Each establishment was asked to report ship-
ments for two-week periods in each of the four cal-
endar quarters identifying domestic origin and
destination, commodity type, weight, value, and
mode of transport. The Commodity Flow Survey
does exclude certain commodities, notably crude
petroleum. Also, while imports and exports are
included, commodities shipped from a foreign loca-
tion through the United States to another destina-
tion are excluded. 

In carrying out our tests, we selected four large
regions in the United States that each contain a
number of states. The regions are as follows:

� Northeast Region: Connecticut, Maine, Massa-
chusetts, New Hampshire, Rhode Island, and
Vermont; 

� Middle Atlantic Region: Delaware, Maryland,
New Jersey, New York, and Pennsylvania;

� Great Lakes Region: Illinois, Indiana, Michigan,
Ohio, and Wisconsin; and

� West Coast Region: California, Nevada, Wash-
ington, Oregon, Alaska, and Hawaii. 

We applied the procedure to seven states: Massa-
chusetts, New York, Pennsylvania, Ohio, Illinois,
California, and Washington.

For each of these four regions, we estimated a
measure equivalent to  for the entire group of
component states, as defined in equation (9). For
the purposes of this analysis, the seven states we
analyzed were treated as if they were substate
regions. For each of these states, both  and 

were calculated according to the definitions of equa-
tions (10) and (11), as if the detailed state-level data
in the Commodity Flow Survey did not exist. 

How do these estimates compare with actual
freight inflows to the states? Details of the esti-
mates and the actual observed inflows for each of
the seven states are reported in appendix tables A1
to A7, along with the percentage error of the fore-
casts. In general, the methodology performs well
for total forecasts of different commodities, but the
forecast of specific commodities is variable. Total
commodity inflows to a state are forecast within
10% accuracy for all states except California and
Ohio. For example, in the case of Massachusetts,
the forecast error for total commodity inflows is
9.6% below the actual observed inflow. This fig-
ure, however, obscures the fact that while some
commodities are forecast with less than 5% error,
others are forecast with as much as 56% error
(e.g., transportation equipment). This is due to the
fact that a simple summation of the percentage
error of individual commodities will see negative
and positive forecast errors canceling each other.

Two commodities, mineral products and petro-
leum and coal products, tended to predict very
poorly (in the case of New York, e.g., the forecast
was off by over 800%) and were not included in
tables A2 through A7. This can be partly explained
by the different patterns of energy consumption in
various regions of the United States. In particular,
the use of such energy sources as oil, coal, hydro-
electric, and nuclear power can vary across regions
regardless of industries.7 Because of the consistently
large error in predicting these commodities, we do

6 We rely on the older 1993 Commodity Flow Survey
rather than the more recent 1997 Commodity Flow Sur-
vey, because the sample size was twice as large in the ear-
lier survey, which we believe increases its reliability.

ρρs

ρρreg φreg

7 The bias of assuming national patterns of energy use or
production to regions has been discussed by other
authors, in particular Miller and Blair (1985) wrote:
“Electricity produced in Eastern Washington by water
power (Coulee Dam) represents quite a different mix of
inputs from electricity that is produced from coal in the
greater Philadelphia area or by means of nuclear power
elsewhere.” They allude to a problem inherent in using
national input-output data regionalized on the basis of
nonsurvey techniques. This issue also affects the proce-
dure we have suggested for estimating commodity flows.
Because the methodology presented here relies on national
input-output data, it will tend to assume that energy
sources reflect the national “average.”
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not include them in our discussion and note that our
methodology is inappropriate to forecast them.

In general, simply averaging the percentage error
of individual commodities will be a poor measure of
overall accuracy that will tend to overstate the accu-
racy of the methodology. Because individual com-
modities will generate both negative and positive
forecast error, these will tend to cancel each other in
a simple averaging over the sample. To account for
the presence of both negative and positive forecast
error, we relied on weighted average error (WAE)
and mean absolute error (MAE). The definitions of
the measures for the m commodities are:

 

Tables A1 through A7 report these measures. The
WAE ranged from 16.8% to 29.1%, depending on
the state. The MAE ranged from 15.6% to 71%,
with the latter a relatively extreme result for the
state of Washington and uncharacteristic of the
sample. 

The tables include a measure of the relative dis-
tance the commodity is being shipped (distance
ratio) derived from data in the Commodity Flow
Survey. The measure relates the average shipping
distance for a commodity to a state relative to the
average shipping distance for that commodity
nationally. In other words, if commodity i when
shipped to Massachusetts travels an average of 500
miles and the national average for the commodity is
250 miles, the distance ratio will be equal to 2.

One reason for measuring the distance ratio is
that geography may well play a role in the export
activity of firms. Specifically, as mentioned earlier,
we assumed by necessity that firms all purchase
locally produced commodity inputs in the same pro-
portions. But geography may encourage different
patterns of local versus nonlocal sales: if the trans-
portation costs to the next largest concentrations of
potential purchasers are great, firms may be particu-
larly oriented to their local market. If the costs to
potential nonlocal purchasers are not high, firms
may be shipping outside the immediate region to a
greater degree. 

A cursory glance at the results in tables A6 and
A7 suggests that states with larger distance ratios, in
this case California and Washington, tend to have
greater commodity forecast errors. In order to test
for the effect of distance on shipments, and poten-
tially on the accuracy of our method, we included
distance ratio in a simple regression that measured
the explanatory power of this variable on the accu-
racy of forecasts. In essence, we wanted to find out
if a large deviation of the distance ratio from one is
associated with an increased forecast error.8 

Similarly, we were also interested in the effect of
commodity volume on forecast accuracy. If the
actual volume of a specific commodity shipped to a
particular state is low, will this lower the forecast
accuracy? We tested for both effects in a multivari-
ate regression where observed tonnage shipped and
distance ratio by commodity were regressed on the
forecast error of the particular commodity. Table 1
presents the results of this regression. While the
coefficients show the expected signs, both are only
significant at the 15% confidence level. We inter-
preted this result to mean that there is no significant
inherent bias in the forecast method due to the dis-
tance of shipments or the actual tonnage of com-
modities shipped.9 

CONCLUSIONS

The procedure described above offers a relatively
easy tool to estimate substate commodity inflows,
one that can be used by transportation planners for
relatively accurate “back of the envelope” predic-
tions of aggregate commodity inflows to smaller
regions. Further, the procedure has the important
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8 We thank an anonymous referee for suggesting a test for
the effect of distance on forecast accuracy. Note that the
Commodity Flow Survey does not allow us to calculate
distance ratios for all commodities forecast, as distance
estimates are not always reported for all commodities
shipped to all states.
9 It should be pointed out that the relatively aggregated
commodity classifications dealt with here result in very
few commodity shipments of small tonnage. Forecast
error may be significantly related to commodity tonnage
below certain thresholds. We also regressed the forecast
error for a commodity on a variable that represents the
importance of that commodity in total inflows to the
state. The results, in table 2, are again of the expected
sign, with the relative importance of a commodity as a
percentage of shipments reducing error.
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advantage of using the appropriate observed state-
level commodity inflows as a starting point to esti-
mate substate flows, something that cannot be
claimed by econometric or gravity models that gen-
eralize inflow patterns observed in one region to
another region. Though somewhat laborious, the
calculations are relatively simple, using data that are
widely available and low cost, at least in the United
States and European Union countries. 

While estimates of total freight inflows were in
some cases surprisingly accurate, the estimate errors
of individual commodities were often significantly
greater. In particular, commodities, such as energy
inputs, whose use could vary significantly across
regions in the United States, were predicted very
poorly. Excluding these commodities, the MAE for
all commodities to all states is 31% while the corre-
sponding WAE is 21%, arguably acceptable impre-
cision for the suggested uses of the approach.

As discussed, the method entails two crucial
assumptions. First, all firms at the state and regional
level are assumed to display the same input use as
their counterparts nationally, a necessary assump-
tion in nonsurvey regional input-output modeling.
This assumption appears to be a significant flaw in
the estimate of inflows of energy inputs, as men-
tioned. Second, all firms in a regional industry are
assumed to purchase locally produced commodity
inputs in the same proportions. This could intro-
duce bias, particularly in the case of large states
where firms located near a local supplier of a given
commodity could consume significantly more

inputs produced locally than those located farther
away from the supplier. 

Our method cannot differentiate these differences
among firms in the same industry. This could in turn
lead to overestimates of inflows of a given commod-
ity to regions with an important local producer of
that commodity. Conversely, it could also lead to
underestimates of inflows to the other regions. As
opposed to gravity models, for example, our
approach does not incorporate distance as a potential
influence on trade flows. The econometric analyses
reported in tables 1 and 2 indicate distance may
affect our model’s accuracy, although the significance
of this bias appears modest in our accuracy tests. 

Despite this imperfection, it is argued that the
method of estimating substate inflows using input-
output data is sound. We further argue that, in the
absence of detailed and costly surveys, our
approach estimates the most elusive component of
regional trade, commodity inflows, with acceptable
levels of accuracy.
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APPENDIX 

TABLE  A1  Estimates of Annual Domestic Commodity Inflows to Massachusetts
Excluding energy1

Observed
inflows 

Estimated
inflows

Percentage
error

Distance

ratio2 Commodity  (000s of metric tons)

Apparel or other finished textile products 238 204 –16.8 0.8

Chemicals or allied products 3,332 2,519 –32.3 1.1

Clay, concrete, glass, or stone products 1,512 1,777 14.9 1.4

Electrical machinery, equipment, or supplies 276 269 –2.6 1.3

Fabricated metal products 644 585 –10.1 0.7

Farm products 259 228 –13.5 1.6

Food or kindred products 6,931 6,682 –3.7 1.3

Furniture or fixtures 244 219 –11.5 1.3

Instruments, photographic goods, optical goods, 
watches, or clocks 33 26 –26.5 1.1

Leather or leather products 41 36 –13.2 N/A

Lumber or wood products, excluding furniture 1,340 1,013 –32.3 4.5

Machinery, excluding electrical 221 195 –13.6 N/A

Miscellaneous products of manufacturing 333 269 –23.9 1.1

Primary metal products 1,051 1,351 22.2 1.0

Pulp, paper, or allied products 2,713 2,395 –13.2 1.3

Rubber or miscellaneous plastics products 557 483 –15.2 1.5

Textile mill products 391 337 –15.9 N/A

Transportation equipment 903 578 –56.1 1.1

Waste or scrap materials 32 36 10.7 N/A

Total, all commodities 21,052 19,203 –9.6 1.1

Weighted average error: 16.8%

Mean absolute error: 15.6%
1 Energy commodities include mining, petroleum, and coal products.
2 Distance ratio is the average shipment distance for the commodity to the state divided by the national average.

Key: N/A = not applicable.

Note: Observed inflows are obtained from the 1993 Commodity Flow Survey. Estimates are derived from the inflows to the six-state North-
eastern Region (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont).



32 JOURNAL OF TRANSPORTATION AND STATISTICS V7, N1 2004

TABLE A2  Estimates of Annual Domestic Commodity Inflows to New York
Excluding energy1

Observed
inflows 

Estimated
inflows

Percentage
error

Distance

ratio2 Commodity  (000s of metric tons)

Apparel or other finished textile products 429 442 2.9 0.8

Chemicals or allied products 6,508 7,328 11.2 0.8

Clay, concrete, glass, or stone products 3,079 2,769 –11.2 0.7

Electrical machinery, equipment, or supplies 1,067 1,037 –2.9 1.0

Fabricated metal products 2,264 1,901 –19.1 1.3

Farm products 1,222 3,880 68.5 1.8

Food or kindred products 14,785 15,421 4.1 0.5

Forest and fishing products 113 122 7.7 0.8

Furniture or fixtures 570 654 12.9 0.8

Instruments, photographic goods, optical goods, 
watches, or clocks 202 180 –11.7 N/A

Leather or leather products 43 40 –9.5 N/A

Lumber or wood products, excluding furniture 7,962 4,103 –94.1 3.3

Machinery, excluding electrical 848 830 –2.2 N/A

Miscellaneous products of manufacturing 528 446 –18.4 0.8

Primary metal products 4,358 4,167 –4.6 N/A

Pulp, paper, or allied products 7,241 6,969 –3.9 0.6

Rubber or miscellaneous plastics products 1,381 1,309 –5.5 1.1

Textile mill products 1,161 971 –19.6 N/A

Tobacco products, excluding insecticides 17 27 35.1 0.6

Transportation equipment 2,872 2,437 –17.9 0.8

Waste or scrap materials 408 1,053 61.2 0.9

Total, all commodities 57,060 56,086 –1.7 0.8

Weighted average error: 21.5%

Mean absolute error: 30.1%
1 Energy commodities include mining, petroleum, and coal products.
2 Distance ratio is the average shipment distance for the commodity to the state divided by the national average.

Key: N/A = not applicable.

Note: Observed inflows are obtained from the 1993 Commodity Flow Survey. Estimates are derived from the inflows to the five-state 
Middle Atlantic Region (Delaware, Maryland, New Jersey, New York, and Pennsylvania).
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TABLE A3  Estimates of Annual Domestic Commodity Inflows to Pennsylvania
Excluding energy1

Observed
inflows 

Estimated
inflows Percentage

error

Distance

ratio2 Commodity  (000s of metric tons)

Apparel or other finished textile products 254 232 –9.9 0.8

Chemicals or allied products 7,125 5,819 –22.4 0.9

Clay, concrete, glass, or stone products 3,046 2,579 –18.1 0.7

Electrical machinery, equipment, or supplies 675 604 –11.7 N/A

Fabricated metal products 1,511 1,541 1.9 0.8

Farm products 1,523 3,788 59.8 0.7

Food or kindred products 12,683 10,131 –25.2 0.8

Forest and fishing products 93 62 –50.1 0.6

Furniture or fixtures 407 380 –7.3 N/A

Instruments, photographic goods, optical goods, 
watches, or clocks 92 98 6.1 N/A

Leather or leather products 28 23 –22.9 0.8

Lumber or wood products, excluding furniture 2,618 4,073 35.7 0.7

Machinery, excluding electrical 677 558 –21.4 N/A

Miscellaneous products of manufacturing 281 245 –14.7 N/A

Primary metal products 7,860 6,405 –22.7 0.7

Pulp, paper, or allied products 5,724 4,412 –29.7 0.6

Rubber or miscellaneous plastics products 973 920 –5.7 1.0

Textile mill products 553 522 –5.8 0.8

Tobacco products, excluding insecticides 14 15 6.1 0.6

Transportation equipment 1,305 1,432 8.9 N/A

Waste or scrap materials 1,873 703 –166.3 N/A

Total, all commodities 49,315 44,542 –10.7 0.7

Weighted average error: 29.1%

Mean absolute error: 24.1%
1 Energy commodities include mining, petroleum, and coal products.
2 Distance ratio is the average shipment distance for the commodity to the state divided by the national average.

Key: N/A = not applicable.

Note: Observed inflows are obtained from the 1993 Commodity Flow Survey. Estimates are derived from the inflows to the five-state 
Middle Atlantic Region (Delaware, Maryland, New Jersey, New York, and Pennsylvania).
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TABLE A4  Estimates of Annual Domestic Commodity Inflows to Ohio
Excluding energy1

Observed
inflows 

Estimated
inflows

Percentage
error

Distance

ratio2 Commodity  (000s of metric tons)

Apparel or other finished textile products 300 285 –5.2 0.8

Chemicals or allied products 12,893 9,612 –25.5 0.9

Clay, concrete, glass, or stone products 4,594 3,908 –14.9 0.9

Electrical machinery, equipment, or supplies 707 697 –1.5 0.9

Fabricated metal products 1,483 1,192 –19.6 0.7

Farm products 2,306 2,585 12.1 0.5

Food or kindred products 20,585 13,676 –33.6 0.7

Forest and fishing products 23 12 –50.0 0.9

Furniture or fixtures 440 361 –18.1 0.7

Instruments, photographic goods, optical goods, 
watches, or clocks 161 88 –45.2 0.9

Leather or leather products 23 34 45.3 0.8

Lumber or wood products, excluding furniture 3,655 2,919 –20.1 0.8

Machinery, excluding electrical 918 648 –29.4 0.9

Miscellaneous products of manufacturing 323 326 1.0 0.9

Ordnance or accessories 15 10 –32.6 N/A

Primary metal products 6,013 3,812 –36.6 0.9

Pulp, paper, or allied products 7,506 5,872 –21.8 0.8

Rubber or miscellaneous plastics products 1,138 1,022 –10.2 0.8

Textile mill products 323 280 –13.3 0.8

Tobacco products, excluding insecticides 43 14 –66.8 0.6

Transportation equipment 1,265 1,408 11.3 1.0

Waste or scrap materials 1,117 882 –21.0 1.6

Total, all commodities 65,831 49,641 –24.6 0.7

Weighted average error: 25.9%

Mean absolute error: 24.3%
1 Energy commodities include mining, petroleum, and coal products.
2 Distance ratio is the average shipment distance for the commodity to the state divided by the national average.

Key: N/A = not applicable.

Note: Observed inflows are obtained from the 1993 Commodity Flow Survey. Estimates are derived from the inflows to the five-state 
Great Lakes Region (Illinois, Indiana, Michigan, Ohio, and Wisconsin).
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TABLE A5  Estimates of Annual Domestic Commodity Inflows to Illinois
Excluding energy1

Observed
inflows 

Estimated
inflows

Percentage
error

Distance

ratio2 Commodity  (000s of metric tons)

Apparel or other finished textile products 276 257 –6.7 0.7

Chemicals or allied products 10,705 9,858 –7.9 0.9

Clay, concrete, glass, or stone products 4,372 4,014 –8.2 0.6

Electrical machinery, equipment, or supplies 677 598 –11.7 0.6

Fabricated metal products 1,269 1,272 0.2 0.7

Farm products 646 1,709 164.5 0.9

Food or kindred products 7,956 10,725 34.8 1.0

Forest and fishing products 5 8 61.0 0.7

Furniture or fixtures 338 324 –4.4 0.7

Instruments, photographic goods, optical goods, 
watches, or clocks 55 75 38.0 0.7

Leather or leather products 43 28 –35.0 0.7

Lumber or wood products, excluding furniture 3,309 2,910 –12.1 1.0

Machinery, excluding electrical 610 669 9.7 0.6

Miscellaneous products of manufacturing 278 261 –6.0 0.6

Ordnance or accessories 15 8 –42.7 N/A

Primary metal products 6,710 5,591 –16.7 0.7

Pulp, paper, or allied products 4,117 5,008 21.6 0.3

Rubber or miscellaneous plastics products 1,190 1,054 –11.5 0.8

Textile mill products 336 277 –17.6 0.7

Tobacco products, excluding insecticides 6 12 105.0 0.6

Transportation equipment 1,460 1,597 9.4 0.8

Waste or scrap materials 1,115 811 –27.3 0.7

Total, all commodities 45,488 47,066 3.5 0.7

Weighted average error: 18.3%

Mean absolute error: 29.6%
1 Energy commodities include mining, petroleum, and coal products.
2 Distance ratio is the average shipment distance for the commodity to the state divided by the national average.

Key: N/A = not applicable.

Note: Observed inflows are obtained from the 1993 Commodity Flow Survey. Estimates are derived from the inflows to the five-state Great 
Lakes Region (Illinois, Indiana, Michigan, Ohio, and Wisconsin).
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TABLE A6  Estimates of Annual Domestic Commodity Inflows to California
Excluding energy1

Observed
inflows 

Estimated
inflows

Percentage
error

Distance

ratio2 Commodity  (000s of metric tons)

Apparel or other finished textile products 506 622 23.0 1.6

Chemicals or allied products 8,252 10,022 21.5 1.4

Clay, concrete, glass, or stone products 1,945 3,304 69.9 1.0

Electrical machinery, equipment, or supplies 1,440 1,516 5.3 1.5

Fabricated metal products 1,605 1,880 17.1 1.2

Farm products 6,372 7,212 13.2 0.9

Food or kindred products 18,437 21,967 19.1 1.9

Forest and fishing products 8 8 –1.6 N/A

Furniture or fixtures 602 679 12.8 1.4

Instruments, photographic goods, optical goods, watches, 
or clocks 370 336 –9.2 1.7

Leather or leather products 104 98 –5.8 1.6

Lumber or wood products, excluding furniture 2,116 3,165 49.6 1.6

Machinery, excluding electrical 994 1,190 19.8 1.5

Miscellaneous products or manufacturing 535 574 7.3 1.6

Ordnance or accessories 6 5 –12.4 N/A

Primary metal products 4,638 4,878 5.2 1.7

Pulp, paper, or allied products 5,087 5,299 4.2 1.2

Rubber or miscellaneous plastics products 1,529 1,688 10.4 1.2

Textile mill products 896 975 8.8 1.6

Tobacco products, excluding insecticides 22 19 –12.4 3.1

Transportation equipment 2,544 2,639 3.7 1.7

Waste or scrap materials 122 347 184.9 0.7

Total, all commodities 58,130 68,425 17.7 1.6

Weighted average error: 17.9%

Mean absolute error: 23.5%
1 Energy commodities include mining, petroleum, and coal products.
2 Distance ratio is the average shipment distance for the commodity to the state divided by the national average.

Key: N/A = not applicable.

Note: Observed inflows are obtained from the 1993 Commodity Flow Survey. Estimates are derived from the inflows to the six-state West 
Coast Region (California, Nevada, Oregon, Washington, Alaska, and Hawaii).



LIU & VILAIN 37

TABLE A7  Estimates of Annual Domestic Commodity Inflows to Washington
Excluding energy1

Observed
inflows 

Estimated
inflows

Percentage
error

Distance

ratio2 Commodity  (000s of metric tons)

Apparel or other finished textile products 64 98 53.7 1.5

Chemicals or allied products 1,146 1,612 40.6 1.4

Clay, concrete, glass, or stone products 991 687 –30.8 0.8

Electrical machinery, equipment, or supplies 160 227 41.9 2.1

Fabricated metal products 319 417 30.5 1.8

Farm products 12,771 11,207 –12.3 1.6

Food or kindred products 3,871 3,778 –2.4 1.9

Forest and fishing products 1 2 27.3 N/A

Furniture or fixtures 125 123 –1.3 1.4

Instruments, photographic goods, optical goods, 
watches, or clocks 10 56 480.7 1.8

Leather or leather products 7 15 113.0 1.5

Lumber or wood products, excluding furniture 1,940 1,112 –42.7 0.6

Machinery, excluding electrical 239 229 –4.1 2.1

Miscellaneous products of manufacturing 52 92 78.4 1.3

Primary metal products 586 920 57.0 1.8

Pulp, paper, or allied products 519 1,010 94.8 2.5

Rubber or miscellaneous plastics products 163 317 94.4 1.4

Textile mill products 67 101 50.5 1.5

Transportation equipment 325 624 91.8 1.8

Waste or scrap materials 214 61 –71.5 0.7

Total, all commodities 23,569 22,686 –3.7 1.5

Weighted average error: 21.3%

Mean absolute error: 71.0%
1 Energy commodities include mining, petroleum, and coal products.
2 Distance ratio is the average shipment distance for the commodity to the state divided by the national average.

Key: N/A = not applicable.

Note: Observed inflows are obtained from the 1993 Commodity Flow Survey. Estimates are derived from the inflows to the two-state 
West Coast Region (California and Washington).
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Monthly Forecasts of Integrated Public Transport Systems: 

The Case of the Madrid Metropolitan Area

ABSTRACT

The Madrid public transportation system has been
integrated since 1986 and includes bus, Metro, and
suburban trains. This paper addresses the problem
of forecasting the demand for a large number of bus
and Metro tickets in the Madrid metropolitan area
using monthly data from 1987 to 2002. The data-
base is subject to several calendar effects, outliers,
changing levels of service, and changing seasonality
effects that further complicate the analysis and the
models’ forecasts. The transport agency needs esti-
mates of all effects, as well as a forecast, of the pat-
tern of monthly revenues and usage of the transport
network. We use both traditional dynamic transfer-
function causal models as well as new variants of
unobserved component models estimated by least
squares using automatic identification and linear
techniques in the optimization on the frequency
domain (BGF algorithm). Both types of models pro-
vide some interesting forecasting comparisons (using
several forecast horizons that include turning points)
where the pooling forecast is also used. Forecast
accuracy is assessed using traditional root mean
squared error and mean absolute error measures as
well as variants of the Diebold-Mariano test.

KEYWORDS: Public transport forecasts, forecast accu-
racy, pooling forecasts. 
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INTRODUCTION 

Worldwide, traffic management is one of the main
problems that large cities face. Given the costs asso-
ciated with private car usage, most metropolitan
transport agencies try to coordinate services, net-
works, and fares so as to offer consumers a higher
capacity and higher quality service, with the aim of
promoting public transport use and shifting demand
away from private cars. 

When planning transportation facilities, it is nec-
essary to forecast how much they will be used.
Also, to price them appropriately and determine
the best operating policies, it is important to under-
stand how users respond to changes in prices and
service characteristics. Because the issue of price
elasticities has received considerable attention in
the literature (see, e.g., García-Ferrer et al. 2003;
Matas and Raymond 2003, for the case of Spain),
in this paper we will concentrate on alternative
models to produce efficient predictions on public
transportation using recent monthly data for the
Madrid (Spain) region.

Public transportation in the Madrid metropolitan
area encompasses four basic modes: the subway sys-
tem (Metro), the municipal bus company (EMT), the
RENFE suburban train service, and interurban buses.
Because of data restrictions and service characteris-
tics, the last two modes are not included in our ana-
lytical framework.1 Consorcio de Transportes de
Madrid (CTM), which was created in 1986, manages
the entire public transportation system. CTM coordi-
nates the efforts of public and private institutions
related to public transport. Examples of similar poli-
cies in other European countries are well documented
in Pucher and Kurth (1996). 

As happens in many European cities, public
transport fares in the Madrid region are based on
both single-mode and multiple-mode tickets, the
principal one being CTM’s travel card. The travel
card is a multimodal pass and coupon that can be
used without limit during its valid time period,
being directed mainly toward regular and prepaid
passengers. Fares vary by travel zone. In particular,
the introduction of less expensive season tickets can

provide a powerful incentive to shift transport
modes and is not without theoretical support (see,
e.g., Carbajo 1988; FitzRoy and Smith 1999). 

At the end of 2001, 175 municipalities represent-
ing practically the entire population of the Madrid
region belonged to CTM. Despite decreasing popu-
lation in recent years, the number of passengers
using these services has grown from 951 million in
1986 to 1,549 million in 2001. The entire public
transportation system had a 4.2% increase in
demand during 2001. Suburban train services expe-
rienced a 9.5% increase in demand and suburban
bus use rose 6.5%. This was not only a reflection of
the recent investment and coordination efforts, but
also the result of a growing residential suburbaniza-
tion process in the Madrid region, rail and bus ser-
vice improvements, and economic incentives that
travel cards provide for long-distance travelers. 

Although all modes have experienced steady
growth during the past few years, the Metro system
showed significant increases, recording a rise in
demand of 9.6% in 1999, 9.3% in 2000, and 3.7%
in 2001. As we discuss later, this growth has been
fueled primarily by a large increase in Metro ser-
vices in terms of the number of lines, stations, and
rolling stock. In particular, the Metro route length
grew 43% during 1998 and 1999, and the recently
inaugurated 2003 Metro-Sur Circle Line added
36% more capacity that is expected to affect
demand in the near future. 

In this paper, we focus on monthly forecasts of
the number of tickets/cards sold. Monthly forecasts
are desirable for several reasons. First, such fore-
casts would allow CTM to obtain a pattern of
future monthly revenues (just multiplying prices by
the number of tickets/cards sold), which are lower,
for instance, in summer months, and thus plan how
much cash it will need in addition to monthly reve-
nues. This target information can be gained with 1-
to 12-steps-ahead forecasts in an on-time exercise.
Second, we will be able to forecast the degree of
usage of the transport system. For example, the fre-
quency and size of the trains are lower in August.
Again, for this purpose, monthly forecasts are
needed. Third, by using causal models with monthly
data, we are able to evaluate the effect of the num-
ber of working days within a month and the effect

1 At the end of 2001, the Metro/bus share represented
72% of total passengers.
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of Easter, as well as any other exogenous effects.
Overall, short- and medium-term forecasts are our
main target, which will be evaluated through 1-, 6-,
12-, and 24-steps-ahead forecasts. 

The paper is organized as follows: the next sec-
tion presents the characteristics of the database and
tests for the presence of many outliers that create
considerable estimation instability and complicate
the posterior forecasting exercise. We next describe
the theoretical framework and present the estima-
tion results, after which we analyze the predictive
performance of alternative models based on several
forecasting horizons and different predictive accu-
racy criteria. The issue of optimal forecast combina-
tions is also addressed. Finally, the last section
provides our conclusions.

THE DATABASE

Our database includes CTM monthly data from
January 1987 to December 2002 for the main pub-
lic transport variables: 

single-trip Metro tickets (SMT), 
10-trip Metro tickets (10MT), 
single trip bus tickets (SBT),
10-trip bus tickets (10BT),
regular travel card (TC), and 
junior travel card (JTC).
The data are the number of tickets/cards sold in

each category. Therefore, while the number of single
tickets sold equals the number of trips, we do not
know how many trips a holder of a travel card actu-
ally took. Definitions of the variables are given in
table 1, and their plots (in logs) are shown in figure
1, where both nonstationarity as well as strong sea-
sonality are clearly evident. The aberrant observa-
tions in both SBT and 10BT in the early months of
1992 correspond to a severe general strike on the
bus network that took place during that period.
Table 1 also includes the definition of the price vari-
ables that will be used later in the causal models.
The descriptive statistics of the variables are given in
table 2. 

TABLE 1   Definitions of the Main Variables

Sample Estimation Forecasting
Name Definition Period Size Period Size Period Size

Number of tickets/cards sold

SMT Single-trip Metro 1987:1–2002:12 192 1987:1–1999:12 156 2000:1–2002:12 36

10MT 10-trip Metro 1987:1–2002:12 192 1987:1–1999:12 156 2000:1–2002:12 36

SBT Single-trip bus 1988:1–2002:12 180 1988:1–1999:12 144 2000:1–2002:12 36

10BT 10-trip bus 1988:1–2002:12 180 1988:1–1999:12 144 2000:1–2002:12 36

TC Monthly travel 
card

1987:1–2002:12 192 1991:1–1999:12 108 2000.1–2002:12 36

JTC Junior monthly 
travel card

1988:2–2002:12 179 1991:1–1999:12 108 2000:1–2002:12 36

Rate of growth of deflated prices

∆PSMT SMT 1987:1–2002:12 192 1987:1–1999:12 156 2000:1–2002:12 36

∆P10MT 10MT 1987:1–2002:12 192 1987:1–1999:12 156 2000:1–2002:12 36

∆PSBT SBT 1988:1–2002:12 180 1988:1–1999:12 144 2000:1–2002:12 36

∆P10BT 10BT 1988:1–2002:12 180 1988:1–1999:12 144 2000:1–2002:12 36

∆PTC TC 1987:1–2002:12 192 1991:1–1999:12 108 2000:1–2002:12 36

∆PJTC JTC 1988:2–2002:12 179 1991:1–1999:12 108 2000:1–2002:12 36

Notes: All the variables measure the number of tickets/cards sold. TC and JTC are monthly passes that can be used without limit. The price 
variables are measured in rates of growth of deflated prices. The deflator used was the Consumer Price Index published monthly by the Instituto 
Nacional de Estadística of Spain.
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The introduction of travel cards in 1987 caused a
drastic change in the trends of use for the remaining
tickets. This process has been the logical conse-
quence of a price policy that penalizes the users of
single- and 10-trip tickets through large price
increases, while holding the price of travel cards
constant from their introduction in 1987 until

1992. During this period, for instance, single-ticket
prices increased 130% and, although this price
trend has been reversed recently, regular users found
multimodal travel cards much more advantageous
when purchasing tickets. As a result, the demand
shares have shifted dramatically during the last 15
years. Single-ticket use fell to just over 4% for both

FIGURE 1  Logs Showing the Main Variables: January 1991–December 2002

Dec
-1

99
1

Dec
-1

99
2

Dec
-1

99
3

Dec
-1

99
4

Dec
-1

99
5

Dec
-1

99
6

Dec
-1

99
7

Dec
-1

99
8

Dec
-1

99
9

Dec
-2

00
0

Dec
-2

00
1

Dec
-2

00
2

13.9

14.0

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8
Single-trip Metro (SMT)

15.8

16.0

16.2

16.4

16.6

16.8

Dec
-1

99
1

Dec
-1

99
2

Dec
-1

99
3

Dec
-1

99
4

Dec
-1

99
5

Dec
-1

99
6

Dec
-1

99
7

Dec
-1

99
8

Dec
-1

99
9

Dec
-2

00
0

Dec
-2

00
1

Dec
-2

00
2

10-trip Metro (10MT)

12.8

13.2

13.6

14.0

14.4

14.8

15.2

Dec
-1

99
1

Dec
-1

99
2

Dec
-1

99
3

Dec
-1

99
4

Dec
-1

99
5

Dec
-1

99
6

Dec
-1

99
7

Dec
-1

99
8

Dec
-1

99
9

Dec
-2

00
0

Dec
-2

00
1

Dec
-2

00
2

Single-trip bus (SBT)

14.4

14.8

15.2

15.6

16.0

16.4

16.8

Dec
-1

99
1

Dec
-1

99
2

Dec
-1

99
3

Dec
-1

99
4

Dec
-1

99
5

Dec
-1

99
6

Dec
-1

99
7

Dec
-1

99
8

Dec
-1

99
9

Dec
-2

00
0

Dec
-2

00
1

Dec
-2

00
2

10-trip bus (10BT)

10.8

11.2

11.6

12.0

12.4

12.8
Travel card (TC)

Dec
-1

99
1

Dec
-1

99
2

Dec
-1

99
3

Dec
-1

99
4

Dec
-1

99
5

Dec
-1

99
6

Dec
-1

99
7

Dec
-1

99
8

Dec
-1

99
9

Dec
-2

00
0

Dec
-2

00
1

Dec
-2

00
2

9.6

10.0

10.4

10.8

11.2

11.6

12.0

Dec
-1

99
1

Dec
-1

99
2

Dec
-1

99
3

Dec
-1

99
4

Dec
-1

99
5

Dec
-1

99
6

Dec
-1

99
7

Dec
-1

99
8

Dec
-1

99
9

Dec
-2

00
0

Dec
-2

00
1

Dec
-2

00
2

Junior travel card (JTC)

log log

log log

log log



GARCÍA-FERRER, DE JUAN, PONCELA & BUJOSA 43

Metro and EMT, while the market share of 10-ride
tickets dropped significantly among bus users and
remained almost unchanged in the case of Metro.2 

Finally, the market share for travel cards in 2002
was over 60%, which was about the figure that
CTM had in mind when the integrated system was
established in 1986. In this regard, recent empirical
studies (Garcia-Ferrer et al. 2003) have shown that,
with the exception of travel cards, the remaining
tickets show significant negative own-price elastici-
ties and moderate estimated cross-elasticities, indi-
cating that there is room for alternative pricing
policies aimed at having positive effects on demand
while minimizing the negative effects on revenues. 

METHODOLOGIES AND ESTIMATION 
RESULTS 

The plots of the main variables in figure 1 indicate
that the statistical characteristics of such series
changed considerably over the sample interval, so
that the series can be considered nonstationary in a
statistical sense. All series exhibited clear upward or
downward trends, together with pronounced
annual periodicity. This trend behavior is a classic
example of a local mean value changing markedly

over time. The nature of the seasonality varied over
the six series but, in general, signs of changing sea-
sonality patterns in the trend were evident. 

These various kinds of nonstationarity are indic-
ative of changes in the underlying statistical proper-
ties of the data. Therefore, we decided to use two
alternative statistical approaches capable of charac-
terizing the nonstationary features in an acceptable
manner. One is the well-known Dynamic Transfer
Function Causal Model obtained using the Interven-
tion ARIMA (IARIMA) model developed by Box
and Tiao (1975) as a starting model. The second
alternative is the Dynamic Harmonic Regression
(DHR) model developed by Young et al. (1999). For
the latter, however, both the identification and esti-
mation stages were carried out using the Bujosa-
García-Ferrer (BGF) algorithm implemented in
Bujosa et al. (2002), which is summarized in the
appendix. Although the previous approaches are,
basically, univariate alternatives, they also allow for
the possibility of including exogenous inputs associ-
ated with intervention effects (e.g., strikes, working
days, Easter effects) as well as price and service
changes in the system. 

Dynamic Transfer Function Causal Model

When using annual or quarterly data, demand
equations can be based on causal models where the
demand for transport services can be assumed to

TABLE 2   Descriptive Statistics of the Logs of the Main Variables

Name Mean Median
Maximum/
minimum

Standard 
deviation Skewness Kurtosis Jarque-Bera

Number of tickets/cards sold
LSMT 14.85 14.47 16.59/13.91 0.76 1.11 2.64 35.20

L10MT 16.38 16.49 16.81/14.78 0.33 –2.02 7.37 247.65

LSBT 14.80 14.67 15.90/12.91 0.46 0.62 4.44 23.67

L10BT 16.36 16.41 16.81/14.41 0.27 –2.69 18.89 7,219.84

LTC 12.10 12.16 12.54/11.09 0.30 –1.47 5.36 71.45

LJTC 11.24 11.52 11.77/9.65 0.61 –1.43 3.74 43.82

Rate of growth of deflated prices

∆PSMT 0.0032 –0.0028 0.3815/–0.0160 0.0395 7.41 62.47 27,386.79

∆P10MT 0.0000 –0.0027 0.1120/–0.0160 0.0159 4.86 28.17 5,310.73

∆PSBT 0.0032 –0.0028 0.3815/–0.0160 0.0395 7.41 62.47 27,386.79

∆P10BT 0.0018 –0.0027 0.1850/–0.0160 0.0225 5.23 34.22 7,903.69

∆PTC 0.0009 –0.0026 0.0953/–0.0123 0.0152 4.14 23.50 2,490.59

∆PJTC 0.0006 –0.0026 0.0760/–0.0123 0.0133 4.02 19.63 1,706.63

2 This behavior can be explained by the fact that subway
transfers are free while bus transfers are not, thus penaliz-
ing the user.
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depend on the attributes of each mode (monetary
costs and quality of service), the competing modes
of transport, and certain socioeconomic and demo-
graphic variables (e.g., income, employment, and
population). Using this approach means care must
be taken when interpreting estimation results due to
a large number of potential econometric problems.
Issues of dynamic specification of the model, small
sample size, large number of regressors (small num-
ber of degrees of freedom), and extreme multicol-
linearity should be seriously considered before
interpreting the estimates as current elasticities.
Multicollinearity in this context is a problem, espe-
cially when models are specified in levels. It is well
known that multicollinearity may affect estimated
standard errors and signs of the coefficients, provid-
ing misleading results. Far from being a good solu-
tion, the often-used alternative of eliminating
statistically insignificant regressors may be even
worse in terms of interpreting results. Let us empha-
size, however, that this is not a model problem
(whether our model is causal or not) but a data
problem that can equally affect other modeling
alternatives, as we will show later. 

When using monthly data, as we did in this paper,
the use of causal models is restricted by data avail-
ability. Lacking monthly income, employment, and
even population data for the Madrid region, our
causal model was based only on fare and service
quality changes plus the corresponding deterministic
intervention effects and stochastic seasonality varia-
tion. Nevertheless, when short- and medium-term
forecasting is the objective, we can assume that the
first set of factors are reasonably incorporated in the
stochastic long-term trends of the monthly data. In
the case of independent submarkets for each type of
ticket, our dynamic causal model can be written as: 

(1)

where  are the exogenous or intervention vari-
ables,  includes the dynamic model for the i-th
intervention variable,  and  are the regu-
lar and seasonal moving average operators, and

 and  are the regular and seasonal
autoregressive operators. The process at is assumed
to be white noise, and  and allow for sea-
sonal and nonseasonal differencing. The usual sta-
tionarity and invertibility conditions apply for the
AR and MA operators. As indicated by Peña
(2001), most outlier specifications in the literature
(additive, innovational, level shifts, and transitory
changes) are particular cases of equation (1) under
proper parameterizations of the polynomial opera-
tor vi(L). Detailed definitions of the different inter-
vention variables are included in table 3. 

On the other hand, zjt is a vector of exogenous
variables that includes price and service changes of
different tickets, and  represents the dynamic
model for the j-th exogenous variable. Before going
into the estimation details, the following are com-
ments regarding the components of the zjt.

First, rates of growth of deflated prices for all
tickets are included in zjt. It can be shown that price
changes are identical for SMT and SBT, very similar
for 10BT and 10MT, and exhibit a high correlation

 between price changes of 10MT and
TC. This severe collinearity will have important
consequences in assessing posterior robustness on
parameter estimation. While it is well known that
multicollinearity does not have any effect on fore-
casting, one should be cautious when interpreting
the coefficients. However, the estimation results we
present here are robust to alternative model specifi-
cations, except for 10MT, as a consequence of the
high multicollinearity between price changes of
10MT and TC (see García-Ferrer et al. 2003 for
details). 

Second, service quality can be measured using
several indicators: route length, number of stations,
number of trains or buses, vehicle-kilometers, etc.
Since all indicators are highly collinear, we decided
to use route length as the main indicator of service
quality. Apart from these indicators, there are no
data available on other service quality indicators. 

The estimation of the models was done by exact
maximum likelihood using SCA statistical software.
Estimation results are shown in tables 4 and 5, but
we will discuss each table separately. This leads us
to the first issue related to the choice of the estima-
tion period for each variable. Although most of the
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database covers the period January 1987 to Decem-
ber 2002, some problems preclude using this whole
period as a generalized database. First, monthly
data on SBT and 10BT are not available before
1988. Second, the TCs from 1987 to 1990 include
information that was inconsistent with the posterior
1991 to 2001 data. Due to the gradual introduction
of different travel card options from 1987 to 1990,
the data generation process cannot be considered
identical before and after 1990. Third, in the case of
JTC, the early period 1987 to 1990 database suffers
from identical problems and, consequently, was
discarded. 

For the Metro and bus estimates in table 4, the
following results are noteworthy: 

1. All variables in the table are affected by the
same difference operators as the endogenous
variable, but prices are only affected by a 
seasonal difference because they are already
given as rates of growth. Therefore, by inte-
grating out the seasonal difference on both
sides of each equation, the estimated coeffi-
cients can be interpreted as elasticities. 

2. The effect of trading days is positive for all
tickets, ranging from 0.7% for SBT to 1.6%
for the 10BT variable. The size of the effects
on the Metro tickets is very similar. 

3. On the contrary, the Easter effect is negative
(as expected) for all tickets. However, the size
of the effect is larger in the case of the 10-ride
tickets (both for Metro and EMT).   

4. The remaining intervention variables are
related either to strikes or to large increases in
public transport fares. Nevertheless, effects
vary among different types of tickets. In the
case of SMT, for instance, we found positive
and statistically significant coefficients in
APR91 and FEB92, which are associated with
strikes in the competing mode (bus). The nega-
tive effect in JAN91 can be explained by a
Metro strike, while the mixed effects in the
MAR90 coefficients correspond, respectively,
to a bus strike and to a large price increase in
SMT the following month, which explains
why this effect does not show up in the 10MT
equation. The long bus network strike seen in

TABLE 3  Definitions of Intervention Variables

Name Definition Facts
Affected 
variables

EASTER 1 in Easter months, 
0 otherwise

Easter effects All

DAYS Trading days per month Trading day effects All
MAR89 1 in 1989:3, 0 otherwise Strike in bus mode and large

increase in single-ticket prices
SMT, 10MT

MAR90 1 in 1990:3, 0 otherwise Strike in bus mode SMT, SBT, 10BT
APR90 1 in 1990:4, 0 otherwise Strike in bus mode and large

increase in single-ticket prices
10MT, 10BT

JAN91 1 in 1991:1, 0 otherwise Strike in Metro mode and large
increase in single-ticket prices

SMT

APR91 1 in 1991:4, 0 otherwise Strike in Metro mode SMT
FEB92 1 in 1992:2, 0 otherwise Strike in bus mode SMT, SBT, 10BT
MAR92 1 in 1992:3, 0 otherwise Strike in bus mode SBT, 10BT

APR92 1 in 1992:4, 0 otherwise Consequences of bus strikes SBT
JAN98 1 from 1998:1, 0 otherwise Introduction of the 

Metrobus ticket
SMT, SBT

FEB93 1 in 1993:2, 0 otherwise ? JTC

APR93 1 in 1993:4, 0 otherwise Metro service interruption JTC
Temporary closing of certain lines

MAR94 1 in 1994:3, 0 otherwise ? TC, JTC

JUL95 1 in 1995:7, 0 otherwise ? JTC

Key: ? = no known explanation for this intervention variable.

12∇
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TABLE 4  Estimated Causal Models for the Metro and Bus Variables
In logs

Constant
0.0004

(0.0022)
–0.0009
(0.0027)

0.0009
(0.0016)

0.0003
(0.0002)

DAYS
0.0096

*

(0.0017)
0.0151

*

(0.0030)
0.0073

*

(0.0022)
0.0164

*

(0.0021)

EASTER
–0.0479

*

(0.0101)
–0.0987

*

(0.0158)
–0.0310

*

(0.0127)
–0.1064

*

(0.0141)

MAR89
–0.0311
(0.0235)

–0.1064
*

(0.0451)

MAR90

APR90
0.0494

(0.0520)

JAN91
–0.0998

*

(0.0272)

APR91
0.0436

*

(0.0245)

FEB92
0.0942

*

(0.0216)

JAN98

PSMT
–1.2817

*

(0.1202)
0.7601

*

(0.1640)

P10MT
–0.1878
(0.4350)

–2.4665
*

(0.6658)

PSBT
–1.2776

*

(0.1600)
0.2205

*

(0.0679)

P10BT
0.7461

(0.5128)
–0.5178

*

(0.1838)

PTC
0.6922

(0.5463)
2.6274

*

(0.8564)
–0.6958
(0.6393)

0.9075
*

(0.2516)

–0.5577
(0.3319)

–0.2586
*

(0.0961)

–0.3086
*

(0.0908)

–0.5775
(0.3386)

0.4047
*

(0.0767)

0.5842
*

(0.0774)

–0.5154
*

(0.0731)

0.3145
*

(0.0830)
0.5629

*

(0.0651)
0.7979

*

(0.0871)

–0.2589
*

(0.0809)

0.035717 0.065537 0.040829 0.041271

R 2 0.89 0.60 0.98 0.99

LBQ (12, 24, 36) 5.4, 16.0, 27.2 9.1, 11.5, 22.3 14.6, 23.1, 25.0 7.8, 19.7, 36.2

Jarque-Bera (p-value) 2.43 (0.297) 0.289 (0.865) 2.11 (0.348) 6.36 (0.042)

White’s heterosk (p-value) 22.82 (0.83) 6.08 (0.81) 4.35 (0.99) 2.11 (0.999)

Notes: Standard errors are in parenthesis. * significant at 5%;  and : regular and seasonal differences; B: lag operator; 

: rates of growth of deflated prices for Metro and bus tickets; LBQ: Ljung-Box Q statistics;  = residual 

standard error.

SMT12∇∇ 10MT12∇∇ SBT12∇∇ 10BT12∇∇

0.0609* 0.1265*B– 0.006*B 2
–

0.0322( ) 0.0364( ) 0.0270( )
0.6667*– 0.1482*B–

0.0759( ) 0.0631( )
0.6491*– 0.2287* B–

0.0457( ) 0.0387( )

1.6170*– 0.3406*B– 0.1301*B2
–

0.0323( ) 0.0417( ) 0.0381( )
2.0973*– 0.4516*B–

0.0383( ) 0.0411( )

0.1190*– 0.0951– *B 0.0721*B 2
–

0.0269( ) 0.0303( ) 0.0283( )
0.1107*– 0.1010*B–

0.0360( ) 0.0349( )

∆

∆

∆

∆

∆

φ1

φ2

θ1

θ2

Φ12

Θ12

Θ24

σ̂a

∇ 1 B–( )= 12∇ 1 B
12

–( )=

∆PTi i SMT, 10BT, SBT, 10BT, TC=( ) σ̂a
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TABLE 5  Estimated Causal Models for TC and JTC
In logs

Constant
0.0544*

(0.0073)
–0.0368*

(0.0076)

DAYS
0.0018

(0.0024)
0.0026*

(0.0010)

EASTER
–0.0535*

(0.0106)
–0.0710*

(0.0041)

FEB93
0.0579*

(0.0136)

APR93
–0.0870*

(0.0137)

MAR94
0.0368*

(0.0165)

JUL95
0.0492*

(0.0085)

0.1576
(0.3032)

–0.0134
(0.1387)

MRLi

0.4557*

(0.1316)

–0.5399*

(0.0997)
0.4671*

(0.1641)

–0.5261*

(0.1628)

–0.1285
(0.0939)

–0.4048*

(0.0949)

0.3240*

(0.1042)
0.9753*

(0.1044)

–0.6448*

(0.1997)

0.2694*

(0.0964)
0.3357*

(0.1314)

–0.3400*

(0.0942)

0.02560 0.03035

R2 0.70 0.86
LBQ (12, 24, 36) 11.2, 22.8, 45.6 10.6, 14.6, 21.9

Jarque-Bera (p-value) 2.75 (0.252) 2.69 (0.260)
White’s heterosk (p-value) 6.68 (0.946) 5.86 (0.97)

Notes: Standard errors in parenthesis. * represents significant at 5%;  and : 

regular and seasonal differences; B: lag operator; : rates of growth of deflated price 

for TC tickets; MRL: Metro route length; LBQ: Ljung-Box Q statistics;  = residual standard error.

TC12∇  JTC12∇∇

∆PTCi

0.2517*B 4 0.4175*B 5
–

0.1344( ) 0.1665( )

1 0.9897*B+( )
0.0672( )

------------------------------------------------------------------

0.1800*B4 0.2087*B 5
–

0.0861( ) 0.0977( )

θ1

θ2

θ3

Θ12

φ1

φ2

φ3

φ4

σ̂a

∇ 1 B–( )= 12∇ 1 B12
–( )=

∆PTCi i TC, JTC=( )

σ̂a
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the FEB92 variable shows temporary fluctua-
tions of –80.2%, 28.9%, and 12.2% in Febru-
ary, March, and April 1992 with respect to the
previous month in the same year and an even
larger change (–82.7% in February and 36.3%
in March) in the case of 10BT.3 These figures
show that fewer bus ticket purchases were only
compensated by a mild increase in single-
Metro ticket purchases (+9.4%) during that
period, as a result of less Metro network cover-
age at that time. Finally, the JAN98 variable
corresponds to the introduction of a new
Metrobus ticket that negatively affected single-
ticket sales permanently after its introduction. 

5. The estimated coefficients associated with price
increases are the corresponding elasticities. In
general, users were highly sensitive to single-
and 10-ride fares with own-price elasticities
values ranging from –0.52 to –2.47. However,
while the estimated elasticities in the cases of
SMT, SBT, and 10BT proved to be robust to
alternative model specifications, this was not
the case for 10MT as a consequence of the
high multicollinearity between price changes of
10MT and TC.4 The remaining cross elastici-
ties were in line with those obtained by García-
Ferrer et al. (2003). The only significant evi-
dence is found in the case of the two 10-trip
tickets. For 10MT, positive cross effects were
found for single tickets (0.76) and travel cards
(2.63). Similar results were found for 10BT
although the size of the cross effects was much
smaller than in the Metro case: 0.22 for single
tickets and 0.91 for travel cards. 

6. The Ljung-Box statistics at 12- , 24- , and 36-
month lags show no signs of residual autocor-
relation in the estimated models. 

For the travel card estimates, the following
results are worth noting (see table 5): 

1. The estimation period was shorter (108 obser-
vations), given the anomalies mentioned ear-
lier at the beginning of both series. 

2. For the model estimated for JTC, all variables
were affected by the same difference operators
as the endogenous variable, but prices were
only affected by a  transformation, because
they were already given as rates of growth. By
integrating out the seasonal difference in both
sides of each equation, the estimated coeffi-
cients can be interpreted as elasticities. Never-
theless, in the TC equation, this variable was
affected only by a seasonal difference and the
straightforward interpretation of the coeffi-
cients as elasticities was not possible. 

3. The effect of trading days is almost negligible
and only significant for JTC. This is a logical
result given the (monthly card) characteristic
of these tickets. 

4. The Easter effect is statistically significant
and has the expected negative signs for both
variables. The quantitative impacts (–5.3%
and –7.1%) are similar to the ones observed
in single- and 10-trip tickets. 

5. The remaining intervention variables are addi-
tive outliers that had not appeared earlier. The
negative sign of APR93 is associated with ser-
vice interruption and the temporary closing of
certain lines. The CTM does not have any rea-
sonable explanation for the positive coefficients
associated with FEB93, MAR94, and JUL95. 

6. Travel card tickets (TC and JTC) were not
affected either by their own price increases or
by the price increases of competing tickets.
This result is hardly surprising given the CTM
pricing policy, which held the price of travel
cards constant (during a large part of the sam-
ple) since their introduction in 1987. Among
the service variables included in the causal
model’s information set, the Metro route
length (MRLi) now becomes statistically sig-
nificant for the two travel card variables.5 The

3 The estimated coefficients represent the variations in log
yt due to the strike. For instance, the estimated percentage
fall in SBT in February 1992 (estimated coefficient –1.6170)
is computed as .
4 As a matter of fact, when  is removed from the
equation, the own-price elasticity for 10MT goes down to
–1.10. A word of caution applies equally to the cross-
effects results between 10MT and TC.

e 1.6170– 1 0.8015–=–
∆PTC

5 As a matter of fact, MRLi is never statistically signifi-
cant in the single- and 10-ride equations. It only becomes
significant for TC and JTC when the estimation period
ends in December 1999 and later, due to the abrupt
changes in MRLi during this last period.

12∇
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estimated dynamic responses of this variable
indicate a long-term effect that lasts up to five
months, implying a very long and smooth
demand response to changes in supply. 

7. The Ljung-Box statistics at 12- , 24- , and 36-
month lags do not indicate serial correlation
problems in the estimated models. 

Dynamic Harmonic Regression Model 

The DHR model developed by Young et al. (1999)
belongs to the Unobserved Component (UC) type
and is formulated within the state-space framework.
This model is based on a spectral approach, the
hypothesis of which maintains that the observed
time series can be decomposed into several DHR
components whose variances are concentrated
around certain frequencies. This hypothesis is
appropriate if the observed time series has well-
defined spectral peaks, which implies that its vari-
ance is distributed around narrow frequency bands.
Basically, the method attempts to: 1) identify the
spectral peaks, 2) assign a DHR component to each
spectral peak, 3) optimize the hyper-parameters that
control the spectral fit of each component to its cor-
responding spectral peak, and 4) estimate the DHR
components using the Kalman Filter and the Fixed
Interval Smoothing (FIS) algorithms. 

In the univariate case, the DHR model can be
written as a special case of the univariate UC model
that has the general form: 

(2)

where yt is the observed time series, Tt is the trend
or low-frequency component, St is the seasonal
component, and et is an irregular component nor-
mally distributed with zero mean value and variance

. These types of models have been extensively
studied in the literature (see, e.g., Kitagawa 1981;
Harvey 1989; and West and Harrison 1997). 

Equation (2) is appropriate for dealing with eco-
nomic data exhibiting pronounced trend and sea-
sonality as is the case with the monthly variables
used in this paper. When set in state-space form,
each component is modeled in a manner that allows
yt to be represented as a set of discrete-time equa-
tions that are the basis for recursive state-space esti-

mation and forecasting. Let us introduce specific
representations for Tt and St. 

Trend Model

Together with its derivative Dt, the low-frequency
component Tt can be described by the following sec-
ond-order generalized random walk (GRW) model, 

 

where  is a white noise vector with
zero mean and covariance matrix Q. For simplicity,
we assumed that Q is a diagonal matrix diag (q11,
q22), with unknown elements q11 and q22. This
GRW model subsumes as special cases: 

� the very well-known random walk 

; 

� the smooth random walk 

; and

� the integrated random walk 

. 

In the current example, the BGF algorithm (Bujosa
et al. 2002) identifies an IRW model for all trends.
In this case, 

(3)

where Tt and Dt can be interpreted as the level and
slope (derivative) of a time variable trend. The vari-
ance of  is the only unknown in equation
(3) and can be estimated through the noise variance
ratio (NVR), the ratio between q22 and the variance
of the irregular component : 

(4)

When smoothing the series with the Kalman Filter
in order to estimate the trend, the NVRT works as a
smoothing parameter. Very low NVRT values are
indicative of near deterministic linear trends. In the
limit, when NVRT = 0, the estimated trend is

yt Tt St et    t 0 1 2 ...,, , ,=;+ +=

σe
2

Tt

Dt

α β
0 γ

Tt 1–

Dt 1–

η1t

η2t

+=

ηt η1t η2t

′
=

RW  α 1  β γ 0  q22 0=,= =,=;( )

SRW  0 α 1  β γ 1  q11 0=,= =,< <;( )

IRW  α β γ 1  q11 0=,= ==;( )

Tt Tt 1– Dt 1–+=

Dt Dt 1– η2t+=

η2t q22( )

σe
2

NVRT

q22

σe
2

-------=



50 JOURNAL OF TRANSPORTATION AND STATISTICS V7, N1 2004

linear. On the other hand, for large NVRT values the
estimated trend mimics the original time series yt. 

Seasonal Model 
We assume that the seasonal component in equation
(2) can be represented by a 

(5)

where the regression coefficients 
are time variable to handle nonstationary seasonality.
As in the previous trend model, time variation in 
and  may follow any variant within the GRW
framework. The BGF algorithm identifies that param-
eter variation in aj and bj is modeled as an RW
process, 

. (6)

This assumption is very useful for time series with
growing amplitude seasonality as the one found in
most series in this paper. 

The presence of important outliers, however, can
easily affect both the estimation and the posterior
identification and estimation stages of the DHR mod-
els. To avoid these effects, we implemented the follow-
ing iterative process using our own Matlab code: 

1. Initial identification and estimation of DHR
models was proposed. 

2. Using the Kalman Filter and FIS algorithms on
the original series, outliers are treated as miss-
ing values and variance intervention was used
(Young and Ng 1989) to handle level changes
due to large variations in fares or the introduc-
tion of new types of tickets.

3. New series were reconstructed where each
outlier was substituted by its estimated value
and the level shifts were accounted for
through variance intervention. 

4. Finally, using the reconstructed series, we
returned to step 1. 

In all series in this paper, robust results were
obtained after three iterations and the NVR estima-
tion results, shown in table 6, correspond to the
third iteration. Also, in all cases, the identification
stage suggests an IRW trend component and an RW
model for the seasonal component of period 12 and
its harmonics (6, 4, 3, 2.4, and 2). Again, as in the
causal models, the Ljung-Box statistics did not indi-
cate any evidence of residual autocorrelation. Note
that this iterative procedure was not necessary on
the causal models, since specific intervention vari-
ables were properly introduced in the model’s
specification. 

Finally, plots of the estimated trend and seasonal
components for the six variables (not shown) indi-
cate that, in all cases, the estimated NVRT for the
trends are different from zero, confirming the
absence of deterministic linear trends but suggesting
(apart from the breaks) very smooth long-term
behavior. On the other hand, the estimated seasonal
components are indicative of a clear changing sea-
sonality pattern confirming the inappropriateness of
deterministic seasonal schemes for this dataset. 

FORECASTING 

A large body of literature exists on the subject of
travel demand forecasts (see, e.g., Gillen 1977; Lave
1994; Baumgartner 1995; Slavin 1996; and Lythgee
and Wardman 2002, among others). The motivation
for these types of forecasts is self-evident, because the

TABLE 6  NVR Estimates of the Main Variables

Series T S12 S 6 S 4 S 3 S2.4 S 2  

SMT 0.091 0.359 0.117 0.109 0.343 0.071 0.052 0.00005

SBT 0.001 0.023 0.013 0.024 0.017 0.013 0.011 0.00038

10MT 0.029 0.948 0.434 0.302 0.357 0.490 0.301 0.00004

10BT 0.001 0.010 0.007 0.026 0.107 0.034 0.022 0.00036

TC 0.008 0.041 0.006 0.081 0.023 0.026 0.006 0.00021

JTC 0.050 3.779 1.818 1.199 0.278 0.026 0.012 0.00004
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most likely reason for making forecasts is to assess
different policies. The level of detail and the forecast-
ing horizons change considerably among different
studies as a function of the travel demand model, the
characteristics of the data, and the number of input
variables. Broadly speaking, these external influences
can be separated into two components: those related
to demographic and economic changes as well as
other external variables, and those directly related to
the public transportation system. When long-term
planning is the goal, both components need to be pre-
dicted and both involve economic assumptions about
their future behavior. However, when using monthly
data and when (as in our case) short- and medium-
term forecasts are the objective, we can assume that
the first set of factors are reasonably incorporated in
the stochastic long-term trends. As we will show later,
it is the second set of factors (basically abrupt
changes in travel supply and changing seasonality
patterns) that is responsible for large variations in
public travel demand in the Madrid metropolitan
area and the presence of forecast errors during certain
months.6

Several periods-ahead forecasts for the six vari-
ables considered in this paper (using the causal and
DHR models) were done for 2000, 2001, and 2002.
The initial estimation sample ends in December
1999. We made 1-, 6-, 12-, and 24-months-ahead
forecasts. We re-estimated all models adding one
data point at a time and made new predictions. We
proceeded in the same way until the last sample data
point was available for estimation (November 2002
for 1-step-ahead forecasts, June 2002 for 6-steps-
ahead forecasts, December 2001 for 12-steps-ahead
forecasts, and December 2000 for 24-steps ahead
forecasts). The forecasting for these periods was dif-
ficult given the large increase in Metro services over
this time period, particularly during 1999. This diffi-
culty meant a mixture of effects that influenced not
only total demand but also temporary passenger

shifts from Metro to EMT as a consequence of clos-
ing Metro stations and opening temporary new bus
lines. 

Measures of Forecast Accuracy 

The literature repeatedly stresses the adoption of a
variety of error measures (e.g., among others, Arm-
strong and Collopy 1992; Fildes 1992), because the
selection of the best forecasting technique may
depend on the choice of a particular accuracy mea-
sure. In this section, we computed different mea-
sures of forecast accuracy for each variable, model,
and forecast horizon. Conflicts among them
(although not desirable) only indicate different goals
of alternative prediction exercises. The first measure
is the root mean squared error (RMSE) defined for
horizon h and model i as 

where N is the number of forecasts, t is the number
of observations used for estimation, ei,t+h is the fore-
cast error defined as true value minus the forecast
produced with model i (either causal or DHR). 

The second measure is the mean absolute error
(MAE) defined as 

Also, to assess the forecast performance of both
models, particularly in the medium term, we com-
puted annual percentage errors (APE) and fore-
casted growth rates (FGR) and compare them with
observed growth rates (OGR). Annual percentage
errors for a certain year obtained with model i =
DHR, causal and forecast horizon h are defined as 

(7)

 
where n runs over the months within a year, t repre-
sents December of the previous year and

 is the forecast obtained with model i
for month n with observations up to the previous h

6 Among the variables associated with service changes, the
Metro route length is primarily responsible for the demand
changes experienced in the Madrid metropolitan area, par-
ticularly in 2000. This variable remains unchanged from
1988 to 1993 and changes very little (4%) from 1994 to
1997. However, it shows a huge increase (43%) during the
last months of 1998 and throughout 1999, and zero
growth during 2000 and 2001.

RMSEi h( ) 1
N
----- ei t h+,

2

t T=

T N+

∑=

MAEi h( ) 1
N
----- ei t h+,

t T=

T N+

∑=

APEi h( ) 
yi t n t n h–+ +, yt n   +

n 1=

12
∑–

n 1=

12
∑

yt n+
n 1=

12
∑

-------------------------------------------------------------------------------------%=

yi t n t n h–+ +,



52 JOURNAL OF TRANSPORTATION AND STATISTICS V7, N1 2004

months. The annual forecast growth rates are
defined as 

(8)

Although both RMSE and MAE are the usual yard-
sticks of forecast accuracy, for longer forecasting
horizons (beyond the usual one-step-ahead period),
their sole use may be not only inappropriate but
misleading (García-Ferrer and Queralt 1997). In
this case, we contend that FGR and APE become
more relevant criteria. Table 7 presents the results
for the RMSE and MAE, while the APE and FGRs
are shown in table 8. 

As might be expected, no model dominates the
other under all the accuracy criteria and forecasting
horizons. However, the following tentative conclu-
sions can be drawn from these tables. 

For the aggregate MAE and RMSE criteria (table
7), both indicators generally agree on which model
performs better. As expected, both models’ forecast-
ing performance deteriorates as the forecast horizon
grows. Only the causal model for 10BT shows simi-
lar MAE and RMSE values for different forecast
horizons without signs of deterioration. For this
variable, the DHR model deteriorates only in the 24-

steps-ahead forecast horizon. When considering
both criteria, all variables, and all forecast horizons
(48 cases), the causal model emerges as a winner in
35 cases, while the DHR model is best in 12 cases. In
one case (RMSE, h = 12, TC variable), the empirical
results are identical for both models. However, as we
will show later, some differences are not statistically
significant when using the Diebold-Mariano test.  

For the APE and FGR criteria, results change
considerably among variables, forecast year, and
forecasting horizons. In general, 1-step-ahead fore-
casts are excellent for both models, although the
causal model outperforms the DHR in 24 out of 36
cases. For this forecast horizon, a large number of
APE results are below 1%. The largest APE values
are –2.77% for the causal model and 3.36% for the
DHR model. For 6- and 12- steps-ahead forecasts,
results are only computed for 2001 and 2002. In the
first case (6-steps-ahead), the causal model outper-
forms its competitor in 15 out of 24 cases. Its
median APE is 1.58%, while the one corresponding
to the DHR is 2.66%. In the second case (12-steps-
ahead), results indicate a similar performance (each
model performing best in 12 cases), although the
median APE is 2.83% for the causal model and
3.70% for the DHR model. 

Finally, 24-steps-ahead results are only available
for 2002. For this particular year, forecasts deterio-

TABLE 7  Mean Absolute Value (MAE) and Root Mean Squared Error (RMSE) of 1-, 6-, 12-, and 24-Steps-Ahead 
Forecasts for Metro and Bus Tickets and Travel Cards for Alternative Models 
Forecasting periods: 2000–2002

SMT 10MT SBT 10BT TC JTC

Causal DHR Causal DHR Causal DHR Causal DHR Causal DHR Causal DHR

h = 1

MAE 0.031 0.035 0.039 0.041 0.039 0.046 0.027 0.041 0.025 0.031 0.029 0.034

RMSE 0.037 0.043 0.049 0.054 0.059 0.066 0.034 0.051 0.043 0.041 0.039 0.043

h = 6

MAE 0.046 0.054 0.065 0.055 0.085 0.090 0.029 0.038 0.036 0.044 0.026 0.040

RMSE 0.051 0.066 0.085 0.067 0.119 0.113 0.038 0.050 0.059 0.053 0.030 0.046

h = 12

MAE 0.078 0.085 0.103 0.075 0.115 0.112 0.027 0.040 0.027 0.043 0.022 0.029

RMSE 0.088 0.100 0.123 0.089 0.142 0.128 0.034 0.050 0.051 0.051 0.030 0.036

h = 24

MAE 0.156 0.233 0.130 0.107 0.140 0.268 0.032 0.064 0.073 0.074 0.075 0.049

RMSE 0.174 0.265 0.180 0.134 0.164 0.287 0.039 0.085 0.144 0.096 0.095 0.059

FGRi h( ) =
yi t n t n h–+ +, yt n 1     –+

n 1=

12
∑–

n 1=

12
∑

yt n 1–+
n 1=

12
∑

---------------------------------------------------------------------------------------------%
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rate considerably for SMT and SBT as a conse-
quence of huge drops in their tickets sales during
that year. Both models perform in a similar fashion,
although the median APE is 8.30% for the causal
model and 6.70% for the DHR case. One interest-
ing byproduct of both APE and FGR criteria is the
presence of signs that may be indicative of potential

gains (by canceling errors of different signs) of com-
bining forecasts over individual forecasts. According
to table 8, for instance, there are, a priori, plausible
forecasting gains for JTC (at all forecast horizons)
and also for SBT, 10BT, and SMT for certain years
and forecast horizons. 

TABLE 8  Annual Percentage Errors (APE), Forecasted Annual Growth Rates (FGR), Observed 
Annual Growth Rates (OGR) of h = 1-, 6-, 12-, and 24-Steps-Ahead Forecasts for Metro, 
Bus Tickets, and Travel Cards for Alternative Models
Forecasting Period: 2000–2002

SMT 10MT SBT 10BT TC JTC

Causal DHR Causal DHR Causal DHR Causal DHR Causal DHR Causal DHR

2000, h = 1

APE –0.87 –0.17 0.30 1.82 –2.77 –0.30 –1.32 –1.63 –0.04 –1.43 –0.43 2.28

FGR 12.22 13.01 5.96 7.57 0.87 3.44 –3.75 –1.05 9.21 7.69 –4.06 –1.45

OGR 13.20 5.64 3.75 –2.47 9.26 –3.65

2001, h = 1
APE 0.97 1.23 1.15 1.30 0.25 0.88 0.25 0.40 0.15 3.36 –0.22 2.11

FGR 5.67 5.94 0.90 1.06 –1.61 –0.99 –3.12 –2.97 6.20 9.61 –3.10 –0.83

OGR 4.65 –0.24 –1.86 –3.36 6.04 –2.88

2002, h = 1
APE 0.84 –0.07 –0.78 –3.36 1.86 1.28 –0.80 –1.70 0.56 0.04 –1.17 0.42

FGR –4.85 –5.71 6.15 3.39 –14.36 –14.84 –1.09 –1.98 5.01 4.47 –3.29 –1.73

OGR –5.64 6.98 –15.90 –0.29 4.43 –2.15

2001, h = 6
APE 2.65 3.00 5.09 2.27 –0.19 4.25 –0.22 1.09 3.61 4.33 –0.62 2.96

FGR 7.42 7.79 4.84 2.02 –2.05 2.32 –3.57 –2.30 9.87 10.63 –3.48 0.00

OGR 4.65 –0.24 –1.86 –3.36 6.04 –2.88

2002, h = 6
APE 3.55 1.86 –5.76 –5.56 7.37 4.73 –1.51 –2.28 1.05 2.36 –1.61 1.42

FGR –2.30 –3.89 0.82 1.03 –9.72 –11.94 –1.79 –2.56 5.52 6.89 –3.72 –0.76

OGR –5.64 6.98 –15.90 –0.29 4.43 –2.15

2001, h = 12
APE 3.52 7.57 10.46 7.20 –4.38 7.10 –0.62 0.42 2.01 2.17 –0.07 2.48

FGR 8.33 12.57 10.19 2.02 –6.16 2.32 –3.96 –2.95 8.17 8.35 –2.95 –0.47

OGR 4.65 –0.24 –1.86 –3.36 6.04 –2.88

2002, h = 12
APE 9.91 9.69 –10.13 –6.13 17.79 15.62 –2.14 –2.80 1.19 4.62 2.12 1.35

FGR 3.71 3.50 –3.86 0.42 –0.96 –2.79 –2.42 –3.08 5.64 9.26 –0.07 –0.83

OGR –5.64 6.98 –15.90 –0.29 4.43 –2.15

2002, h = 24
APE 16.94 28.68 10.66 7.00 10.41 34.00 –2.48 –2.20 6.17 6.39 –1.17 3.98

FGR 10.34 21.42 18.38 14.47 –7.17 12.67 –2.76 –2.48 17.17 11.11 –3.29 1.75

OGR –5.64 6.98 –15.90 –0.29 4.43 –2.15
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Statistical Comparison of Forecast 
Accuracy 

In this subsection, we perform the Diebold-Mariano
test (1995) to compare the forecast accuracy of the
two models. (For a recent revision of this type of test
see, e.g., Mariano 2002.) We will also apply its
small sample version (Harvey et al. 1997). We con-
centrate on the mean squared error (MSE) loss func-
tion. Denote by g(ei,t+h) the loss function for model
i = 1, 2 and by dt = g(e1,t+h) – g(e2,t+h) the loss differ-
ential between the two models. There is no statisti-
cal difference between the two forecasting
procedures if the expected value of the loss differen-
tial is zero. Therefore, the null hypothesis is
H0 : E(dt) = 0 versus the alternative H1 : E(dt) � 0.
Diebold and Mariano (1995) use the following test
statistic 

(9)

where 

(10)

and  is a consistent estimator of f, the asymptotic

variance of  under the null. We will com-

pute  as 

(11)

with M being the lag truncation and  the sam-
ple autocovariance of order k of the loss differential
series {dt}. The asymptotic distribution of DM is
N(0, 1). Harvey et al. (1997) proposed a small sam-
ple modification of the previous test when g is the
MSE function 

(12)

where now the lag truncation is taken as M = h – 1
for the h-steps-ahead forecast (recall that errors in h-

steps-ahead forecasts are a moving average process
of order h – 1), and Harvey et al. (1997) compared
the DM* statistic with a t distribution with N – 1
degrees of freedom. 

Table 9 presents the results of the two versions of
Diebold and Mariano’s test (DM and DM*) of the
squared loss function for 1-, 6-, and 12-steps-ahead
forecasts. For 24-steps-ahead forecasts, the forecast
errors could be distributed as MA(23), so we do not
have enough predictions (only 13) to properly esti-
mate the variance, and the test cannot be applied.
As table 9 shows, in 12 out of 18 cases the differ-
ences between the two forecasting methods are not
statistically significant. Positive significant values
indicate that the DHR model outperforms the
causal model, which occurs only for 12-steps-ahead
forecasts in the 10MT variable. On the contrary,
negative significant values indicate that the causal
model outperforms the DHR model, which occurs
in six cases when using the DM test but is reduced
to three when using its modified small sample ver-
sion. The overall conclusion from the application of
the test is that no model systematically dominates
the other. This leads us to consider forecast combi-
nations as a possible way to improve individual
forecasts. 

Forecast Combination 

Forecast combination is discussed in the literature as
a useful device to improve accuracy. Several types of
linear combinations of forecasts can be computed:
simple averages, weights based on the precision of
forecasts, and regression methods, among others
(see, e.g., Diebold 2003).  

Let  represent the h-steps-ahead forecast
obtained with model i = DHR,C (where C stands
for causal) with information up to time t. An easy
way to compute a forecast combination is to aver-
age the forecasts of the two competing models

. (13)

Table 10 presents the RMSE for the DHR and
causal models, as well as the combined forecast

 for all variables and horizons considered.
From this table, we can conclude the following: 
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1. The combined forecast does not always
improve the RMSEs of the individual fore-
casts. 

2. Nevertheless, it is never worse than
 and  at the same time. 

3. In half the cases (12 out of 24), the RMSE of
the combined forecast is between the RMSEs
of the individual models. 

4. In the remaining cases (12 out of 24), the com-
bined forecast is better than or equal to the
previous forecasts (DHR and causal). 

5. The improvement is observed mainly for h = 1
(with the exception of the 10BT) and for the
JTC variable, as the table 8 results suggest. 

The rationale behind these results might be the fol-
lowing. Theoretically, for horizon 1, the forecast

TABLE 9  Comparison of Forecast Accuracy: Results of the Diebold- 
Mariano (DM) and Modified Diebold-Mariano (DM*) Tests
for the Square Loss Function and Several Forecast Horizons
Forecasting Period: 2000–2002

SMT 10MT SBT 10BT TC JTC

h = 1
DM –1.34 –0.57 –1.04 –2.32 0.23 –0.69
DM* –1.32 –0.56 –1.02 –2.30 0.22 –0.68

h = 6
DM –2.89 1.80 0.37 –2.08 0.60 –3.52
DM* –2.38 1.48 0.31 –1.71 0.49 –2.90

h = 12
DM –1.73 2.78 1.51 –2.96 –0.03 –3.03
DM* –0.93 1.50 0.62 –1.56 –0.02 –1.64

Key: Bold indicates statistical difference between the two forecasting methods for alpha = 0.05. Positive 
(negative) values indicates that the DHR performs better (worse) than the causal model.

TABLE 10  Root Mean Squared Error (RMSE) of 1-, 6-, 12-, and 24-Steps-Ahead
Forecasts for Metro and Bus Tickets and Travel Cards for the DHR, 
Causal, and Average Forecasts
Forecasting Period: 2000–2002

SMT 10MT SBT 10BT TC JTC

h = 1
Causal 0.037 0.049 0.059 0.034 0.043 0.039
DHR 0.043 0.054 0.066 0.051 0.041 0.043
Average 0.037 0.042 0.059 0.035 0.037 0.033

h = 6
Causal 0.051 0.085 0.119 0.038 0.059 0.030
DHR 0.066 0.067 0.113 0.050 0.053 0.046
Average 0.055 0.069 0.111 0.038 0.052 0.031

h = 12
Causal 0.088 0.123 0.142 0.034 0.051 0.030
DHR 0.100 0.089 0.128 0.050 0.051 0.036
Average 0.091 0.101 0.126 0.036 0.045 0.026

h = 24
Causal 0.174 0.180 0.164 0.039 0.144 0.095
DHR 0.265 0.134 0.287 0.085 0.096 0.059
Average 0.213 0.145 0.204 0.051 0.108 0.028

yDHR t h t+, yC t h t+,
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errors are white noise, so the probability of these
errors from the two models being a different sign is
0.5. When this occurs, the forecast average might be
closer to the real value, because the average com-
pensates for overprediction by one method with
underprediction in the other. For longer forecast
horizons, the theoretical forecast errors behave as
MA(h – 1). If there is a turning point, it is possible
that none of the models captures it, especially for a
large h, and the probability of forecast errors of dif-
ferent signs might be lower without any possibility
of compensation. Because the major gains are
observed in the case of JTC, we concentrated on this
variable to analyze other forecast combinations.

We analyzed two other forecasting combinations:
linear regressions and variance-covariance methods.
(For a recent review of these methods see, e.g., New-
bold and Harvey 2002.) Consider the following
regression 

(14)

where et+h can behave as MA(h – 1) and let 

(15)

where  is the OLS estimator of , and the sub-
indices (1 and 2) show the two competing models.
By using the regression equation (15), problems
such as severe multicollinearity are possible, espe-
cially if the processes to be forecast are not station-
ary. It is also important to have a large enough
number of forecasts in order to estimate the regres-
sion coefficients, leaving the remaining h to make
true ex-ante forecasts. Otherwise, the true values of
the variables are used to estimate the coefficients,
and the associated RMSEs are only in-sample
(rather than out-of-sample) accuracy measures. 

The error variance of the linear combination of
the two forecasts 

(16)

with  is minimized if

(17)

where  and  are the variances of the forecast
errors of the DHR and causal models, respectively,
and  is the correlation coefficient. Note that this is
the same as the regression method when 
and . When the correlation coefficient
between the two forecast errors is zero,  can be
estimated from the data as 

(18)

Table 11 shows RMSE values for 1-step-ahead
forecasts of JTC using both original and combined
alternatives. In columns 5 and 6, we report the fore-
casts based on linear combinations formed with
OLS coefficients as in equation (15). We tried two
different alternatives: 1) using all the forecast sam-
ple to estimate the coefficients (REG in table 11),
and 2) using the coefficients estimated with the data
for 2000 (12 data points) to compute the linear
combination forecasts for 2001 and 2002 (REG(12)
in table 11). In column 7, we present the RMSE of
the linear combination of the forecasts equation
(16) when  is estimated in equation (18). For com-
parison purposes, we also added in columns 2 to 4
the RMSE of the DHR, causal, and average fore-
casts. Notice that the smallest RMSE is given
through the regression method REG, but recall that
both REG and VAR forecasts are not truly ex-ante,
because they use the future values of the variable in
order to estimate the coefficients of the linear com-
binations. When we restrict the sample used in the
regression equation (14) to the observations corre-
sponding to 2000 and use these coefficients to com-
pute the true ex-ante forecasts, the RMSE for 2001
and 2002 deteriorates to 0.047. We also tried to

TABLE 11  RMSE of the Different 1-Step-Ahead Forecasts of JTC
Forecast Sample: 2000–2002

DHR CAUSAL AVE REG REG(12)* VAR

RMSE 0.039 0.043 0.033 0.029 0.047 0.033

* The forecast sample in this case is 2001–2002.
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make true ex-ante forecasts using the restricted sam-
ple with the variables in first differences, but the
RMSE deteriorated even more. Overall, the best
forecasts were obtained by the average forecast of
the DHR and causal models. 

CONCLUSIONS

The recent experience of the Madrid metropolitan
area shows that it is possible to reverse declining his-
torical trends in public transport ridership. This was
achieved through an integrated fare scheme based
on low-cost travel tickets and improvements in the
quality of service. To adequately plan for future
public transportation facilities requires reliable pre-
dictions of public transport demand that take into
account the users response to changes in prices and
the characteristics of the service. 

Using recent monthly data, we addressed the
problem of forecasting the demand for a large num-
ber of tickets that are subject to multiple, complex
calendar effects, changing supply service, and
changing seasonality, in addition to superimposition
of outliers. Two different approaches were used to
deal with these issues. The first one is a causal
model based on a transfer function dynamic model
that allows the incorporation of intervention and
exogenous variables in a flexible way. The other is
the Dynamic Harmonic Regression model, a new
variant of unobserved component models with
time-varying parameters, that allows the trend and
the seasonal components to adapt as soon as the
new information becomes available. 

Both methodologies are capable of dealing with
the nonstationarity and strong seasonality features
that characterize the database. Additionally, all
series exhibit the presence of large outliers related to
several causes—Easter and trading day effects,
many strikes, and abrupt changes in public trans-
port supply at the end of the sample—which consid-
erably complicate the forecasting exercise. The
estimation results indicate that the effects of these
input variables have the expected signs and are
highly significant from a quantitative point of view.
However, their effects change considerably for dif-
ferent types of tickets and transportation modes. 

Several periods-ahead forecasts (1, 6, 12, and 24
months) for the 6 variables considered in this paper
were obtained for 2000, 2001, and 2002. The fore-
casting for this period was particularly difficult
given the major increase in Metro services just
before this period. This meant a mixture of effects
that influenced not only total demand but, also,
temporary passenger shifts among different modes. 

We tried to make this forecasting exercise as
complete as possible by adopting a large variety of
error measures. Forecast accuracy was assessed
using four different aggregate measures as well as
variants of the so-called model-free testing proce-
dures. Recent developments have shown that these
tests are relevant in a wide variety of circumstances
(nonquadratic and asymmetric loss functions, seri-
ally correlated errors, and non-Gaussian distribu-
tions) where previous tests were not applicable. As
our forecasting exercise illustrates, they have been
very valuable in assessing statistical significance of
the differences found between the individual model-
ing alternatives. We also looked at the accuracy gain
derived from pooling the individual forecasts.
Although the gain is not uniform for all variables
and forecasting horizons, it is almost uniform for all
variables in the case of one-step-ahead forecasts and
tends to decrease as the forecasting horizon grows.
For the most important variables in this dataset (TC
and JTC), however, the pooling alternative seems to
work well at all forecasting horizons. Finally, we
have shown how careful attention is needed in dis-
tinguishing between in-sample and truly out-of-
sample comparisons when assessing forecast
accuracy. 
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APPENDIX A: BGF ALGORITHM 

In the DHR model, Tt and St consist of a number of

DHR components, , with the general form 

, 

where pj and  are the period and the
frequency associated with each j-th DHR compo-
nent respectively. Tt is the zero frequency term

, while the seasonal component is 

 

where j = 1,…,R are the seasonal frequencies.
Hence, the complete DHR model is 

The oscillations of each DHR component, ,
are modulated by  and , which are stochastic
time-variable parameters that follow an AR(2) sto-
chastic process with at least one unit root 
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therefore, nonstationarity is allowed in the various
components. 

This DHR model can be considered a straightfor-
ward extension of the classical harmonic regression
model, in which the gain and phase of the harmonic
components can vary as a result of estimated tem-
poral changes in the parameters  and .7 

The method for optimizing the hyper-parameters

of the model (i.e., the variances

of the processes  and the variance 
of the irregular component) was formulated by
Young et al. (1999) in the frequency domain and is
based on expressions for the pseudospectrum of the
full DHR model: 

where  are the pseudospectra of the DHR

components , and  is the variance of the irreg-

ular component. The optimization processes seek

the vector  that minimizes8 

, (19)

where  is the spectrum of the observed time
series. The DHR components follow nonstationary
ARMA processes; therefore, in order to find an
ordinary least squares (OLS) solution for equation
(19), the unit modulus AR roots of 
need to be eliminated. The DHR components 
are stochastic processes of the form

and the pseudospectrum of the complete DHR
model is 

If equation (19) is multiplied by the function 
, 

where  is the minimum order polynomial with
all unit modulus AR roots of the complete DHR
model, the algorithm minimizes 

(20)

but, because in equation (20) all the unit modulus
AR roots cancel, the minimization problem can be
solved by OLS. 

Finally,  can be substituted in equation (20)
by the estimated AR spectrum 

, 
where  is an AR polynomial fitted to the
series, and  is the residual variance of the fitted
AR model. The size, shape, and location of the spec-
tral peaks of  are used to identify the models
of each of the DHR components . 

Once the models of the DHR components have
been identified, and the hyper-parameters

have been optimized by OLS, the DHR components
Tt, St, and et can be estimated using the Kalman Fil-
ter and Fixed Interval Smoothing. 

7 The main difference between the DHR model and
related techniques, such as Harvey’s structural model
(Harvey 1989), lies in the formulation of the UC model
for the periodic components and the method of optimiz-
ing the hyper-parameters.
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ABSTRACT

This paper presents analyses and forecasts of trends
related to road traffic and pedestrian casualties and
fatalities in Great Britain. For people killed and seri-
ously injured, these forecasts are based on extrapo-
lation of the absolute number of casualties. For
casualties classified as slight, forecasts are made of
the rate of casualties per 100 million vehicle-kilome-
ters. Forecasts, using autoregressive models, are
then compared with government targets and show
that at the aggregate level it is unlikely that, for the
numbers who are killed or seriously injured, these
targets will be achieved.

INTRODUCTION

One of the key performance measures of the safety
of a nation’s transport system is the number of peo-
ple who are killed or seriously injured in road acci-
dents. Apart from the human tragedy, estimates
show that each fatal road accident in Great Britain
costs £1,447,490 (approximately $2,665,000) while
a serious casualty costs £168,260 (approximately
$310,000) (DETR 2002). National governments
provide targets that traffic managers, infrastructure
designers, vehicle manufacturers, and the legal sys-
tem strive to achieve. The latest set of targets for

KEYWORDS: National road safety trends, statistical fore-
casting, casualty and fatality prediction.
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Great Britain is for the year 2010. Compared with
the average of 1994 to 1998, hoped-for reductions
are as follows:

� the number of fatal or serious injuries in road
accidents by 40%,

� the number of children killed or seriously injured
by 50%, and

� slight injuries per 100 million vehicle-kilometers
by 10%.  

This paper reports on an exploration of recent
casualty1 time series in Great Britain and forecasts
these series up to 2010 to determine if it is likely
that targets set by the government of Great Britain
are achievable.  As will be discussed, most fore-
casting approaches predict the casualties per 100
million vehicle-kilometers; however, this paper
attempts to conduct the straightforward forecast-
ing of the time series of the number of casualties.
These are then compared with the casualty reduc-
tion targets. It is hoped this will be useful to those
involved with road safety to determine if targets
for the number of those killed or seriously injured
in vehicle accidents can be met or if more effort is
required.

For the previous targets, which were set in 1987,
the aim was to reduce deaths and serious injuries by
one-third by 2000 compared with the average for
1981 to 1985. This target was surpassed; in fact,
road deaths fell by 39% and serious injuries by
45%. The success in Great Britain has come about
through legislative changes aimed at altering driver
behavior and improving infrastructure and vehicle
crash protection. 

The number of casualties is of concern through-
out Europe, where there are over 40,000 deaths and
1.7 million people injured per year, directly costing
some 160 billion Euros—and the young are most
affected (European Commission 2003). 

In 2000, the European Commission initiated the
European Road Safety action program with the
intention of halving the number of those killed or
seriously injured in road accidents by 2010.  It took
30 years for the previous halving of rates, so this
must be seen as ambitious. The focus of the pro-
gram is on:

1. Improving driver behavior through education
and enforcement of speed limits, use of safety
belts, and penalties for drinking/drug use
while driving. 

2. Encouraging improvements in vehicle design
and technological advances to enhance both
occupant protection and pedestrian survivabil-
ity.

3. Encouraging improvement of the road infra-
structure.

4. Reducing the risk to people during the trans-
port of commercial goods and while using
public transport.

5. Improving emergency services and care for
road accident victims.

6. Promoting research into transport safety and
improving accident data collection and dis-
semination.

To enact these policies, the European Commis-
sion has produced a European Road Safety Charter
as an exemplar of good practice. Government agen-
cies are required to sign and have their compliance
with the charter monitored and publicized—hence
the need to predict and monitor the casualty series.

Great Britain is now one of the safest of the Euro-
pean countries in terms of road traffic injuries and
compares favorably with all Organization for Eco-
nomic Cooperation and Development (OECD)
countries (OECD 2003). However, there is still
room for improvement, especially for child pedes-
trian fatality rates per 100,000 people. As of 2001,
Great Britain lagged behind many similar western
European countries (Scottish Executive 2002). Of
particular concern is that since 1991 the total num-
ber of road traffic casualties in Great Britain has
shown a slight but significant upward trend. In fig-
ure 1, the slope of the fitted trend line indicates an
increase of 11.69 each month, which is statistically
significant with a P-value of 0.013. 

Figure 2, which is broken down by type of casu-
alty, presents a somewhat different picture from the
total. The numbers of fatal and serious casualties
have decreased markedly over the period, whereas
the number of slight injuries has increased. (This last
change may reflect improved reporting systems,
especially as insurance companies require a police
report if anyone is injured.) Given that in Great1 Casualties are fatal, serious, or slight injuries.
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Britain since 1991 the number of vehicle-kilometers
traveled has increased by more than 15%, the risk
of fatal or serious injury has been substantially
reduced (by 24.5% and 28.1%, respectively, over
the period 1991 to 2001).

REVIEW OF PREVIOUS WORK

An often-used approach to forecasting killed and
seriously injured (KSI) casualties has been to take a
time series of annual rates and extrapolate a fitted
negative exponential model. Sometimes allowance is
made through the use of disturbance terms for spe-
cial events, such as the introduction of legislation to
make seat-belt wearing compulsory, but in general
the models are univariate in nature and incorporate
little in the way of explanatory variables. A good
example is the work of Broughton (1991) who fit-
ted extensions of the model

log(casualties/traffic volume) = a + b*year + 
an intervention 
term (1)

to data on Great Britain road casualties from 1949
to 1989. This model gave good forecasts of the
number of fatal casualties in 2000: 3,312 with a
90% prediction interval of 2,892 to 3,826. There
were, in fact, 3,409 fatalities. Broughton’s forecasts
of KSI casualty numbers and all casualty numbers
underpredicted by 4.8% and 24.8%, respectively.

This approach requires the number of vehicle-kilo-
meters driven to be forecast ahead. Thus, either
official forecasts of the amount of kilometers driven
must be made, or the growth of this series will need
to be modeled, perhaps using a sigmoid model, as
Oppe (1989) suggested.

Although supported by Nilsson (1997), the use
of kilometers as a denominator is problematic
because most casualty accidents occur relatively
close to the place of residence of the person or per-
sons involved (Petch and Henson 2000; Scottish
Executive 2002). Also, the certainty of estimation of
a nation’s annual driving is not clear. However, an
argument can be made that using kilometers as a
denominator would serve as a proxy for the number
of people driving.

Harvey and Durbin (1986) applied structural
time series methods using ARIMA models with an
intervention term to the monthly data series of the
numbers killed and seriously injured in Great Brit-
ain from January 1969 to December 1984. The
results demonstrated the effectiveness of the intro-
duction of seat belt legislation. Raeside and White
(2004) used ARIMA models for the monthly series
of KSIs from 1991 to 2001. From these models,
they projected the numbers of fatal and serious
casualties in 2010 to show that targets set by the
government of Great Britain may be met. But using
ARIMA models to predict eight years ahead from

FIGURE 1  Casualty Trends in Great Britain: 1991–2001
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this short time series must be regarded as specula-
tive, and this is reflected in the relatively wide pre-
diction intervals of these models. A more precise
means of assessing progress to targets is required.

Haight (1991), in his editorial commentary on a
special issue of Accident Analysis and Prevention,
advocated models for predicting fatalities with year
and traffic volume as variables.

(2)

The models were transformed and fitted using Pois-
son regression. Brude (1995) successfully applied a
version of these models to forecast the number of
fatalities in Sweden to the year 2000 from data cov-
ering 1977 to 1991. Guria and Mara (2001) incor-
porated this type of modeling into a control chart to
give the “probability of achieving the target given
the past outcomes of the year.” They highlighted the
importance of day and month effects on the vari-
ability of the casualty series.

Lassarre (2001) extended Smeed’s (1949) work
to develop a family of structural time series models
using Harvey's (1989) approach to estimate fatality
time series across 10 European countries. He found
that, since 1962, fatalities have decreased at an aver-
age annual rate of 6%. Balkin and Ord (2001)
applied a stochastic structural equation modeling
approach to predict the effect of speed limit changes
on the number of fatal crashes on both urban and
rural interstate highways in the United States. Sea-
sonal influences can be accounted for in their
approach, and comparisons between states were
made. They found that the view that higher speeds
means more fatalities could not be universally
supported. 

Page (2001) modeled safety trends in OECD
countries from 1980 to 1994 and constructed a
safety index comprising population variables, num-
bers of buses and coaches, employment rates, and
rates of alcohol consumption. Page then used these
variables in regression models to demonstrate that
fatality rates per billion vehicle-kilometers have gen-
erally decreased. The OECD countries with the
highest index (safest) were Sweden, the Nether-
lands, Norway, the United Kingdom, and Switzer-
land, and the lowest were Greece, Belgium, the
United States, Portugal, and Spain. 

Much discussion of the improving casualty
trends has appeared in the literature, some of which
is summarized in Raeside and White (2004). These
trends appear to be the result primarily of improve-

FIGURE 2  Casualty Trends by Type
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ments in road infrastructure and the crashworthi-
ness of vehicles. Behavioral and legislative influence
appear, from the literature, to be of second order.
Figure 2 provides some support for this, as the total
number of accidents seems to have remained about
the same but fatal and serious accidents have
decreased, which indicates greater levels of personal
protection. Accident rates have also improved as a
result of changes in behavior, especially reductions
in rates for child pedestrians and bicycling (DiGu-
iseppi et al. 1997; Stone and Broughton 2003).

Little use has been made of explanatory models
in predicting casualties, with the notable exception
of Brannas (1995), who used a Poisson regression
model. He based his work on that of Zeger (1988) to
successfully forecast road accidents in Vasterbotten
County in Sweden using variables representing
exposure and weather, plus daylight variables. The
model Brannas considered is as follows:

(3)

where

and xt is a 1 x k vector of covariates representing
weather and daylight. This, however, is more suited
to forecasting for micro areas than for national fore-
casts. The same is true for the numerous Poisson
models developed by civil engineers. They are simi-
lar to equation (2) but contain variables represent-
ing the geometry of the junction, the nature of the
conflict, traffic volumes, and major road features,
and they can be used to predict accidents at particu-
lar road junctions (Maher and Summersgill 1995).

Unfortunately, little has been done to use the pre-
dictive models to assess the probability of meeting
casualty reduction targets. To achieve this aim, this
paper employs simple models based on Broughton’s
(1991) approach to produce predictive distributions
based on numbers rather than rates per 100 million
vehicle-kilometers driven. The models do not incor-
porate traffic volumes (except for slight injuries). 

FORECASTS OF CASUALTIES

The annual data series of the numbers of fatal, seri-
ous, and slight casualties were taken from table 9.10
of Road Accidents Great Britain 2002 (DETR
2002). The series were then modeled using auto-
regressive and linear trend terms. Natural logarithms
were used for fatalities and for the serious casual-
ties, so that the models would be negative exponen-
tial in nature and similar to that of Broughton
(1991), but using the numbers rather than rates per
billion vehicle-kilometers and not employing an
intervention term. For slight casualties, results of the
natural logarithm of the casualty rate per 100,000
vehicle-kilometers allowed comparisons with the
official target. The trend variable was formed by
subtracting 1970 from the year. The autoregressive
models were fitted using SPSS; the exact maximum
likelihood method was used. The models for fatal
and serious injuries may be written as:

ln(casualties in year t) = a + b*(year–1970) + 
c*ln(casualties in year 
t–1) (4)

For slight injuries, casualties per 100 million vehicle-
kilometers were used instead of casualty numbers.
Table 1 shows the coefficients and fit parameters of

Pr yt( )
λt

yt e λt–

λt!
---------------- t 1......,T=( )=

λt e
xt β

=

TABLE 1  Coefficients and Fit of Models for Forecasting the Natural Logarithm of the Numbers of 
Fatal and Serious Casualties and of the Rate of Slight Casualties

Number of fatalities
Number of serious 

casualties

Slight casualty rates per 
100 million vehicle- 

kilometers

Parameter Coefficient
Standard 

error Coefficient
Standard 

error Coefficient
Standard 

error

Autoregressive term 0.684 0.130 0.831 0.093 0.840 0.088

Trend –0.027 0.002 –0.030 0.003 –0.026 0.003

Constant 8.996 0.043 11.534 0.065 0.205 0.054

Standard error 0.045 0.042 0.034

Adjusted R 2  0.965 0.966 0.966
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the models. The models all fitted well, and it should
be noted that all models show a significant down-
ward trend. 

Figure 3 presents the forecasts generated by each
of these models, with the lower and upper predic-
tion level limits (LPL and UPL) also displayed. The
forecast of fatalities for 2010 ranges over a 95%
prediction interval from 2,246 to 3,142 with an
expectation of 2,656 deaths. This is a 26% reduc-
tion from the 1994 to 1998 average of 3,578, which
is used as the government’s baseline for measuring
improvements. This is disappointing for planners
and policymakers—if the predictive distribution for
the log of causalities is considered approximately
normal, then the chance of attaining or exceeding
the 40% reduction target is less than 14%. By add-
ing the forecasts of the number of serious casualties
to the forecasts of fatalities, we get a 95% predic-
tion interval for KSI casualties of 26,002 to 38,989,
with an expectation of 31,839. The expected value
of KSI casualties is only 33% less than the baseline
figure of 47,656. The probability of meeting or
exceeding the target of 40% is only 31.2%. Thus,
the attainment of this target is unlikely.

The government target for slight injuries was a
10% reduction from the 1994 to 1998 baseline of
46.30 slight injuries per 100 million vehicle-kilome-
ters. The forecasts show that a reduction of just over
9% is expected. The probability of achieving or sur-
passing the 10% target is 0.476. Thus it appears
that in Great Britain, the road casualty improve-
ment targets for slight injuries may not be reached.
However, the prospects are more optimistic than for
the KSI series if injuries are assumed to be a function
of the number of trips and not the number of vehi-
cle-kilometers. This “optimism” may well be the
consequence of increased traffic volumes rather
than improved safety.

The other important target of halving the num-
ber of children who are killed or seriously injured by
2010 and the pedestrian casualty series will be
examined next. Table 2 presents coefficients of the
model of the natural logarithm for child and pedes-
trian KSIs. Again the models fitted well and dis-
played a significant downward trend. The forecasts
along with the LPLs and UPLs produced from these
models are displayed in figure 4.

Child KSI casualties are forecasted to fall to
3,482 with a 95% prediction interval of 2,899 to
4,182, a reduction of just over 50% from the 1994
to 1998 baseline. Although this is close to the target

FIGURE 3  Forecasts of Fatalities, Serious 
Casualties, and Slight Casualties

KEY: LPL = lower prediction level; UPL = upper prediction level
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of 50%, the probability of meeting or exceeding the
target is 0.530. Pedestrian casualties are projected to
be reduced by 43%, with the number of KSI pedes-
trians falling from 11,667 to 6,652. As no target is

given for pedestrian casualty reduction, no proba-
bilities of attainment can be computed. Table 3
shows the probabilities of attaining the targets
where targets are available.

CONCLUSIONS

Governments of many developed countries set peri-
odic road safety targets. The latest targets in Great
Britain are for 2010 and relate to the number of peo-
ple killed or seriously injured on Britain’s roads and
the rate of slight injuries per 100 million vehicle-
kilometers driven. For effective use of resources it is
important to monitor progress to these targets. This
paper presents a methodology for forecasting casu-
alty trends and monitoring progress toward targets. 

The paper presents trends in casualty numbers
for fatal, serious, and slight injuries, as well as those
involving pedestrians (with a separate category for
children). Progress in improving casualty numbers
seems promising for children and for slight injuries,
but attaining the reduction targets for 2010 is
uncertain. For the killed and seriously injured cate-
gory, the probability of attaining a 40% reduction is
fairly slim, and a greater effort is needed to ensure

TABLE 2  Coefficients and Fit of Models for Forecasting the Natural Logarithm of the 
Number of Child and Pedestrian KSI Casualties

Child casualties Pedestrian casualties

Parameter Coefficient
Standard 

error Coefficient
Standard 

error

Autoregressive term 0.618 0.180 0.877 0.086

Trend –0.044 0.003 –0.037 0.006

Constant 9.966 0.074 10.340 0.138

Standard error 0.047 0.044

Adjusted R 2 0.948 0.950

FIGURE 4  Forecasts of Child and Pedestrian KSIs

KEY: LPL = lower prediction level; UPL = upper prediction level
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TABLE 3  Probabilities of Attaining Road Accident 
Improvement Targets by 2010

Accident series

Percentage 
reduction 

target for 2010
Probability of 

attainment

Fatalities 40 0.133

Killed or seriously 
injured (KSI) 40 0.312

Slight 10 0.476

Child KSI 50 0.530
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convergence on this target. One possibility for
reducing casualties is to apply and enforce measures
to reduce traffic levels in Great Britain. While tar-
gets should be aspirational rather than set at easily
attainable levels, the issue of road traffic accidents is
politically contentious. Accounting for the marked
seasonality of the data may provide targets that are
more likely to be attainable. This is the subject of
future research. 
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ABSTRACT

Whenever an unusual event disrupts the structural
patterns of a time series, one of the aims of a fore-
caster is to model the effects of that event, with a
view to establishing a new basis for forecasting.
Intervention analysis has long been the method of
choice for such adjustments, but it is often repre-
sented as a procedure for dealing with events in the
middle of the time series rather than for the most
recent observations. In this paper, we develop a
method, termed the three-intervention approach, to
provide a flexible solution to this problem. We
examine its application for a number of transporta-
tion series that were disrupted by the tragic events
of September 2001. Analyses of the series using up
to six months of post-event data show good agree-
ment with results based on longer post-event series,
and suggest that the proposed method will often
provide adequate modifications to a series in a
timely manner. The method is applicable to most
economic time series, but has been tested only for
transportation series.

INTRODUCTION

The time that elapses between the occurrence of
events and the production of the statistical records
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that describe them will always be too long. The pro-
duction speed of monthly series will continue to
improve in the area of transportation as elsewhere,
but time lags in production are inevitable. Thus,
when new data become available, it is important to
remove any distortions caused by recent events so
that we can both understand what has happened
and predict future developments. This quality will
be jeopardized whenever the latest values do not
provide a clear indication of the true situation.
Common examples include the disruption of travel
patterns because of extreme weather conditions or a
loss of service due to a labor dispute. We refer to
such effects as interventions in the time series, which
may return to its previous level rapidly, slowly, or
not at all. In such circumstances, the data may be
misleading and require adjustment before underly-
ing trends can be discerned. 

When an intervention occurs some months in the
past, data are available on either side of the affected
month(s), and we may use the more conventional
methods of intervention analysis to make adjust-
ments (see, e.g., DeLurgio 1998, chapter 12 or Har-
vey 1989, section 7.6). In these circumstances, the
nature of the intervention can usually be identified
and it remains only to estimate the model parameters.

A rather different problem arises when the inter-
vention has just taken place. The same general
methods are appropriate but the amount of data
available to describe the event is necessarily very
limited. Further, the nature of the change (e.g., per-
manent or temporary) may be uncertain. Neverthe-
less, we wish to ascertain the nature of the change
and to estimate its impact as quickly as possible so
that series predictability may be restored. This paper
develops such an early response system and tests its
performance empirically. In the next section we
describe the basic ideas, and the following section
describes their implementation in a structural mod-
eling framework. After that we present the analysis
of a single series to illustrate ideas. The general
approach and results for a number of transportation
series are then summarized and discussed. The
paper concludes with final comments on the pro-
posed form of intervention analysis. 

AN INTERVENTION ANALYSIS 
FRAMEWORK

The basic ideas for monitoring a process over time
are central to statistical process control (SPC). The
use of time-series modeling in SPC follows from the
seminal work of Alwan and Roberts (1988, 1995).
In SPC, we conventionally distinguish two sources
of variation (see Alwan 2000, pp. 217–220):

� Common cause variation reflects the natural
variation inherent in the process, and

� Special (or assignable) cause variation is any vari-
ation in the process introduced by a recognizable
factor (e.g., a worn tool or a poorly trained
operator).

In the present context, we are interested in identi-
fying recent changes, and the possible types of
assignable cause need to be identified more clearly.
Thus, it is useful to divide assignable cause variation
into three categories, which we may examine by dif-
ferent means:

� Additive outlier (AO)—A factor has a short-term
temporary impact on the series, which is resolved
within a single observational period. The series
then returns to its original state. For example, the
effects of a blizzard on airplane traffic would typ-
ically be of this nature.

� Temporary change (TC)—A factor has a rela-
tively short-term impact on the series, which
returns to its previous state over a number of
time periods. For example, a prolonged strike in
an industry will reduce production, which gradu-
ally recovers over the next several months. 

� Level shift (LS)—A factor causes the series to shift
to a new level, and the series stays at that new
level. For example, a change in the law on seat
belts will lead to a shift in the number of fatalities.

The emphasis in these three types of intervention
is on a sudden change in the series, and such
changes are the basis of our present study. By con-
trast, it is possible to observe slowly changing condi-
tions that may lead to fundamental changes in the
series of interest. For example, improved engine
design might produce greater fuel efficiency ratings
for automobiles, but such an effect would be seen
only very gradually in an aggregated series on aver-
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age miles per gallon. Such changes will be incorpo-
rated into the trend terms of our models and so are
not identified directly. Finally, we note that the sea-
sonal pattern in the series may vary over time. For
example, airlines may alter their seasonal pricing
strategies, which would lead to a shift in travel pat-
terns. Both these effects are important for longer
term predictability, but they are less critical in the
shorter term.

We make the three assignable causes operational
in accordance with the definitions in table 1, where
we assume that the event takes place at time T, and
Xt is an indicator (or dummy) variable that indi-
cates the timing of the event. Thus, in the simplest
case of a series that has a constant mean, , over
time with random disturbances , except for inter-
ventions, the series yt would be modeled as:

(1)

where I measures the magnitude of the intervention.
Figures 1 through 3 provide graphical examples

of the AO, TC, and LS, respectively. A major ques-
tion with the TC is the rate of adjustment. Indeed,
the AO may be viewed as a TC with adjustment fac-
tor, d = 0, or sufficiently small to disappear within
one time period. Likewise, an LS may be viewed as
a TC with d approaching 1.0. Keep in mind that we
will typically have a very limited amount of data
with which to estimate these effects, and that the
direct estimation of adjustment rates is difficult even
when we have a considerable number of observa-
tions after the intervention (see Box and Tiao 1975).
Although many interventions are unique in nature,
the notion of the time taken to recover from the
effect is usually quite well understood by those in
the industry. Thus, subject matter specialists can
sometimes provide reasonable estimates of the half-

life for a new intervention, even though the magni-
tude of the effect cannot be reliably assessed in
advance. 

Chen and Liu (1993) recommend d = 0.7 as a
convenient choice, which results in a half-life of the
TC of about three months. That is, in months 1, 2,

TABLE 1 Statistical Definitions of Assignable Causes in Time Series

Value of Yt

Assignable cause Statistical definition t < T t = T t > T

Additive outlier (AO) Xt = 1, when t = T; 
Xt = 0, otherwise

Temporary change (TC) Xt = d t – T  ,  when ;
Xt = 0, t < T

Level shift (LS) Xt = 1, when ;
Xt = 0, t < T

µ µ I+ µ

t T≥ µ µ I+ µ Id t T–+

t T≥ µ µ I+ µ I+

µ
ε

yt µ Xt I εt++=

FIGURE 1  Example of Additive Outlier (AO)

FIGURE 2  Example of Temporary Change (TC)
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and 3, the weights assigned to the TC are 1.0, 0.7,
and 0.49, reducing to about half the starting weight.
Likewise, a value of d = 0.8 corresponds to a half-
life of about four months and d = 0.9 to a half-life of
just over seven months. A value of d greater than
0.9 becomes almost indistinguishable from a level
shift in the short term. Conversely, a value apprecia-
bly less than 0.7 may be represented by a one- or (at
most) two-period AO.

Based both on the argument of Chen and Liu
(1993) and observations about likely recovery times
from transportation analysts, we used d = 0.7 in our
empirical study of monthly series. As a general mat-
ter, an investigator should pay attention to both the
phenomenon under study and the frequency with
which the data are recorded.

THE STRUCTURAL TIME-SERIES MODEL

Although terms such as “trend” and “seasonal” are
intuitively appealing, they are mental constructs
because we cannot observe them directly. Therefore,
we use a structural modeling approach that treats
them as unobserved components (Harvey 1989; Har-
vey and Shephard 1993). In the empirical work, we
used the STAMP (Structural Time Series Analyser,
Modeller, and Predictor) software in conjunction
with GiveWin (for details, see Koopman et al. 2000). 

The trend is the long-run component in the
series; it designates the general direction in which
the series is moving. The trend consists of two parts:
the level (which is the current value of the trend)
and the slope (which represents the change in the

level from one period to the next). Both the level
and the slope may be either fixed or evolve over
time. A slope may or may not be present depending
on the nature of the phenomenon being studied.
The seasonal component represents variations over
the year, such as increased traffic during the sum-
mer. Again, a seasonal component may or may not
be present and, if present, may be fixed or evolve
over time. The irregular component represents the
unexplained variation in the series. We define the
components at time t as follows: level = ; slope =

; seasonal component = ; and irregular compo-
nent = . We assume that the process is observed at
unit time intervals (t, t+1,…) and that there are s
such intervals in a year (e.g., s = 12 for monthly
data). We then allow each component to evolve
over time according to the specifications:

(2)

(3)

and

(4)

Equation (4) provides the dummy variable form of
the seasonal component (the reader is directed to
Koopman et al. (2000) for the trigonometric formu-
lation of the seasonal component).

The quantities , , and  represent zero
mean, random shifts in the corresponding compo-
nent. We assume such shifts to be independent of
one another and uncorrelated over time; we also
assume that they are independent of the “irregular”
component, , seen in equation (5) below. Equa-
tions (2) through (4) are known as the state or tran-
sition equations, because they describe the
underlying states of the process or the transition of
the components from one time period to the next.

Equations (2) and (3) together provide a general
framework for describing the evolution of the trend.
If the process being modeled does not require all of
these components, they can be dropped from the
specification. The components are tested in sequen-
tial fashion as follows (Harvey 1989, pp. 248–256):

� Does the slope disturbance term have positive
variance? (Zero variance corresponds to the
slope being fixed over time.)

FIGURE 3  Example of Level Shift (LS)
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� If the slope disturbance term has a zero variance,
does the slope parameter estimate significantly
differ from zero? (An insignificant slope coeffi-
cient having a slope disturbance term with a zero
variance indicates that the slope term should be
dropped from the model.)

� Does the level disturbance have positive vari-
ance? (Zero variance corresponds to the mean
level being fixed over time.)

If all three statistical tests produced negative out-
comes, the overall trend term would be reduced to a
constant.

When the time series is seasonal, we check the
following:

� Does the seasonal disturbance term have positive
variance? (Zero variance corresponds to a stable
seasonal pattern.)

� If the seasonal disturbance term has a zero vari-
ance, are the seasonal components significantly
different from zero? (Is there any seasonal pattern?
Should seasonality be dropped from the model?)

If the seasonal disturbance term has zero variance
but the seasonal components are significantly differ-
ent from zero, we are left with a “classical” model

with fixed seasonal components. If the seasonal pat-
tern is rejected completely, we reduce the model
purely to its trend components.

The observed series is related to the state of the sys-
tem by the observation (or measurement) equation:

(5)

where  denotes the irregular component. The
irregular component has zero mean and is assumed
to be serially uncorrelated (i.e., not predictable) and
independent of the disturbances in the state
equations.

Estimation proceeds by maximum likelihood
(Harvey 1989, pp. 125–128). Operational details are
provided in Koopman et al. (2000, section 8.3). The
key parameters are the four variances corresponding
to the disturbance terms .
Note that we assume these variances are constant
over time; the time series may need to be trans-
formed to justify this assumption, at least to a rea-
sonable degree of approximation. The four variance
terms control the form of the model, allowing each
component of level, slope, and seasonality to be sto-
chastic or fixed; slope and seasonal elements may be
present or absent. Table 2 illustrates the principal

yt µt γt εt+ +=

εt

σε
2[ ση

2 σζ
2,  and σ2

ω ],,

TABLE 2  Some of the Principal Models in the Structural Framework

Type of model

Level only

Constant mean yes 0 0 0

Local level yes yes 0 0

Random walk 0 yes 0 0

Trend only

Deterministic yes 0 0 0

Local level with fixed slope yes yes 0 0

Random walk with fixed drift 0 yes 0 0

Local linear trend (Holt) yes yes yes 0

Smooth trend yes 0 yes 0

Second difference 0 0 yes 0

Seasonal (with selected trend)

Fixed seasonals (yes or 0) (yes or 0) (yes or 0) 0

Varying seasonals (yes or 0) (yes or 0) (yes or 0) yes

Basic Structural Model yes yes yes yes
Source: Based on Koopman et al. (2000), p. 141.

σε
2 ση

2 σζ
2 σω

2
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variations. If fixed components are included in a
model, the corresponding terms appear in the state
equations (e.g., fixed seasonal coefficients), but the
variance term is zero. If the components are stochas-
tic, the same terms appear in the model, but the vari-
ance is strictly positive. The most general form is the
Basic Structural Model (BSM), in which all compo-
nents are stochastic. The BSM forms the starting
point for the model development process and is the
standard form employed in STAMP. The program
then “tests down” to eliminate any components that
are not required. 

ANALYSIS OF LATE ARRIVAL OF 
SCHEDULED FLIGHTS

By way of illustration, we consider an example that
has received considerable publicity in recent years,
namely late arrival of flights, or airline delays. The
particular series examined in this section describes
the monthly percentage of scheduled flights for
major U.S. air carriers not arriving on time, or the
Late Arrivals time series. A plot of this series, for the
period September 1987–February 2002, is shown in
figure 4. The tragic events of September 2001

changed many lives in fundamental ways and also
had a serious effect on the level of activity in the air-
line industry. Therefore, we will analyze the series
initially only up to August 2001 and consider the
aftermath of the terrorist attacks in the next section.

An initial set of interventions (prior to September
2001) was identified using information provided by
the Bureau of Transportation Statistics (published in
a report known as Transportation Indicators), com-
bined with an initial analysis using the AUTOBOX
software (produced by Automatic Forecasting
Systems1).

Two significant pulses, or AOs, were found for
this series within the time period of September 1987
through August 2001: January 1996 and December
2000. These two interventions were weather-related
and were incorporated into the STAMP modeling
process. Our analysis of the series, using STAMP,
revealed that the most appropriate model included a
stochastic level, no slope, and fixed seasonal compo-
nents. This model yields the outputs shown in fig-
ures 5 through 8. Figure 5 shows the smoothed

1 Information on AUTOBOX software can be found at
http://www.autobox.com.

FIGURE 4  Percentage of Scheduled Flights for Major U.S. Air Carriers Not Arriving
on Time: September 1987–February 2002
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FIGURE 5  Smoothed Components of the Late Arrivals Series
Generated by STAMP

Note: The first panel shows the observed series and the fitted trend, the second shows the seasonal component, 
and the third shows the irregular component.
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trend, the seasonal components and the irregular
component. The smoothed versions use the entire
series to construct the trend, seasonal, and irregular
components; it is a better choice for gaining a per-
spective on the evolution of the series, because the
estimates use observations both before and after the
time period in question. 

When these plots are compared with the filtered
(or forecast) components in figure 6, the increased
roughness of the trends in the latter set become evi-
dent. The seasonal pattern in the filtered series also
changes over time, because the filtered components
use only the observations up to the current time in
each set of calculations. Thus, the filtered components
are directly useful for prediction purposes, and we use
only these components in subsequent analyses.

As noted earlier, our initial analysis was based on
the data from September 1987 through August
2001. Now that the model has been specified, the
holdout sample of data from September 2001
through February 2002 is placed back into the
dataset, and same model is fitted onto the full set of
data. Figure 7 shows the standardized residuals for
the full fitted series and highlights the impact of
post-September 11, 2001. The horizontal lines cor-
respond to � 2 standard deviations, and the plot
may be thought of as a Shewhart chart.2 As
expected, the chart indicates a sharp rise in the per-
centage of late arrivals in September, followed by a
major decline in late arrivals in October 2001, due
primarily to reduced traffic levels.

The automated analysis in STAMP suggests an
outlier in September 2001 and a level shift in Octo-
ber 2001. Using these interventions, the final fitted
trend for the full set of data is shown in figure 8.
Although the overall performance appears to be sat-
isfactory, the further declines in the trend after

October 2001 seem inconsistent with the model and
suggest the need for further analysis. This problem
is reflected more clearly in later analyses (seen in fig-
ures 13 and 14). Since data for such a modeling
exercise are necessarily very limited, we need to use
our judgment on likely future developments, as
illustrated in the next section when we use the
framework developed earlier.

GENERAL APPROACH TO INTERVENTION 
MODELING

We applied the framework developed earlier within
the following context. After September 11, 2001,
the airlines experienced massive disruptions in their
schedules. In October and later months, the overall
operating system gradually returned to normal, but
passenger traffic resumed at lower levels than prior
to the attack. This sequence of events may be repre-
sented by the following set of interventions:

� A purely transient effect (AO) relating to the
month of September only.

� A temporary change or shift (TC) that started in
October 2001 and gradually disappeared. We
could have started this effect in September, but
felt that October provided a simpler interpreta-
tion. As noted earlier, we used d = 0.7 in all cases.

� A permanent effect (LS) that changed all mean
values of the series from November 2001 on.
Again, note that we could have started this factor
in September or October, but we felt that the
present construction affords a simpler interpreta-
tion by separating out the start dates of the three
interventions. Provided all three interventions are
retained in the model, the particular choice of
starting dates will not affect the fitted or forecast
values in the series.

Data 

We considered the following five series, primarily
selected from the air transportation sector, since this
was the mode of transportation most affected: 

� Late arrivals—percentage of scheduled flights by
major U.S carriers not arriving on time.

� Cancellations—percentage of scheduled flights
by major U.S. carriers that were canceled.

2 Shewhart charts are widely used in statistical process
control to identify out-of-control conditions from which
we would seek to identify assignable causes. The center
line in figure 7 (equal to zero here because we are plotting
regression residuals) and the vertical axis represent the
number of standard deviations (SD) that an observation
lies above or below the mean. In conventional use, a single
observation that is more than three SD from the mean, or
two successive observations more than two SD from the
mean, is said to signal an out-of-control condition, in con-
trast to a state of statistical control, i.e., a stable system of
random variation. 
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FIGURE 6  Filtered Components of the Late Arrivals Series: September 1987–August 2001
Generated by STAMP

Note: The first panel shows the observed series and the fitted trend, the second shows the seasonal component, 
and the third shows the irregular component.
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FIGURE 7  Shewhart Chart of Standardized Residuals of Late Arrivals Series:
September 1987–February 2002

Note: The upper and lower grid lines are two standard deviations away from the mean.

FIGURE 8  Trend for Late Arrivals Series: September 1987–February 2002
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� Domestic enplanements—number of passengers
boarding domestic aircraft (millions).

� Air revenue passenger-miles—revenue-earning
miles flown by passengers on major U.S. carriers
(billions).

� Rail revenue passenger-miles—revenue-earning
passenger-miles carried by Amtrak and the
Alaska Railroad (millions).

The late arrivals series was illustrated in figure 4;
figures 9 through 12 provide graphs of the other
series being examined. In all cases, the data are
available on the U.S. Department of Transportation
website (http://www.dot.gov). The first four series
are collected by the Office of Airline Information in
the Bureau of Transportation Statistics (also avail-
able at http://www.bts.gov), and the fifth is pro-
duced by the Federal Railroad Administration.

In our original analysis of these data (Young and
Ord 2002), we were able to use only a small num-
ber of observations post-intervention (table 3). In
this paper, we report those initial analyses recom-
puted using the data as later revised by the agencies.
It should be noted that the different time periods
used in the analyses reflect data availability at the
times the analyses were completed (May 2002 and

January 2003). These inevitable delays serve to
underscore the importance of timely and reliable
adjustments to series after interventions.

Model Development

Our procedure was as follows:
1. Develop a model for the series up to August

2001, incorporating AO and LS outliers where
needed (as for late arrivals in our earlier
analysis).

FIGURE 9  Percentage of Scheduled Flights
Canceled by Major U.S. Carriers:
September 1987–February 2002
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FIGURE 10  Number of Enplanements on Domestic 
Aircraft: September 1987–February 2002

FIGURE 11   Revenue-Earning Miles Flown by 
Passengers on Major U.S. Carriers:
January 1991–February 2002
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2. Using the data available as of May 2002 (table
3), run the same model with AO, LS, and TC
components as specified above and “test
down” to eliminate insignificant coefficients.
This analysis was performed initially in early
June 2002 (Young and Ord 2002) and minor
differences in the results are reported only to
the extent that changes occurred in the
reported series after that time.

3. Using the data available as of January 2003
(table 3), run the same model with AO, LS,
and TC components as specified above and test
down to eliminate insignificant coefficients.

4. Use the models developed in steps 2 and 3 to
generate successive one-step-ahead forecasts
for the most recent data to see if the earlier
analysis (step 2) provided an adequate descrip-
tion of the structural changes in the series.

The original models are summarized in table 4.
The data revisions noted above did not lead to any
changes in specification; the changes in the esti-
mated coefficients were minor in all cases. The
entries in table 4 are to be interpreted as in the fol-
lowing example for late arrivals:
State equations (stochastic level, no slope, fixed
seasonals):

(2a)

and

 fixed (4a)

Measurement equation:

(5a)

where s denotes the number of seasons,  denotes
the parameter for the fixed seasonal effect in period

FIGURE 12  Revenue-Earning Passenger-Miles Carried by AMTRAK and
the Alaska Railroad: January 1979–November 2002

TABLE 3  Summary of Data Structure and Changes Since Earlier Analyses

Time series Revisions
Latest month available 

as of May 2002

Latest month 
available as of 
January 2003

Late arrivals None February 2002 October 2002

Cancellations None February 2002 October 2002

Enplanements Very minor December 2001 June 2002

Air revenue passenger-miles 01/99–12/99: 
minor changes

December 2001 June 2002

Rail revenue passenger-miles None February 2002 November 2002
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j, and (X1, X2) denote the AO interventions at Janu-
ary 1996 and December 2000. Numerical details
are omitted in the interests of space.

Empirical Results

Because we had only between four and six observa-
tions in the initial study (from September to Decem-
ber or February depending on the series), it was
only to be expected that the LS and TC estimates
would be highly correlated, and the TC dropped out
in three of the five series. What is remarkable is that
when the analyses were re-run with the later obser-
vations included, the changes were minor in all
cases. The results are given in table 5.

Several conclusions may be drawn from table 5:

� In all cases, large adverse effects were identified
in September, as expected. Rail traffic was
reduced as well as air traffic, because people were
reluctant to travel at all.

� In all cases, the estimates based on the first analy-
sis seem to provide adequate adjustments to the
series.

� Cancellations and late arrivals showed negative
level shifts reflecting the reduced amount of traf-
fic in subsequent months. As airports gradually
resumed normal operations, we might have
expected these series to have resumed their earlier
levels, but the initial estimates seem to have pro-
vided a reasonable assessment of the reactions.
These effects are probably the result of less con-
gestion as the result of lower traffic volumes.

� The temporary effects for enplanements and air
revenue passenger-miles are about five times the
size of the permanent level shift. All these effects
were negative, indicating the adverse effect on the
airline industry. Both the larger temporary effect
and the smaller final impact seem to have been
adequately recognized in the first analysis.

� The rail revenue passenger-miles series shows no
change after the first month, which is consistent
with the data and reflects the relative indepen-
dence of the two markets. 

� Although the details are not reproduced here, the
diagnostics for each series indicated that the
descriptions were consistent with the data avail-
able. Since the same set of three interventions was
applied to each series, this provides some evi-
dence that the descriptions are reasonable,
although further data are clearly needed to vali-
date that claim.

The results shown in table 5 indicate that the
parameter estimates of the three-intervention terms
based on limited data proved to be comparable with
those estimates with more data points after the
intervention. But does this model fit also imply com-
parable results when forecasting?

In order to study this issue, we chose to compare
the quality of forecasts with the three-interventions
(AO, TC, and LS) and without the three-interven-
tions in the model. Figures 13 and 14 illustrate
graphically the forecasts of air revenue passenger-
miles based on the models without (figure 13) and

TABLE 4  Original Models for Each Series

Time series Time period Level Slope Seasonal Outliers
Late arrivals 9/1987– 

8/2001
Stochastic None Fixed Outliers: 1/1996; 12/2000

Cancellations 9/1987– 
8/2001

Stochastic Stochastic Stochastic Outliers: 3/1989; 3/1993; 
1/1994; 2/1994; 1/1996; 
9/1998; 1/1999; 12/2000

Enplanements 1/1991–
8/2001

Stochastic Stochastic Stochastic Outlier: 11/1996
Levels: 6/1992; 10/1992

Air revenue 
passenger-miles

1/1991–
8/2001

Stochastic Stochastic Stochastic Outlier: 11/1996
Levels: 6/1992; 10/1992

Rail revenue 
passenger-miles

1/1987–
8/2001

Stochastic None Fixed Outliers: 7/1989; 12/1997
Level: 11/2000
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with (figure 14) the three-intervention coefficients
(forecast based on the model fitted on data ending
December 2001). 

If no interventions are incorporated in the model,
the forecast for air revenue passenger-miles would
be a continuing downward trend, whereas the
incorporation of interventions identifies the initial
downturn and the subsequent gradual though par-
tial recovery. This pattern would, of course, eventu-
ally be identified without the intervention analysis.
However, the modified trend is identified much
more quickly and reliably when the three-interven-
tion model is applied.

The “no-interventions” forecasts will provide a
basis of comparison for the three-interventions fore-
casts with differing forecast origins (December
2001, March 2002, and June 2002). To measure the
forecast accuracy of each model, we chose to calcu-
late the Mean Absolute Percentage Error (MAPE)
values 

(6)

et is the forecast error for time t, yt is the observed
value at time t, and n is the number of forecasts. The
MAPE values were calculated for forecasts based on
the two types of models (with and without interven-
tions) from the three forecast origins (December
2001, March 2002, and June 2002). The summa-
tions cover the period from the forecast origin to the
latest observation available (table 6). For each fore-
cast origin, the MAPE values for the two types of
models are then compared by creating a “Relative
Value” (or RV) of those two MAPES:

(7)

The results of the RV calculations for the different
forecast origins are shown in table 6.

We need to refer back to table 4 in order to
understand the results in table 6. Late arrivals and
rail revenue passenger-miles have fixed seasonal pat-
terns, so that the model estimates for the seasonal
components of these series are not affected by the
intervention. The other three series have stochastic
seasonals and the three-interventions model identi-

TABLE 5  Results of Intervention Analyses for the Five Series

Time series
# obs. after 

8/2001 AO (Sept.) TC (Oct.) LS (Nov.) Rs-squared
Late arrivals 6 14.28 –3.11 –5.52 0.404

(0.0000) (0.3334) (0.0431)

14 13.91 –4.64 –4.94 0.402

(0.0000) (0.1264) (0.0648)

Cancellations 6 18.12 –0.06 –1.56 0.947
(0.0000) (0.8978) (0.0001)

14 18.00 0.72 –1.80 0.947
(0.0000) (0.2450) (0.0009)

Enplanements 4 –17.42 –11.99 –2.25 0.813
(0.0000) (0.0000) (0.0082)

10 –17.31 –11.18 –2.75 0.798

(0.0000) (0.0000) (0.0017)

Air revenue 4 –13.94 –10.02 –1.60 0.800
passenger-miles (0.0000) (0.0000) (0.0245)

10 –13.82 –9.33 –2.08 0.787

(0.0000) (0.0000) (0.0036)

Rail revenue 
passenger-miles

4 –9.97 –0.18 3.38 0.564

(0.0002) (0.9460) (0.1335)
11 –9.71 1.71 1.46 0.554

(0.0002) (0.4480) (0.3801)

Note: The first two rows for each series provide the estimated coefficients and their p-values based on the first analysis; the next two rows 
provide the same information for the second analysis.

MAPE
Σ et yt⁄

n
---------------------  , where=

RV MAPEno interventions MAPE⁄ three-interventions=
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fies the disruptions in their seasonal patterns more
accurately than the no-interventions model, espe-
cially for the cancellations series (figure 9). 

All five series have stochastic levels so that the
intervention is gradually incorporated into the

model structure over a period of months. Conse-
quently, for the RVs for the forecast horizon with
the least number of time periods after September
2001 (December 2001), the intervention approach
provided more accurate forecasts for each of the five

FIGURE 13  Air Revenue Passenger-Miles Forecast (as of December 2001) with 
No Interventions for September 2001: January 1991–August 2003

FIGURE 14  Air Revenue Passenger-Miles Forecast (as of December 2001) with 
Three-Interventions for September 2001: January 1991–August 2003
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series. However, as more data values are obtained,
those series that contain local level and fixed sea-
sonal components seem to have corrected quickly
and therefore do not show any longer term
improvement through the intervention approach.
Such effects have been noted in other forecasting
studies (e.g., Makridakis and Hibon 2000) and
reflect the adaptive nature of the models used. 

The structural modeling approach does allow the
model to adapt itself to changes in the data, but the
incorporation of the interventions allows the model
to react more quickly. For our five sets of data, the
series seem to be tracked reasonably by the three-
interventions model after three to four months,
whereas it takes about six months or longer (espe-
cially for cancellations) for the no-interventions
model to self-adjust. The importance of the pro-
posed procedure lies in the ability to reduce the time
required to discern the underlying trends after the
intervention has occurred.

FINAL COMMENTS

A key requirement in forecasting is that adjustments
should be made for unusual events so that the series
can be forecast on its new trajectory. In addition, we
also seek to make changes that are reliable, yet
quick to take effect. These requirements are espe-
cially important when the series has been subjected
to a major intervention and we wish to identify the
newly emerging trend. 

The results of this study suggest that the flexible
use of the three-interventions approach we have
described provides adequate adjustments by three to
four time periods after the event. This contrasts with

a six-month or longer delay in self-adjustment even
for a flexible model, and probably a longer time if a
model-based procedure is not used at all. In addition,
the three-interventions method enables us to provide
an initial partitioning of the effects into short-term,
transient, and permanent shifts, which is important
for planning purposes. Furthermore, the structural
technique employed to calculate these models can be
easily updated as new data become available, so that
the previous month’s assessment of the shifts can be
compared with the latest results and an assessment
made of how quickly the system is returning to a new
stable level after the intervention. We are cautiously
optimistic that the proposed approach offers a way
forward in dealing more expeditiously with interven-
tions at the end of a time series.
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ABSTRACT

In this paper, we examine the U.S. domestic airline
network. Using an exhaustive definition of the air-
line network and a cross-section pooled time series
dataset for 35 consecutive quarters covering
1995:Q1 to 2003:Q3, we analyzed domestic sched-
uled air transportation. Results suggest the existence
of increased vertical disintegration of market seg-
ments following the events of September 11, 2001
(9/11). The effects of 9/11 have affected all network
classes, with the largest impact on the point-to-point
variants. The expansion of Southwest Airlines
affected all variants of the network positively, with a
proportionately larger impact on the point-to-point
over the hub-and-spoke variants. The results of this
study are expected to help inform both operational
decisionmaking and policymaking. Results may also
be useful to manufacturers in projecting the size and
mix of the aircraft fleet that are expected to be com-
patible with the evolving network.

INTRODUCTION

Events beginning with the recession in spring
2001 and the terrorist attacks on September 11,
2001 (9/11), have destabilized the U.S. aviation
industry. The accumulated net income from the
second half of the 1990s ($22.8 billion from 1995
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to 2000) was wiped out completely by the $24.8
billion in losses incurred during the subsequent 11
quarters (2001:Q2 to 2003:Q4) (ATA 2004; Air-
line Monitor 2004), despite a U.S. government-
provided cash grant of $5 billion and a loan pro-
gram totaling $10 billion soon after the events of
9/11. Due to a significant hike in the price of jet
fuel (more than 40¢ per gallon) that began at the
end of 2002 and has continued well into 2004, the
industry is expected to lose $2 billion to $3 billion
in 2004. Without a jet fuel price increase, the
industry would most likely have returned a small
profit in 2004 due to improved traffic conditions
and a slightly better fare environment. 

The events of 20011 led to a massive restructur-
ing of the airline industry that addressed weak basic
business practices. The most significant changes
were in capacity reductions in the number of avail-
able seat-miles and the number of flights (figure 1).
These necessary adjustments reflect a drop in
demand, a decline in business travel, and the avail-
ability of internet booking. In addition, a realigned
fare structure narrowed the gap between premium
and walkup fares and leisure fares. Finally, renegoti-
ations of labor and other contracts, and simplifica-
tion of the network structure, have also played key
roles in the restructuring of the industry. 

The overall downward capacity adjustments
affected industry participants differently, with net-
work carriers affected more than low-cost carriers
(LCCs).2 LCCs and regional carriers (carriers special-

izing in regional jets—RJ carriers)3 appear to have
increased their capacity as the network carriers’
capacity shrank. While there was an overall fall in
demand immediately after 9/11, LCCs and RJ carri-
ers fared better than the network carriers (figure 2). 

1 These events include the economic recession starting in
spring 2001, the increasing use of internet technology in
airline booking, and the tragic events of 9/11. While the
first two are associated with cyclical and secular parts of
the time series, the events of 9/11 are not. 
2 Here we define network carriers as American, Continental,
Delta, Northwest, United, and US Airways. They generally
run their operations through a system of hub-and-spoke air-
ports. Some LCCs, Air Tran in particular and JetBlue to some
extent, are also following the hub-and-spoke network model.
In 2003, network carriers accounted for about 73% of total
revenue passenger-miles (RPM) and provided 72% of avail-
able seat-miles (ASM) (Airline Monitor 2004), two standard
measures of airline output. 

We define the LCCs (in order of importance with respect to
shares in ASM and RPM) as Southwest, America West, ATA,
JetBlue, Air Tran, and Frontier. It is important to recognize
that LCC markets are continuously evolving, both in terms of
their market shares and the number of participants. 

3 These carriers use small jets and generally supply service
for other airlines. Some examples of these carriers are Air
Wisconsin partnering with Air Tran, American Eagle part-
nering with American and Delta, and Cape Air partnering
with Continental.

FIGURE 1  U.S. Airline Industry Capacity 
Adjustments Since 2000

Source: M.R. Dayton, “Trends and Demand in Aviation Markets,” 
presentation at the ATCA/FAA/Nav Canada Technical Symposium, 
Office of Inspector General, U.S. Department of Transportation, 2004.

FIGURE 2  Airline Market Share by Type of Carrier

Note: All others is primarily regional jet carriers but may include a 
small percentage of scheduled charter carriers.

Source: M.R. Dayton, “Trends and Demand in Aviation Markets,” 
presentation at the ATCA/FAA/Nav Canada Technical Symposium, 
Office of Inspector General, U.S. Department of Transportation, 2004.
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Southwest Airlines was the nation’s largest LCC
in 2003, with almost half the total LCC market
(48% of available seat-miles (ASM) and 45% of
revenue passenger-miles (RPM), representing supply
and demand, respectively) (Airline Monitor 2004).
This airline now ranks second, after Delta Airlines,
in terms of U.S. domestic passenger enplanements,
accounting for about 10% of overall domestic ASM
and RPM.4 Throughout the last decade, Southwest
Airlines expanded its level of activity, although
activity accelerated somewhat after 9/11. By aggres-
sively gaining market share, they became a major
force in U.S. air travel. Given what appears to be an
increasingly distributed network structure (Berry
2004) with less emphasis on hubs and connections,5

Southwest appears to have adopted a point-to-point
or distributed network variant.

Southwest Airlines has shown that offering lower
fares induces increased overall air travel demand (Ben-
net and Craun 1993; Morrison 2001), which we will
call the Southwest effect in this paper. In addition to
its primary focus on serving larger metropolitan areas
through secondary airports, Southwest also flies from
airports designated as large hubs based on their traffic
levels (e.g., Baltimore-Washington (BWI), Phoenix

(PHX), Las Vegas (LAS), and Midway (MDW)).6

Therefore, an expanding Southwest may also have a
positive impact on hub-to-hub travel and on spokes
that connect to these hub airports through inducing
demand in those networks. This process may be fur-
ther enhanced if other LCCs entering the market fol-
low Southwest's network structure.

Continuous restructuring of the industry, charac-
terized by capacity realignment, changing market
shares, and an evolving network, has affected the
fleet mix as well. Regional or feeder carriers increas-
ingly take up the markets from which network car-
riers have retreated. Essentially, network carriers
increasingly outsource some of their markets to
regional carriers. This vertical disintegration of mar-
kets once held by network carriers (i.e., market frag-
mentation), leads to a greater number of scheduled
flights flown by regional jets. Consequently, the
number of segments and aircraft operations may go
up significantly even though the market, as a whole,
may be smaller than before. Figure 3 presents this
process of substitution from markets served by net-
work carriers (using larger jets) to markets served
by regional carriers (flying regional jets), or frag-
mentation of markets.

These changes have had a profound impact on
the industry as a whole. Ed Greenslet, a long-time
aviation industry analyst, summed this up recently
(Aviation Week & Space Technology 2002, p. 52):
“…the domestic airline landscape is changing
before our eyes, and the consequences for the tradi-

4 Southwest ranks third with respect to total passenger
enplanements, following American Airlines and Delta Air-
lines. However, it ranks second when evaluated in terms
of domestic enplanements. In 2003, Delta Airlines han-
dled 78 million enplanements compared with Southwest’s
74 million. American Airlines carried the most (both
domestic and international), about 83 million enplane-
ments with a higher share of international enplanements
than Delta. Southwest does not fly any international
routes currently. 
5 The term distributed network is used here to represent
situations where airlines distribute their operations among
more modestly sized airports for traffic traveling between
two ends of the network, e.g., among Midway, Nashville,
and St. Louis airports for east-west traffic in Southwest’s
network. This is in sharp contrast to using one or two air-
ports heavily as their main hubs (e.g., Chicago and Denver
for American and United) to serve a similar purpose. The
term is also used to represent situations where schedules are
distributed more uniformly throughout the day as opposed
to schedules that have sharp peaks and offpeaks as is often
the case in hub-and-spoke airports. Distributed networks
(i.e., networks with distributed traffic and distributed
schedules) have been found to complement point-to-point
networks more than hub-and-spoke networks (Berry et al.
2004). In this sense, distributed networks align more with
point-to-point networks. 

6 Airport hubs in this paper use the U.S. Department of
Transportation, Federal Aviation Administration definition.
There are four categories, based on the percentage of total
national enplanements (i.e., physical counts): large hubs
(>1% of total enplanements), medium hubs (0.25%–
0.999% of total enplanements), small hubs (0.05%–
0.249% of total enplanements), and nonhubs (<0.05% of
total enplanements). These are physical hubs.

There is a second “operational” definition that catego-
rizes airports as a hub if inbound flights are scheduled to
arrive from multiple origins within a short period of time,
thus creating a “bank” of passengers. The coordinated
arrival and departure banks together form a wave of activi-
ties and lead to peaks in airlines schedules. At present, some
physical hubs are also operational hubs. However, an air-
port can be an operational hub without being a large physi-
cal hub (e.g., small airports primarily serving connecting
passengers), while a physical hub may exist without being
an operational hub (e.g., large airports primarily serving
origin and destination passengers). 
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tional airlines are only beginning to be felt. That’s
because the route networks of low-cost, low-fare
airlines have grown large enough to make alterna-
tive service available in almost all of the large busi-
ness markets.” The bankruptcy declaration of
United Airlines (Dec. 6, 2002), following US Air-
ways’ earlier bankruptcy (Aug. 11, 2002), appears
to bring that speculation one step closer to reality. 

If market shares of airlines are changing and
affecting network structure, this is an important
phenomenon to be addressed by both analysts and
policymakers. The expected transition is certain to
have an impact on almost all areas of the National
Airspace System and will affect operations as well. 

Understanding the emerging network is key to
foreseeing what is driving future operational issues
as well. A changing network will also have a signifi-
cant impact on airframe manufacturers. For exam-
ple, Airbus has aggressively marketed the very large
A380 model aircraft over the last few years. As of
the third quarter of 2004, Airbus had 139 firm
orders for the aircraft. In order for production to be
economically viable, Airbus requires about 250
orders. Boeing, on the other hand, recently aban-
doned the Sonic Cruiser program in favor of the
more traditional fuel-efficient 7E7 jets. As of April

2004, Boeing had received its first order for 50 7E7s
from Japan’s All Nippon Airways. The size and
speed of these two aircraft and the types of markets
for which they are suited indicate that they are
expected to serve clearly different niches within the
network: the A380 appears to continue with the
assumption that the long-haul hub-to-hub network
(e.g., international long-haul routes) will anchor air
transportation and be enhanced by feeder routes
(i.e., hub-and-spokes), while the 7E7 is designed pri-
marily to serve more point-to-point traffic.

In light of these phenomena, this paper is an
attempt to understand the evolutionary nature of
the U.S. airline network. In particular, we address
and quantify three empirical issues: 

� how the changing role of Southwest Airlines
affected the network structure, 

� how the increasing use of regional jets affected
the network structure, and 

� how the events of 9/11 were a catalyst for
changes in the network structure.

Addressing these issues may provide some impor-
tant insights that could lead to improved policy-
making in a changing environment. It may also
allow us to forecast the structure of the network.
The paper is organized as follows: the next section
presents our definition of an airline network; we
then discuss the empirical framework and the data;
next, we present our methodology and empirical
results; and we conclude with policy suggestions
and areas for further research. 

NETWORK DEFINITION

The airline network is a dynamic environment that
has numerous variants. As the business models of
participating airlines change, so will the airline net-
work. The market environment facing the network
carriers, those with substantial hub-to-hub and hub-
to-spoke operations in selected airports, has become
increasingly competitive. A complex web linking
declining average yield7 with a narrowing margin

FIGURE 3  Number of Scheduled Flights by Type of 
Aircraft: April 2000 and April 2004

Notes: Turboprops include aircraft such as the ATR-42/72, Aerospatiale, 
Beechcraft 1900, Dornier 328 Turbo, and JETST-31 BAE. Pistons are 
typically fixed wing Cessnas and Pipers, e.g., the CES-150-185, AERO-
200, and PA 12-32.

Source: M.R. Dayton, “Trends and Demand in Aviation Markets,” 
presentation at the ATCA/FAA/Nav Canada Technical Symposium, 
Office of Inspector General, U.S. Department of Transportation, 2004.
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7 Average annual yield (i.e., itinerary fare/passenger-miles
flown) has declined by 2% annually over the last two
decades following deregulation in 1978. Over the next
two decades, analysts predict this rate of decline will slow
down to 0.9% a year (SED-F 2003; USDOT FAA 2003). 
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between premium and walkup versus competitive
fares is forcing network carriers to undertake pain-
ful cost-cutting measures. 

Acknowledging this dynamism and recognizing
the present structure of the airline network, we
defined the network based on its physical character-
istics. Using the U.S. Department of Transportation
(USDOT), Federal Aviation Administration (FAA)
definition (see footnote 6), our network consists of
35 hub airports—a combination of 31 large hubs
and 4 medium hubs. Although we used the physical
definition for a hub, many of these airports are also
operational hubs for both network carriers and
LCCs. The hubs are listed in appendix A.8 These air-
ports together accounted for 73% of total scheduled
enplanements and 69% of total scheduled aircraft
operations in 2002. Although most of these airports
qualify for the FAA definition of large hubs (> 1% of
national enplanements), four other airports, Cleve-
land Hopkins (OH), Washington Reagan (DC),
Memphis (TN), and Portland (OR), were included
to maintain consistency with the FAA’s Operational
Evolution Plan (OEP) airports. Finally, appendix A
provides information on which airlines are the pri-
mary and secondary air carriers at these airports.9 

We defined the three variants of the airline net-
work as follows: 

� Point-to-point (PP) variant covers air travel that
takes place between non-OEP airports (e.g.,
Teterboro (NJ) Airport to Hagerstown (MD)
Regional Airport). Any travel outside OEP air-
ports as listed in appendix A represents the point-
to-point variant of the network. 

� Hub-to-hub (HH) variant covers air travel that
takes place between two major hubs (i.e., travel
between OEP airports; e.g., Atlanta Hartsfield to
Boston Logan). 

� Hub-to-spoke (outbound) and spoke-to-hub
(inbound) (HS) covers air travel for which either the
origin or the destination (but not both) is a major
hub (i.e., travel between non-OEP airports and
OEP airports; e.g., Atlanta Hartsfield to Teterboro).

In order to measure variants of network activi-
ties, we used two variables, the number of passenger
enplanements and the number of actual aircraft
departures performed. As figure 4 shows, the num-
ber of passenger enplanements in the PP variant was
dwarfed by the number of enplanements under both
the HH and HS variants. While the HH and HS
variants together accounted for around 93% to
95% of the total enplanements, the PP share of the
overall network has been in the range of 5% to 7%. 

Because Southwest Airlines concentrates its opera-
tions in PP markets, it has a higher percentage of the
PP variant of the airline network (ranging between
62% and 70% of total enplanements) than the HH
(about 4% to 5.5%) and HS (10% to 17%) variants.

THE FRAMEWORK: RESEARCH 
QUESTIONS, DATA, AND METHODOLOGY 

Research Questions 

Here, we formulate three empirical issues for testing: 
1. How has the expansion of Southwest Airlines

affected different variants of the networks? 
2. How has the changing share of regional jets

affected parts of the network differently? 
3. How have the events of 9/11 affected the over-

all network and different parts of the network? 

8 These 35 airports are also known as Operational Evolu-
tion Plan (OEP) airports. The OEP is a major FAA initiative
to meet emerging air transportation needs for the next 10
years. For more details, see http://www.faa.gov/programs/
oep/index.htm. 
9 The line between primary and secondary carriers is
somewhat arbitrary. We provide information (reported by
the Official Airline Guide) on air carriers that are con-
ducting hub operations in these airports, irrespective of
the magnitude. 

FIGURE 4  Annual Passenger Enplanements at 
Airports, by Type of Network Variant
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Answering these questions may provide some
important insights into the process by which the
network is undergoing changes. Furthermore,
understanding these changes may also allow us to
forecast the structure of the network into the future.

Data 

Data for this exercise come from the Bureau of
Transportation Statistics (BTS), DOT T100 sched-
ule. T100 is the transportation schedule for Form
41 data that every major airline is required to sub-
mit to BTS each quarter. T100 is divided into two
parts: T100 market segment data (T100M), which
cover on-flight origin and destination (O&D) or
direct markets; and the T100 segment data (T100S),
which contains data for market segments. In partic-
ular, T100S is the Data Bank 28DS of Form 41 that
provides segment traffic (i.e., the number of passen-
ger enplanements, freight ton-miles, and departures
scheduled and performed) by scheduled air carriers
for freight and mail by service class and type of air-
craft equipment, capacity (i.e., available freight ton-
miles and available passenger seat-miles), and per-
formance indicators (i.e., ramp-to-ramp elapsed

time and airborne elapsed time) by month and year.
The data are reported by major air carriers operat-
ing between airports located within the boundaries
of the United States and its territories (see CFR
2001 for more details). The data cover January
1995 to September 2003.10 For our empirical analy-
sis, we used T100 domestic segment quarterly data
for the period covering 1995:Q1 to 2003:Q3 (data
for 35 continuous quarters).  

Figure 5 shows the nonstop segment data
(T100S) for a hypothetical flight from Los Angeles
(LAX) to Salt Lake City (SLC) and then to Denver
(DEN). The data for the LAX-SLC segment thus
includes not only the O&D traffic within that seg-
ment (i.e., people originating in LAX and destined
for SLC), but also the passengers who are originat-
ing at LAX, stopping at SLC, and then flying on to
Denver. The T100M market data, on the other
hand, for LAX-SLC includes only those people
originating in LAX and destined for SLC. Unfortu-

FIGURE 5  Illustration of T100 data

Key: DEN = Denver International Airport; LAX = Los Angeles International Airport; SLC = Salt Lake City International Airport.

Notes: Nonstop segments are represented by straight arrows, i.e., number of passengers transported between points 
(between takeoff and landings).
LAX to SLC: 100 passengers transported
SLC to DEN: 110 passengers transported
Onflight markets are represented by curved lines, i.e., where passengers are enplaned and deplaned on a flight.
LAX to SLC: 40 passengers
LAX to DEN: 60 passengers
SLC to DEN: 50 passengers
For a one-stop flight, the number of passengers would be the same as under segment and market.

Source: U.S. Department of Transportation, Office of the Secretary, O&D Survey Reporting Regulations for Large Air Carriers: Code 
of Federal Regulations Part 241, Section 19-7 (Washington, DC: 1992).

100 enplane 40 deplane
50 enplane

110 deplane

LAX SLC DEN

10 See http://www.transtats.bts.gov and click on the avia-
tion data link for T100 domestic data segments in the
Form 41 traffic file.
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nately, however, T100M is limited to fewer vari-
ables: number of passengers by O&D, freight,
mail, carriers, distance, month, and year. 

Each segment reported in T100S is unique, dis-
tinctively defined by air carrier and the type of
equipment flown. Therefore, the LAX-SLC flights
shown in figure 5 will be reported twice, for exam-
ple, if a carrier flew the segment using two equip-
ment types, holding all other factors constant. The
total number of segments can be aggregated over
the same O&Ds to provide a logical basis for defin-
ing the network. For example, there were 70,127
distinct segments in 2003:Q3. These unique seg-
ments reduced to 11,179 O&D segments when
summarized by the same O&D, thus providing the
basis for our estimation. Summed over 1,695,848
distinct segments for 1995:Q1 to 2003:Q3, we had
228,129 observations. These observations were
used to estimate our econometric model.

Methodology and Results

Estimation

For both total passenger enplanements and aircraft
departures performed, we specified econometric
models in natural logs11 by variants of the network
as follows: 

ln(Paxij; k) = F [seasonal dummy, share of 
Southwest Airlines in total passenger, share of 
regional jets in total passenger, dummy 
representing 9/11, ln(one-quarter lag of 
passenger)] (1)

ln(A/C Depij; k) = F [seasonal dummy, share of 
Southwest Airlines in total departures, share of 
regional jets in total departures, dummy 
representing 9/11, ln(one-quarter lag of 
departures)] (2)

where 
ln = natural log,
i = origin,
j = destination,
k = type of network. 

The three variants of the network, k = 0, 1, 2, are
defined as point-to-point (PP; k = 0), hub-to-hub
(HH; k = 1), and hub-to-spoke, including both hub-
to-spoke and spoke-to-hub traffic (HS; k = 2). The
two endogenous variables, ln(Paxij;k) and ln(A/C
Depij;k) are the natural logs of the number of total
passenger enplanements and total aircraft depar-
tures performed, respectively, aggregated within the
i-j O&D market for the k-th variant of the network. 

It is important to understand that both passen-
ger enplanements and aircraft departures per-
formed are generally determined by economic
factors (e.g., fares and income), demographic fac-
tors (e.g., population and age distribution in O&D
markets), and the quality of services (e.g., schedule
choices and types of aircraft) (Bhadra 2003).
Notice also that whether hubs connect directly to
other airports (HS) or via other hubs (HH)
depends on market features such as the size and
composition of the market, fares, connection pos-
sibilities, and so forth (see Shy (2001, 215–231) for
an analytical discussion of airline networks; and
Bhadra and Hechtman (2004) for an empirical
analysis). In our present dataset, however, not all
such information is available.12 Nonetheless, the
independent variables specified above may capture
the trends in passenger enplanements and per-
formed departures quite substantially and well
enough, as discussed earlier. 

In particular, we postulate that seasons affect
both passenger enplanements and departures per-
formed, and those variations may differ depending
on the type of network. Empirically speaking, air
travel goes through cyclical variations, peaking dur-
ing spring and summer (i.e., April-September; sea-
son dummy = 1) and hitting its trough during fall
and winter (i.e., October-March; season dummy =
0). Thus, we designed a seasonal dummy variable to
capture this cycle. 

11 We used natural logs, as opposed to levels, for two rea-
sons. First, transforming the endogenous variables into their
natural logs eliminated heteroskedasticity from the dataset.
Second, estimated coefficients of log-transformed models
have clearer intuitive appeal than using level variables. 

12 The list of variables available in T100S and T100M
has been given above. Many factors, fares in particular,
are reported in what is commonly known as the Origin
and Destination Survey or the DB1B. That database,
while containing useful information such as fares and
quarterly passengers in an O&D market, does not include
information on aircraft equipment types and other perfor-
mance indicators (for more details on types of data and
variables, see http://www.transtats.bts.gov/Databases.asp?
Mode_ID=1&Mode_Desc=Aviation&Subject_ID2=0). 
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Following our earlier discussion, we formulated a
variable that accounts for Southwest Airlines’ share
of total passenger enplanements and aircraft depar-
tures performed.13 This share variable (i.e., the per-
centage share of Southwest Airlines in total
enplanements) has been designed to capture the
impact of the airline on different variants of the net-
work (i.e., k = 0, 1, 2) defined over i-j segments.
Similarly, the share of regional jets14 has been for-
mulated to capture their impact on totals. A dummy
variable representing the beginning of the effect fol-
lowing 9/11 (i.e., 2001:Q3) was formulated to
examine the effects of 9/11 on two endogenous vari-
ables defined for the network type.15 In other
words, this dummy variable assumes a value of 0
for the period 1995:Q1 to 2001:Q2 and a value of 1
for the period 2001:Q3 to 2003:Q3. Finally, an
autoregressive term, the log of both enplanements
and aircraft departures performed lagged one quar-
ter, was used to capture the time series component
of this time series pooled cross-section sample. It is
important to note here that we postulate that both
enplanements and aircraft departures performed are
driven by the same set of explanatory variables and
are determined simultaneously as a system.

Given the interdependency among enplanements
and departures performed, it is likely that the error
structures of the equations may be linked to each
other. Although each equation in the system above
appears to be independent and unrelated, they
might be linked to each other through errors. Thus,

this type of system is also called “disturbance-
related” or “error-related” regression equations. 

Under this circumstance, econometricians often
recommend the use of the seemingly unrelated
regression (SUR) technique for estimation (Pindyck
and Rubinfeld 1991, p. 308). SUR is used when a
system consists of two or more equations where
errors may be correlated across equations. SUR is
considered to be appropriate when all the right-
hand side regressors are assumed to be truly exoge-
nous and the errors satisfy the following conditions: 

1.  (i.e., error terms) have zero means and
finite variances, 

2. the variances of errors may differ, and, 
3. there is a presumed correlation between 

and . 
Given that 1–3 are likely to be true for the dataset
we used, we adopted the SUR methodology for esti-
mation (SAS 1993). 

Results
Table 1 presents the results of the estimation of the
two equations specified linearly. Quite a few inter-
esting features underlying the data and findings
deserve special attention. 

First, it is important to note that we make a dis-
tinction between the number of observations (N)
used and the number read (i.e., the last two columns
in table 1). The difference between N read and N
used arises because of the unavailability of data,
accounted for primarily by the lack of lagged varia-
tion in the one-quarter lag of passenger enplane-
ments and departures performed on a particular
segment. In other words, quarter t did not have a
corresponding quarter t-1 observation. Reviewing
these numbers across rows, it is evident that the PP
network has relatively less continuity over time than
the other two types of networks. In particular,
almost half of the segments (46%) that were
observed at quarter t for the PP network did not
have lagged entries for quarter t-1. Hence only
39,880 observations were used from a total of
73,438 observations. 

In comparison, the HS network, including both
HH and HS routes, seems to have more continuity
over time, and hence observations used are far
closer to the available total number of observations.
Given that we used 35 continuous quarters in our

13 We define the share of passengers as:
(Southwest’s passengers/total passengers)*100.
Thus, this and other share variables are expressed in 100th

of units and not in a fraction, 0 to 1. 
14 Here we define RJs as the following: Canadair RJ-100/
R, Canadair RJ145-200, Embraer EMB-135, Embraer
EMB-145, Embraer EMB-140, Avroliner RJ85, BAE-146-
3, and Do328JET. There may be other RJs outside of this
definition. 
15 Other factors, e.g., slowdown of the economy, internet
booking, etc., were also taking place around this time (see
footnote 1). However, the purpose of including a dummy
variable for 2001:Q3 and later is to capture the sudden
unsystematic effect that took place in this quarter and its
impact. In other words, this dummy variable should be
interpreted as representing the impact of 2001:Q3 as a
catalyst for all that changed in the time series before and
after this event. 

εi j  k;

εi j 1;

εi j 2;
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analysis, the number of observations under the HH
network variant represents, on average, 1,000 seg-
ments per quarter. Segments under the HS variant,
on the other hand, are almost three times the size of
the HH variant per quarter. The PP segments fall in
between those of HH and HS. 

Second, the estimated system model appears to
have a very good fit. In particular, all the explana-
tory variables describe the two endogenous vari-
ables very well, resulting in a high adj. R2. Almost
90% of the variation in the dependent variables,
across the different networks, is explained. Third,
almost all the variables, with the exception of the
seasonal and the 9/11 dummy variables in the case
of the HS network, are statistically significant at the
99% level. Furthermore, the estimated parameters
of the simultaneous system appear to confirm the
expected signs for the empirical hypotheses for most
variables. 

In particular, the seasonal dummy variable con-
firms the hypothesis that in spring and summer both
passenger enplanements and aircraft departures per-
formed go up, increasing the most for the HH net-
work, followed by the PP and HS variants. On
average, the spring and summer quarters add about
12% to passenger enplanements and 4% to depar-
tures performed on the HH network variant, while
adding 10% more passenger enplanements and 4%
more departures to the PP network variant. The HS
variant gains about 9% more passenger enplane-
ments during the peak travel season, while depar-
tures in this network do not show significant

seasonal changes, thus suggesting excess capacity.
Examination of passenger data for 2000 for major
carriers (i.e., those who use the HH and HS net-
work variants primarily) indicates that, on average,
passenger enplanements increased by 6.3 million
per quarter during the spring and summer, or about
12% more than the overall quarterly average (ATA
2004).

As anticipated, Southwest Airlines impacts all
variants of the network positively and in varying
degrees. This further confirms the already empiri-
cally established Southwest effect. Figure 6 summa-
rizes the findings from table 1. Notice that the
effects of Southwest Airlines (column 5 in table 1)
are captured by two variables in equations 1 and 2:
Southwest Airlines’ share of total passenger
enplanements and departures performed for equa-
tions 1 and 2, respectively. Estimated parameters,
multiplied by 100 (to account for the share expres-
sion in units of 100), thus represent the effect of a
one percentage point increase in Southwest Airlines’
market share on the percentage change in passenger
enplanements and departures performed (i.e., natu-
ral logs of these two variables). Thus, a one percent-
age point increase in Southwest Airlines’ market
share in total segment passenger enplanements will
add 0.32% more passengers each quarter (i.e., in
the short run, holding all other factors constant) to
the overall PP network. Similarly, a one percentage
point Southwest expansion adds 0.09% and
0.012% more passengers overall for the HH and HS

TABLE 1  System of Scheduled Aviation Activities in the United States: 
Number of Passengers and Aircraft Departures (in natural logs)

Network 
variants

(1)

System 
equations

(2)
Intercept

(3)

Seasonal 
dummy

(4)

Share of 
Southwest 

Airlines
(5)

Share 
of RJ 

carriers
(6)

9/11 
dummy

(7)

Ln (one 
quarter 

lag)
(8)

Adj. R2

(9)
N (used)

(10)
N (read)

(11)

PP ln(Paxij) 0.5039* 0.0958* 0.0032* –0.0011* –0.1083* 0.9107* 0.8903 39,880 73,438

ln(A/C Depij) 0.1928* 0.0367* 0.0017* –0.0006* 0.0465* 0.9215* 0.8865

HH ln(Paxij) –0.8040* 0.1205* 0.0009* –0.0004* –0.0161* 0.9203* 0.9039 34,192 35,827

ln(A/C Depij) 0.4363* 0.0407* 0.0011* 0.0013* –0.0110* 0.9263* 0.9155

HS ln(Paxij) –0.7568* 0.0863* 0.0012* 0.0006* –0.0309* 0.9128* 0.8485 97,171 118,864

ln(A/C Depij j) 0.4290* 0.0006 0.0007* 0.0012* –0.0028 0.9151* 0.8591

Key: * = 99% level of significance.
Note: First row in each network variant represents scheduled passengers and the second row represents the number of aircraft departures. 
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variants, respectively, for each representative quar-
ter in the short run. 

Compared with other research (Bennett and
Craun 1993; Morrison 2001), the estimated values
in our model represent a much smaller Southwest
effect. In past studies, the Southwest effect has been
estimated using the impact of the entry of Southwest
Airlines on airline fares in different markets, and the
impact of falling airfares, in turn, on passenger
demand (e.g., Morrison 2001). For example, the
effect of Southwest Airlines on fares was estimated
to be in the range of 6% to 46% for every one per-
centage point increase in Southwest’s market share,
and the effects of those falling fares on passenger
demand were estimated to be in the range of 5% to
10% for each percentage point decline in fares (Ben-
nett and Craun 1993). Thus, the total Southwest
effect (of a one percentage point increase in market
share on the percentage increase in overall market
share) has been estimated to be in the range of 30%
to 460%. Bhadra (2003) estimated elasticities of
demand for the overall U.S. domestic air markets in
the range of 0.55 to 1.8, which would yield lower
values for the Southwest effect in the range of 3.3%
to 82.8%. As is apparent, our estimated effects are
smaller still.

There are several reasons for this major differ-
ence in results. The earlier studies examined the
Southwest Airlines phenomenon when the carrier

was much smaller in size and for a particular year.
We, however, studied the effects of the presence of
Southwest on all networks and estimated these
effects over a time series. The long-term accumu-
lated effects of this expansion, as will become evi-
dent later, are not small. As noted earlier (see figure
4), Southwest Airlines’ strongest presence is in the
PP network. About 70% of all passengers in the PP
network (32.34 million in 2002) flew Southwest
Airlines (i.e., 22.65 million). In comparison, about
5% and 14% of the passengers in the HH and HS
networks, respectively, flew Southwest. Between
1995 and 2002, about 35 million passengers flew in
the PP network annually, which had an average
annual growth rate of about 0.6%. During this
period, however, Southwest Airlines expanded its
PP network market share from 62% to 70%, or
from 21 million passengers in 1995 to 22.65 million
in 2002. Southwest Airlines grew, on average, twice
as fast (1.13% per year) as the average annual
growth rate of the entire PP network. Similar mag-
nitudes of scale and growth also follow for the HH
and HS networks. Clearly, these rates suggest much
smaller expansion than seen in earlier studies.16 

Second, the specification of the model may also
be responsible for the results. Unlike earlier studies,
we specified both passenger enplanements and
departures performed as endogenous variables
simultaneously determined via a common set of
variables. If some of the independent variables
assumed to be exogenous are actually endogenous
(e.g., RJ carrier shares), this incorrect specification
of the true model may seriously underestimate the
magnitude of the coefficient on all the other exoge-
nous variables, including the Southwest effect. 

Although they appear to be rather small, the
magnitude of the estimated parameters translate to
considerable changes in the number of enplane-
ments as Southwest Airlines expands its market
share. It is obvious that more departures will have
to be performed in order to accommodate these
additional flows of enplanements due to a substan-

FIGURE 6  Impact of a One Percentage Point Change 
in Southwest Airlines’ Market Share on 
Different Variants of the Network

Point-to-point Hub-to-hub Hub-to-spoke
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

% change in number 
of passengers

% change in
departures

Average impact 
on passengers

Average impact 
on departures

Type of network

16 An expansion in the magnitude of 30% to 460% (men-
tioned earlier) from the base of 1995 would require total
passengers for Southwest Airlines under the PP network
to be between 27 million and 118 million annually. This is
unlikely given that the total size of the network is about
35 million passengers annually. 
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tial increase in Southwest Airlines’ market share.
Hence, departures would increase by 0.17% to
accommodate greater passenger enplanements
(0.32%) under the PP variant of the network;
0.11% to accommodate additional passenger
enplanements (0.09%) under the HH variant; and
0.07% to accommodate the 0.12% increase in pas-
senger enplanements under the HS variant of the
network (see figure 6). 

It is interesting to note that the Southwest expan-
sion adds proportionately more enplanements and
departures to the PP variant than to the other two
types of networks. Therefore, the expansion of
Southwest Airlines will enhance the PP-type net-
work while still positively influencing both the HH
and HS networks. This result simultaneously con-
firms the expanding distributed or PP network of
Southwest Airlines and the Southwest effect. 

To the extent that the presence of RJs is truly
exogenous,17 RJs’ percentage of shares of total
enplanements and performed departures have inter-
esting implications. The expansion of RJ carriers is
associated with a reduction in traffic in the PP net-
work, and it encourages and even accommodates an
increase in the HS feeder operations network (see
column 6 in table 1). 

For the HH network, RJ expansion is accompa-
nied by fewer passenger enplanements and more
departures. Another way to look at this is that
increasing the shares of RJs is apparently accompa-
nied by more departures under the HH network to
compensate for the smaller number of passengers
carried by each aircraft. These findings seem to
establish the point that RJs are an important tool
for feeding hubs in hub-and-spoke networks. 

Because RJs are generally considered to represent
an improvement in the quality of service offered on
feeder routes (i.e., in the HS network), the expan-
sion of RJs is expected to enhance both the HS net-
work and the HH network fed by HS routes.
However, this expansion may negatively affect pas-
senger travel on HH routes, where RJs are more
likely to be perceived as a reduction in the quality of
service as compared with larger jets (e.g., B737s)

that previously served those routes. In the PP net-
work, the negative impact of RJs on enplanements
and departures may reflect (as in the HH network) a
decline in traffic caused by broader economic fac-
tors not included in our model. It may also reflect
higher fares required by the greater unit costs of RJs
compared with larger B737-type jets. Finally, since
Southwest Airlines operates B737s exclusively, the
presence of RJs on a route is likely to be highly col-
linear with the absence of Southwest Airlines on the
route, so that the RJ share may be picking up part
of the explanatory power of the Southwest share.

The events following 9/11 had a sizeable impact
on all types of networks (see column 7, table 1). As
figure 7 demonstrates, the PP network suffered the
most, losing, on average, 11% of its passengers but
performing, interestingly, about 5% more depar-
tures per quarter following 9/11. The HS network,
on the other hand, lost approximately 3% of its
enplanements and 0.28% of its departures per quar-
ter, which can be attributed to factors relating to the
events of 9/11. The HH network lost about 1.6% of
its passenger enplanements per quarter and 1.1% of
its departures performed each quarter. The reduc-
tions in passenger enplanements in the PP network,
combined with increased aircraft operations, sug-
gest that large network carriers were outsourcing
their operations on these routes to smaller regional
carriers flying smaller aircraft. This vertical disinte-
gration of markets appears to be stronger in the PP

17 We acknowledge the limitation that in a well-specified
model of an airline network, the share of RJs may be
endogenous as well. 

FIGURE 7  Effect of 9/11 on Different Variants of 
the Network
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network post 9/11 than it was on the HH and HS
networks, where enplanements and aircraft opera-
tions declined together. 

Finally, past enplanements and departures per-
formed have proven to be robust explanatory vari-
ables for both the endogenous variables in the
system. For example, a 1% increase in past quarter
passenger enplanements and departures performed
would increase both current enplanements and cur-
rent departures by about 0.9% (see column 8, table
1). This coefficient has further implications.
Together with other structural variables, the long-
term effects can be separated by the accumulated
effects from all short-term variables as follows:

, where bi’s are the estimated structural
parameters of the two equations, and c is the esti-
mated parameter of the log-lagged value of the
endogenous variables. Notice here that while 
captures all the short-term effects,  cap-
tures the long-term accumulated effects of all the
variables on the endogenous variables. Thus,
although a one percentage point expansion in
Southwest Airlines’ market share increases the pas-
senger volume in the PP network by 0.32% in the
short run, its long-term accumulated effect on total
passenger enplanements is 3.58%, that is (0.32/(1–
0.9107)). Applying this formulation to the sum of
the effects of all variables would yield, for example,
a cumulative effect of 2.21% and 2.50% on passen-
ger enplanements and departures performed, respec-
tively, for the PP network. In other words, the
impact of all short-term structural parameters (i.e.,

) accumulates at the rate of 0.197% per quarter
for passenger enplanements and 0.196% per quar-
ter for departures performed and eventually yields
the long-term impacts. Long-term accumulated
effects for passenger enplanements and departures
performed were calculated, respectively, as 1.98%
and 3.70% for the HH network and 2.76% and
2.26% for the HS network. These calculated rates
correspond fairly well to those observed from actual
data. 

These findings may have important uses. First,
they may be important for understanding the
impact of Southwest Airlines and other LCCs on the
airline network. For example, despite the smaller
magnitudes and associated issues related to mis-

specification, our findings indicate that the expan-
sion of Southwest Airlines in particular, and perhaps
LCCs in general, would increase the flow of traffic
in the overall network substantially. While this
expansion would have a proportionately greater
effect on the PP network, the HH and HS networks
would be positively affected as well. Using the esti-
mated coefficients underlying these segments, we
can now compute the effect on segment traffic in
any market in which Southwest Airlines operates.
This means a clear isolation of the Southwest
impact on segment passenger traffic and departures
by network can be performed. 

Second, some of these estimated coefficients can
also be used to partially estimate and forecast, keep-
ing other variables constant, the effect on individual
markets that can be expected if Southwest Airlines
enters those markets, for example, the Philadelphia
market beginning in May 2004. The estimated
parameters can be used to forecast traffic at the
Philadelphia airport with the expansion of South-
west Airlines, and hence may aid airport infrastruc-
ture planning not only for Philadelphia but also for
those airports linking with it. A similar reasoning
applies to the RJ expansion. In addition, partial
coefficients with respect to the 9/11 dummy variable
can also be used to estimate financial losses in differ-
ent segments incurred by different airlines. 

Finally, the simultaneous system model as a
whole can be used to forecast enplanements and
departures performed for segment traffic under dif-
ferent types of network structures. The estimated
model can provide a foundation for forecasting seg-
ment traffic given anticipated and projected values
of the explanatory variables for different types of
networks, especially with given market share levels
for Southwest Airlines and RJ aircraft. Since the seg-
ment traffic is the primary measure of traffic flow
dealt with by the air traffic control (ATC) system
regularly, both at en route centers and at airports,
the ability to better project segment traffic in a way
that takes explicit account of airline networks may
improve the ATC system. Better traffic projections
may also help planners better allocate resources to
improve the country’s critical air transportation
infrastructure. 

Σbi 1 c–( )⁄

Σbi

Σbi 1 c–( )⁄

Σbi
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The estimated model has been found to be robust
and stable. However, the model is still somewhat
limited. It can be argued that some of the explana-
tory variables, Southwest and RJ expansion in par-
ticular, are not truly exogenous. In fact, they result
from interactions in the complex market processes
and hence cannot be posited truly as independent
variables. Furthermore, the dependent variables
may depend on market and economic factors (e.g.,
fares and income), demographic factors, and quality
of service. While incorporating these variables may
improve the model, the marginal benefit in the over-
all model fit (e.g., improvement in the adj. R2) may
be somewhat limited. Finally, the model in its
present form may be misspecified, as indicated by
the comparison of estimated coefficients with that
of other studies (e.g., Southwest effects). While we
acknowledge these limitations, we believe that the
proposed analytical framework and estimated
model can provide a strong foundation for both
policy analysis and forecasting. 

CONCLUSIONS, POLICY OBSERVATIONS, 
AND FUTURE RESEARCH 

In this paper, we examined the U.S. domestic airline
network. By defining hub-to-hub, hub-and-spoke,
and point-to-point as the three essential network
components, we have identified domestic scheduled
air transportation under each of these networks.
Using cross-section pooled time series data for 35
consecutive quarters for all scheduled carriers in the
United States between 1995:Q1 and 2003:Q3, we
were able to estimate a simultaneous system com-
prising passenger enplanements and aircraft depar-
tures performed in types of networks and
aggregated within O&D markets. 

Our findings indicate the existence of increased
vertical disintegration of market segments following
the events of 9/11. Second, seasonality tends to play
an important role in determining segment traffic,
peaking during the spring and summer. Third, we
found evidence that the expansion of Southwest
Airlines affects all networks positively, with a pro-
portionately larger impact on the point-to-point net-
work than on the hub-and-spoke network. Fourth,
regional jets have been found to affect the network
in mixed ways, with negative impacts on the point-

to-point network and positive impacts on the hub-
and-spoke network. Fifth, effects from 9/11 have
been generally negative on all three types of net-
works, with the largest impact falling on point-to-
point passenger traffic, followed by passenger traffic
on the hub-and-spoke and the hub-to-hub net-
works. Increased use of departures to accommodate
a lower number of passenger enplanements, in the
case of the point-to-point network, provides addi-
tional indirect evidence of market segmentation.
Finally, auto-regressive terms for both enplanements
and departures performed have proven to be robust
explanatory variables. 

These are meaningful results and may provide
better insight into the nature of the U.S. airline net-
work and the factors that explain its evolution over
time. The overall statistical fit may also justify using
the model to forecast the trends in scheduled net-
work activities by segments. Furthermore, estimated
coefficients may be used both to guide policy deci-
sions and to facilitate the planning of the air trans-
portation infrastructure. In particular, empirical
results tend to demonstrate that the future airline
network may be more distributed as Southwest Air-
lines or similar airlines expand their operations. 

Our analysis is the first systematic effort, as far as
we are aware, to empirically establish the existence
of an emerging distributed network in the U.S. air
transportation system. The infrastructure that
served the hub-and-spoke operations in the past
may be required to change to further accommodate
the needs of Southwest Airlines and other LCCs.
Additional attention should therefore be given to
the segment traffic and the network structure that is
emerging as the industry undergoes serious struc-
tural changes.18 

The model we propose to capture these emerging
trends, however, is somewhat limited due to the lack
of other important explanatory variables: fare,
income, and population at segment end points, and
the quality characteristics influencing these services.
Treating Southwest Airlines and RJ expansion as
explanatory variables may also limit our under-
standing of the potentially endogenous character of

18 The FAA’s recent initiative (USDOT FAA 2004) exam-
ines this issue by looking further and beyond the infra-
structure needs of the 35 traditionally large OEP airports. 
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these factors and may limit the model’s applicability
in forecasts. Due to these important omissions, our
model may also suffer from misspecification.
Improvement of the model could be approached by
incorporating explanatory factors and determining
which factors are truly endogenous. These are tasks
for future research. 
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APPENDIX A   Activities at 35 Operational Evolution Plan (OEP) Airports in the United States: 2002

Airport 
code Airport

Primary and 
secondary air carriers City State

Hub 
type

Number
of annual 
scheduled 

passengers

Percentage 
of total 

passengers

Number 
of annual 
scheduled 

A/C ops

Percentage 
of total 
A/C ops

ATL Atlanta Hartsfield Intl Delta, Airtran Atlanta GA L 36,321,239 5.79 642,727 4.87

ORD Chicago O'Hare Intl United, American Chicago IL L 31,026,878 4.94 612,553 4.64

LAX Los Angeles Intl United, American, Southwest Los Angeles CA L 26,323,259 4.19 447,170 3.39

DFW Dallas-Ft Worth Intl American, Delta Dallas-Ft 
Worth

TX L 24,148,619 3.85 493,772 3.74

PHX Phoenix Sky Harbor Intl America West, Southwest Phoenix AZ L 16,930,419 2.70 370,247 2.80

DEN Denver Intl United, Frontier Denver CO L 16,544,458 2.64 330,825 2.50

LAS Las Vegas 
McCarran Intl

Southwest, America West, United Las Vegas NV L 16,540,417 2.64 317,700 2.41

IAH George Bush 
Intercontinental

Continental, American Houston TX L 15,889,349 2.53 299,903 2.27

MSP Minneapolis-St Paul Intl Northwest, American Minneapolis MN L 15,553,423 2.48 326,974 2.48

DTW Detroit Metropolitan 
Wayne County

Northwest Detroit MI L 15,124,490 2.41 337,816 2.56

JFK John F Kennedy Intl American, Jet Blue, Delta, United New York NY L 15,050,456 2.40 245,475 1.86

SFO San Francisco Intl United, American San 
Francisco

CA L 14,856,842 2.37 260,501 1.97

EWR Newark Intl Continental, American Newark NJ L 14,073,453 2.24 282,849 2.14

MIA Miami Intl American, Continental Miami FL L 13,889,275 2.21 304,863 2.31

MCO Orlando Intl Delta, Southwest, American Orlando FL L 12,631,347 2.01 201,203 1.52

SEA Seattle-Tacoma Intl Alaska, United Seattle WA L 12,570,572 2.00 217,352 1.65

STL Lambert-St Louis Intl American, Southwest St Louis MO L 12,412,120 1.98 295,148 2.23

PHL Philadelphia Intl US Airways, American Philadelphia PA L 11,631,738 1.85 267,402 2.02

CLT Charlotte Douglas Intl US Airways Charlotte NC L 11,589,824 1.85 239,173 1.81

BOS Boston Logan Intl American, US Airways, Delta Boston MA L 10,665,476 1.70 207,138 1.57

LGA La Guardia US Airways, American, Delta New York NY L 10,416,041 1.66 207,915 1.57

CVG Cincinnati-Northern 
Kentucky Intl

Delta Covington-
Cincinnati, 
OH

KY L 9,879,246 1.57 150,943 1.14

continued on next page
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Airport 
code Airport

Primary and 
secondary air carriers City State

Hub 
type

Number 
of annual 
scheduled 

passengers

Percentage 
of total 

passengers

Number of 
annual 

scheduled 
A/C ops

Percentage 
of total 
A/C ops

BWI Baltimore-Washington Intl Southwest, US Airways Baltimore MD L 9,489,296 1.51 210,349 1.59

HNL Honolulu Intl Aloha, Hawaiian, ATA Honolulu HI L 9,266,615 1.48 174,544 1.32

PIT Pittsburgh Intl US Airways, Delta Pittsburgh PA L 9,212,335 1.47 188,154 1.42

SLC Salt Lake City Intl Delta, Southwest Salt Lake 
City

UT L 8,908,798 1.42 151,121 1.14

FLL Ft Lauderdale-
Hollywood Intl

Continental, Delta, Southwest, 
American, US Airways, Spirit, 
Jet Blue

Ft 
Lauderdale

FL L 7,983,704 1.27 147,874 1.12

IAD Washington Dulles Intl United, Delta, American Washington DC L 7,936,618 1.26 130,351 0.99

MDW Chicago Midway American, Southwest Chicago IL L 7,573,932 1.21 161,468 1.22

TPA Tampa Intl Southwest, Delta, US Airways, 
Continental, Air Tran, American

Tampa FL L 7,544,284 1.20 145,968 1.11

SAN San Diego Intl-Lindburgh
Field

Southwest, American, United San Diego CA L 7,224,573 1.15 143,298 1.08

PDX Portland Intl Alaska, United, Southwest Portland OR M 5,970,960 0.95 122,407 0.93

DCA Washington Reagan Natl US Airways, Delta Washington DC M 5,311,436 0.85 121,456 0.92

CLE Cleveland Hopkins Intl Continental, American Cleveland OH M 5,007,767 0.80 86,572 0.66

MEM Memphis Intl Northwest Memphis TN M 4,784,135 0.76 237,385 1.80

Aggregate of all 35 airports 460,283,394 73.34 9,080,596 68.75

Scheduled air transportation 
in the nation as a whole

627,600,000 100.00 13,208,600 100.00

APPENDIX A   Activities at 35 Operational Evolution Plan (OEP) Airports in the United States: 2002 (Continued)

Key: A/C = aircraft; L = large hubs; M = medium hubs. 

Notes: Only scheduled passenger and A/C operations were considered to make the data 
compatible with T-100 segment data.  

Airport hubs in this paper use the U.S. Department of Transportation, Federal Aviation 
Administration definition. There are four categories of total enplanements (i.e., physical counts): 
large (> 1% of total enplanements), medium (0.25%–0.999% of total enplanements), small hubs 
(0.05%–0.249% of total enplanements), and nonhub (< 0.05% of total enplanements). These are 
physical hubs.
    There is a second definition that categorizes airports as a hub where inbound flights are 
scheduled to arrive from multiple origins within a short period of time thus creating a bank of 

passengers. The coordinated arrival and departure banks together form a wave of activities and 
lead to peaks in airlines schedules. Some physical hubs are, thus, operational hubs. However, an 
airport can be an operational hub without being a physical hub (i.e., airports primarily serving 
connecting passengers), and a physical hub may exist without being an operational hub (i.e., 
airports primarily serving origin and destination passengers.

Sources: U.S. Department of Transportation (USDOT), Federal Aviation Administration (FAA), 
Terminal Area Forecast (TAF) (Washington, DC: 2003); USDOT, FAA, Aerospace Forecasts, 2003–
2014 (Washington, DC: U.S. Government Printing Office, 2003); and Official Airline Guide (OAG), 
available from http://www.oagflights.com.
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