Lesson Two: Composition, Let's Make Salt & Water!

Key Concept: The importance of this lesson is to become more familiar with the electric charge of an element. You will explore the difference between composition and decomposition. This lesson will also help lead into the understanding of how a fuel cell works and what the benefits are.

Two Activities for this lesson:

First activity uses a balloon, salt and pepper to show static electricity. The second activity shows composition of elements by playing the chemical equation game.

Important words:

Composition Decomposition Energy

Lesson Two: Activity One

You've all heard of static electricity. You know that thing that happens when you rub your head with the balloon and watch your hair stand on end. Lets think about what happens for the split second the confetti leaves the plate and attaches itself to the balloon. It's an electric charge!

Here's what happens with two atoms...

Another kind of bond is called *ionic*. An ionic bond is were an electron is transferred from one element to another. An ionic bond forms between a metal and non-metal.

The first two atoms are too far apart to be attracted to each other.

As the distance gets less the nucleus of each atom starts to attract the electron of the other.

Finally the bond forms. The elements are combined with other elements.

This Sodium Element is not satisfied and naturally seeks out another element to combine with. What needs to happen? ...

Sodium needs to find an element friend. How about Chlorine?

Here are some important facts about elements we like, ... Sodium

Atomic Symbol	Na	
Atomic Number (Protons)	11	
Atomic Weight (Protons & Neutrons)	22.989768	
Oxidation States (a way to keep track of Electrons)	+1	
State at room temp.	Solid, Metal	
Melting Point, K	370.96	
Boiling Point, K	1156.1	

http://ull.chemistry.uakron.edu/periodic_table/

Chlorine

Atomic Symbol	CI
Atomic Number (Protons)	17
Atomic Weight (Protons & Neutrons)	35.4527
Oxidation States (a way to keep track of electrons)	+1,+5,+7,-1
State at room temp.	Gas, Nonmetal
Melting Point, K	172.2
Boiling Point, K	238.6

http://ull.chemistry.uakron.edu/periodic_table/

Hydrogen

Atomic Symbol	Н
Atomic Number (Protons)	1
Atomic Weight (Protons & Neutrons)	1.00794
Oxidation States (a way to keep track of electrons)	+1, -1
State at room temperature	Gas, Non- metal
Melting Point, K SI unit base of temperature is Kelvin (K) T (in K) = T (in $^{\circ}$ C) + 273.15	14.01
Boiling Point, K	20.28

Oxygen

Atomic Symbol	0	
Atomic Number (Protons)	8	
Atomic Weight (Protons & Neutrons)	15.9994	
Oxidation States (a way to keep track of electrons)	-2	\sum
State at room temp.	Gas, Nonmetal	
Melting Point, K	54.8	
Boiling Point, K	90.19	

http://ull.chemistry.uakron.edu/periodic_table/

Mercury

Symbol	Hg	
Atomic Number	80	
Atomic Weight	200.59	
Oxidation States (a way to keep track of Electrons)	+1,+2	
State at room temp.	liquid	
Melting Point, K	234.28	
Boiling Point, K	629.73	

http://ull.chemistry.uakron.edu/periodic_table/

Chemical Equations (Composition: Making a Compound)

Chemical Equations

(Decomposition: Breaking compound apart)

Chemical Equations Composition

Chemical Equations Decomposition

1 Electron (1+ or 1-) Atomic Number

Hydrogen

1.008 (Atomic Mass)

1 Electron (1+ or 1-) Atomic Number

Hydrogen

1.008 (Atomic Mass)

Atomic Number

Oxygen

16.00 (Atomic Mass)

1 Electron (1+ or 1-) Atomic Number

Hydrogen

1.008 (Atomic Mass)

1 Electron (1+ or 1-) Atomic Number

Hydrogen

1.008 (Atomic Mass)

Atomic Number

Oxygen

16.00 (Atomic Mass)

Sodium

23.00 (Atomic Mass)

7 Electrons (1+, 5+, 7+, 1-) Atomic In outermost shell Number 17

Chlorine

35.45 (Atomic Mass)

Sodium

23.00 (Atomic Mass)

7 Electrons (1+, 5+, 7+, 1-) Atomic In outermost shell Number 17

Chlorine

35.45 (Atomic Mass)

Some Common Elements

Metals:

Sodium (¹¹Na), Magnesium (¹²Mg), Potassium (¹⁹K), Lead (⁸²Pb), ... Transitional metals - Aluminum (¹³Al), Iron (²⁶Fe), Nickel (²⁸Ni), Copper (²⁹Cu), Silver (⁴⁷Ag), Gold (⁷⁹Au), ...

Metalloids:

Boron (⁵Br), Silicon (¹⁴Si), Arsenic (³³As), Antimony (⁵¹Sb), ...

Nonmetals:

Hydrogen (¹H), Oxygen (⁸O), Carbon (⁶C),(diamonds, graphite, anthracite), Sulfur (¹⁶S), Chlorine (¹⁷Cl), Bromine (³⁵Br), and Iodine (⁵³I), ...

What is the difference between composition and decomposition? Give examples.

Where are the metals located on the periodic table? Non-metals? Metalloids?

Name some metals, metalloids, non-metals.

Lets see if you remember...

What is the atomic number?

What is the periodic table?

What is the atomic mass number?

Who was Dmitri Mendeleyev?

End of Lesson Two