National Cancer Institute
U.S. National Institutes of Health | www.cancer.gov

NCI Home
Cancer Topics
Clinical Trials
Cancer Statistics
Research & Funding
News
About NCI
Interventional Fluoroscopy: Reducing Radiation Risks for Patients and Staff
    Posted: 04/18/2005



Introduction






Increasing use and complexity






Determinants of radiation dose






Radiation risks






Strategies to optimize radiation exposure






Physician-patient communication before and after






Dosimetry records and follow up






Education and training






Conclusion






Reference list



Page Options
Print This Page
Print This Document
View Entire Document
E-Mail This Document
View/Print PDF
Quick Links
Director's Corner

Dictionary of Cancer Terms

NCI Drug Dictionary

Funding Opportunities

NCI Publications

Advisory Boards and Groups

Science Serving People

Español
Quit Smoking Today
NCI Highlights
Report to Nation Finds Declines in Cancer Incidence, Death Rates

High Dose Chemotherapy Prolongs Survival for Leukemia

Prostate Cancer Study Shows No Benefit for Selenium, Vitamin E

The Nation's Investment in Cancer Research FY 2009

Past Highlights
Radiation risks from interventional fluoroscopy

The benefits of properly performed interventional fluoroscopy almost always outweigh the radiation risk experienced by an individual. However, unnecessary exposure to radiation can produce avoidable risk to both the patient and the operator.

Risk to patients

The short-term risk to patients is radiation-induced skin damage, which can result from acute radiation doses of >= 2Gy. The extent of the skin injury may not be known for weeks after the procedure. Repeated procedures increase the risk of skin injury, because previous radiation exposure sensitizes the skin.

Long term effects include the potential risk of cancer. It is generally accepted that there is probably no low dose "threshold" for inducing cancers, i.e. no amount of radiation should be considered absolutely safe. Recent data from the atomic bomb survivors (Pierce 2000) and medically irradiated populations (UNSCEAR 2000) demonstrate small, but significant increases in cancer risk even at the level of doses that are relevant to interventional fluoroscopy procedures. The increased risk of cancer depends upon the age and sex of the patient at exposure. Children are considerably more sensitive to radiation than adults, as consistently shown in epidemiologic studies of irradiated populations.

Risk to health care providers

Health care providers are also at risk of radiation damage from chronic exposure to radiation from these procedures. There are an increasing number of case reports of skin changes on the hands and injuries to the lens of the eye in operators and assistants (Faulkner 2001). Although cancer is uncommon, cancers associated with radiation exposure in adults may include leukemia and breast cancer (Yoshinaga 2004).

Strategies to Manage Radiation Dose to Patients and Operators

Immediate Long-Term
Optimize dose to patient

Use proper radiologic technique:

  • Maximize distance between x-ray tube and patient
  • Minimize distance between patient and image receptor
  • Limit use of electronic magnification

Control fluoroscopy time:

  • Limit use to necessary evaluation of moving structures
  • Employ last-image-hold to review findings

Control images:

  • Limit acquisition to essential diagnostic and documentation purposes

Reduce dose:

  • Reduce field size (collimate) and minimize field overlap
  • Use pulsed fluoroscopy and low frame rate

Include medical physicist in decisions

  • Machine selection and maintenance

Incorporate dose-reduction technologies and dose-measurement devices in equipment

Establish a facility quality improvement program that includes an appropriate x-ray equipment quality assurance program, overseen by a medical physicist, which includes equipment evaluation/inspection at appropriate intervals.

Minimize Dose to Operators and Staff

Keep hands out of the beam

Use movable shields

Maintain awareness of body position relative to the x-ray beam:

  • Horizontal x-ray beam - operator and staff should stand on the side of the image receptor
  • Vertical x-ray beam - the image receptor should be above the table

Wear adequate protection

  • Protective well-fitted lead apron
  • Leaded glasses

Improve ergonomics of operators and staff:

  • Train operators and staff in ergonomically good positioning when using fluoroscopy equipment; periodicially assess their practice
  • Identify and provide the ergonomically best personal protective gear for operators and staff
  • Urge manufacturers to develop ergonomically improved personal protective gear
  • Recommend research to improve ergonomics for personal protective gear

Back to Top

< Previous Section  |  Next Section >


A Service of the National Cancer Institute
Department of Health and Human Services National Institutes of Health USA.gov