
$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

= $\frac{1}{|\langle P_b P_y \rangle|} \cdot \frac{N_{++} - R \cdot N_{+-}}{N_{++} + R \cdot N_{+-}}; \quad R = \frac{L_{++}}{L_{+-}}$
 $\frac{\partial A_{LL}}{\partial R} \delta R \approx \frac{1}{2|\langle P_b P_y \rangle|} \delta R$

- To measure 1% asymmetry with $P_{beam} pprox ~40\%$, need $\delta R ~<~10^{-3}$
- \bullet Higher polarization reduces sensitivity to uncertainty in R
- Order of magnitude requirement : $\delta R \leq \text{few} \times 10^{-4}$
- How do measure relative luminosity?
- What are some of the difficulties we expect as $\mathcal L$ increases?
- What should we do? (Work in progress)

Relative Luminosity Measurement at PHENIX

- Located at ± 1.44 m from interaction point, cover $\Delta \phi = 2\pi, \ 3.0 \le |\eta| \le 3.9$
- Collisions defined by coincidence of signals in Beam-Beam Counters (BBCs)
- Average hit time is formed from PMTs in north and south BBC arms separately
- From difference of north and south BBC hit times can reconstruct z of vertex, require |z|~<~30 cm
- Have separate scalers for each bunch pair to measure collison rate for different helicity combinations
- Measure R with scalers attached to this minimum-bias trigger, $R = \frac{BBC_{++} + BBC_{--}}{BBC_{+-} + BBC_{-+}}$

• Ideally R = 1, blue and red bars identical in height

- Typical value of |R-1| pprox few percent in any run, 0.5% overall in Run 3
- Variation in bunch intensity develops at extraction and injection can be improved by CAD
- In Run 3, $\delta R \approx 2.5 \times 10^{-4}$ (stat)
- Rate variation is one problem, another is due to different vertex distributions

Complications in Extracting R as Luminosity Increases

- In Run 4, probability of minimum-bias trigger/crossing pprox 0.02
- \bullet Roughly 1 percent of all triggers contained a second pp collision
- In Run 5, pprox 4 percent of all triggers may contain a second pp collision
- At design luminosity, we expect $\approx 1 \ pp$ collision/crossing \Rightarrow 70 percent of all triggers may contain 2 or more pp collisions !

At least two complications will result :

- (1) Scaler counting minimum-bias triggers only counts 0 or 1 pp interaction/crossing \Rightarrow we need to correct for possibility of multiple pp interactions/crossing
- (2) With multiple pp interactions we are likely to :
 - (a) lose some events which should pass the vertex cut
 - (b) count some events which shouldn't pass the vertex cut
 - \Rightarrow PHENIX will acquire a sensitivity to bunch longitudinal profiles

Extracting R from a single-arm detector is relatively easy :

- Let μ =average number of pp interactions/crossing passing vertex cut
- Let $\epsilon{=}{\rm probability}$ that we can detect a pp collision
- Let $\delta = 1 \epsilon = \text{probability}$ we miss a pp collision

Then the fraction of crossings with 0 triggers is :

$$P(0) = \sum_{n=0}^{\infty} \frac{e^{-\mu}\mu^n}{n!} \delta^n$$
$$= e^{-\mu} e^{\mu\delta} \sum_{n=0}^{\infty} \frac{e^{-\mu\delta} (\mu\delta)^n}{n!}$$
$$= e^{-\mu\epsilon}$$

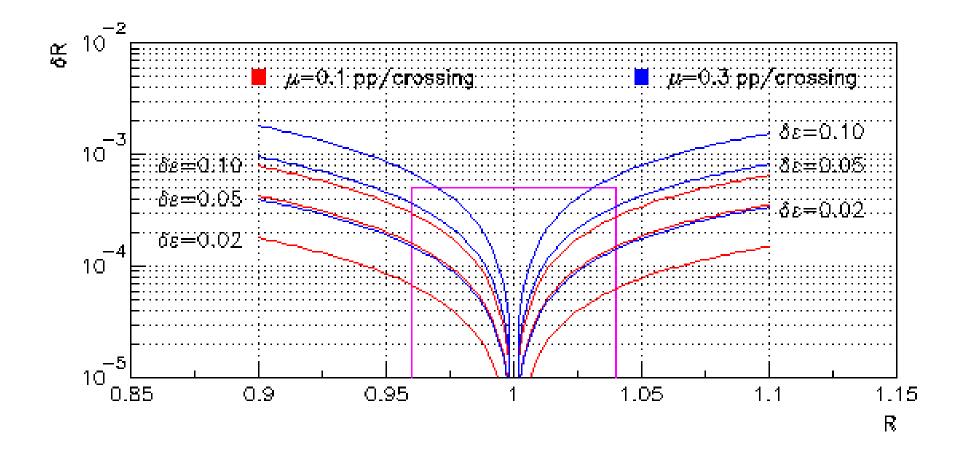
Then
$$\mu = -\log P(0)/\epsilon \implies R = \frac{\mu_{++}}{\mu_{+-}} = \frac{-\log P_{++}(0)/\epsilon}{-\log P_{+-}(0)/\epsilon}$$

$$R = \frac{\log P_{++}(0)}{\log P_{+-}(0)}$$

 \Rightarrow dependence on ϵ has dropped out

How can we account for multiple pp interactions/crossing using the BBC trigger rate?

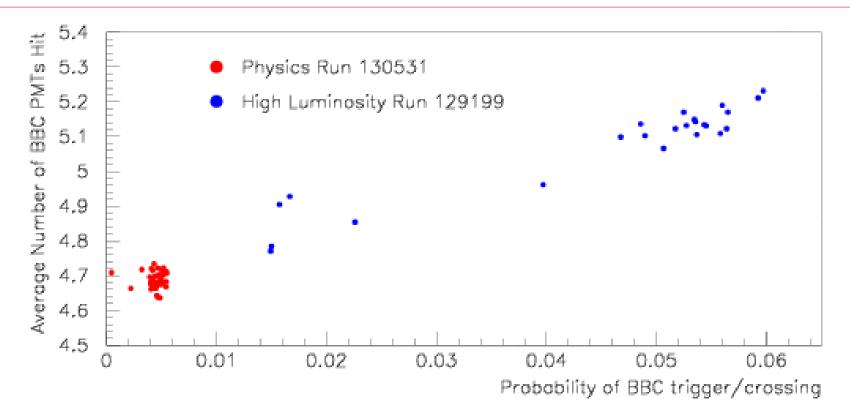
- Let μ =average number of pp interactions/crossing passing vertex cut
- Let ϵ =probability that one arm of BBC detects the collision
- Let $\delta = 1 \epsilon = \text{probability one arm misses the collision}$


Now extract the fraction of beam crossings yielding a minimum-bias trigger :

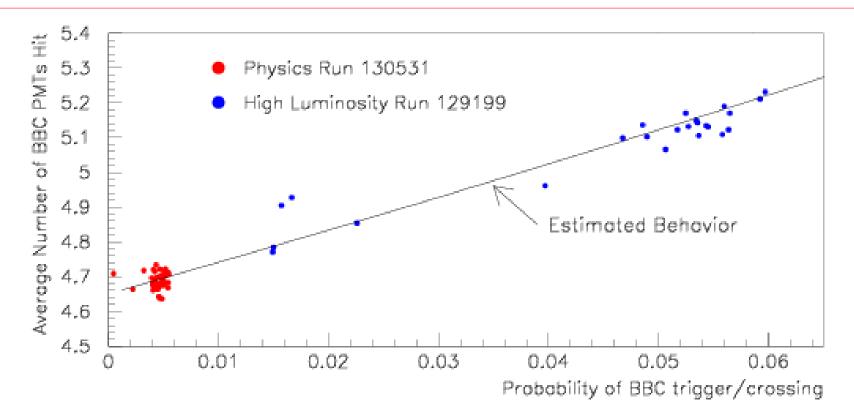
$$P(1+) = \sum_{n=1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} (1-\delta^n) (1-\delta^n)$$

= $1 - e^{-\mu(1-\delta)} \left(2 - e^{-\mu\delta(1-\delta)}\right)$
= $1 - e^{-\mu\epsilon} \left(2 - e^{-\mu\epsilon(1-\epsilon)}\right)$

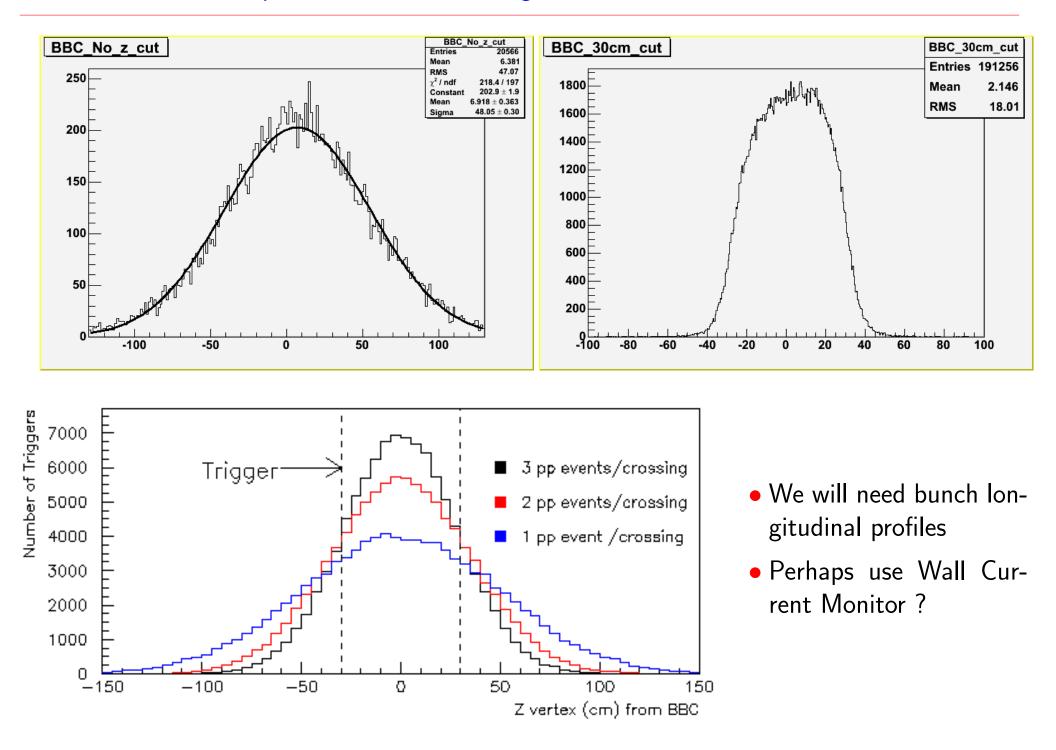
 \bullet We measure $P_{++}(1+)$ and $P_{+-}(1+),\;$ want to extract μ_{++} and μ_{+-}


 \Rightarrow Accuracy in extracting $R = \mu_{++}/\mu_{+-}$ depends on knowledge of ϵ (not true for single arm)

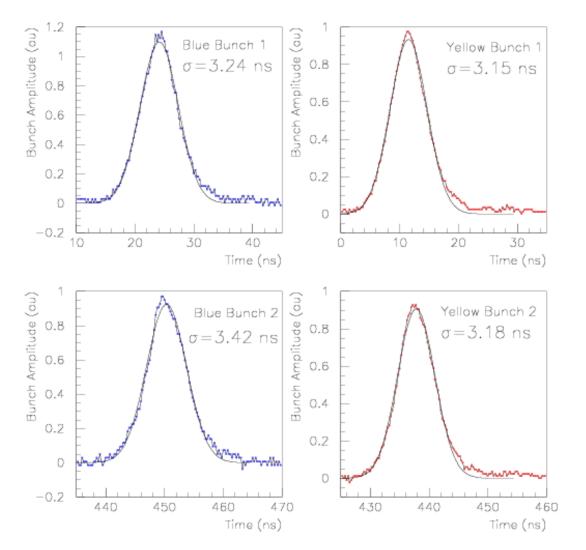
- ⇒ Minimum-bias trigger rate not simple function of luminosity
 - Limits $\epsilon \to 0$ or $\epsilon \to 1$ reduce uncertainty on R due to uncertainty on ϵ


- What is our uncertainty δR on R given an uncertainty $\delta \epsilon$ on ϵ ?
- δR increases as rate μ increases
- δR increases as uncertainty $\delta \epsilon$ on probability ϵ BBC detects a pp collision increases
- Perhaps recording BBC charge or tube multiplicity will decrease the uncertainty δR

Complications in Extracting R as Luminosity Increases


- \bullet As rate increases we will sometimes detect 2 pp interactions/crossing
- Average number of BBC PMTs hit in those cases will be double normal number
- Number of PMTs hit is sensitive to rate and probability ϵ BBC arm detects a collision • $\epsilon \approx \sqrt{\sigma_{BBC}/\sigma_{PP}} \approx 0.73$

Complications in Extracting R as Luminosity Increases



- \bullet As rate increases we will sometimes detect 2 pp interactions/crossing
- Average number of BBC PMTs hit in those cases will be double normal number
- Number of PMTs hit is sensitive to rate and probability ϵ BBC arm detects a collision • $\epsilon \approx \sqrt{\sigma_{BBC}/\sigma_{PP}} \approx 0.73$
- Could be luck, or possible handle on ϵ , correction for multiple pp interactions/crossing

Complications in Determining the Z Vertex with the BBC

Complications in Determining the Z Vertex with the BBC

- Wall current monitor samples profile in 0.25 nsec bins
- Wide bunches seem to correspond to wide vertex
- 1st pair : 47 cm; 2nd pair : 51 cm
- Still to do : predict vertex dist. from WCM
- Alternating between bunches \rightarrow 0.125 nsec bins \rightarrow improved vertex reconstruction
- To do : see if WCM data describes BBC,ZDC trigger rates and vertex distributions well enough for R

- From independent measurements of $\sigma_{pp}^{\rm inel+DD}$ and vernier scan can extract ϵ to 5-10%
 - With ϵ , can use BBC scaler data to extract R
 - Could output total charge in BBC PMTs or multiplicity to scalers
 - Can compare results to triggers formed from ZDC or ZDCN||S && opposite BBC arm
 - Need to correct scaler data for vertex shape as $\mathcal L$ increases !
 - ⇒ use wall current monitor to get bunch profiles and charge?
- Construct new small acceptance detector with vertexing ability, insensitivity to A_{LL} Relative Luminosity Telescope (Wei Xie)
- Get spin flipper commissioned
- ullet Try to reconstruct $\mathcal L$ from wall current monitor measurements of charge and bunch profiles
- Lots of ideas to try