# Experiences with Controlling Listeria monocytogenes in Readyto-Eat Food Processes

W. Payton Pruett, Jr., Ph.D. ConAgra Refrigerated Foods

USDA Listeria Summit
November 18, 2002 - Washington D.C.

## L. monocytogenes as a Public Health Risk

- Certain human subpopulations are significantly more susceptible to listeriosis
- Foods commonly implicated in foodborne listeriosis contain >1000 CFU/g (ICMSF)
- Certain RTE foods support the growth of L. monocytogenes (Lm) and are higher risk

## L. monocytogenes as a Public Health Risk

 The risk of listeriosis can be managed through effective control programs

# The Problem with "Zero Tolerance"

#### Regulatory tolerances should:

- not be unnecessarily restrictive or unrealistic to achieve
- be risk-based
- promote public health protection and improvements

# Consumer protection can be better assured through the application of Food Safety Objectives (FSO)

### Food Safety Objective

 Maximum frequency and/or concentration of a microbiological hazard in a food at the time of consumption that provides the appropriate level of protection (ICMSF)

### Food Safety Objective

 No more than 100 Lm CFU/g or mL in RTE foods at the time of consumption (ICMSF)

### Experiences with Environmental Sampling

- Effective sampling programs will occasionally detect the organism
- Such programs are not "statistically based" or randomly applied
- Rely on experience and familiarity with process to determine sampling sites and numbers

### Experiences with Environmental Sampling

 In an operation that maintains sanitary control, Listeria contamination is most likely line specific Plant management and regulatory agencies should encourage detection of the *Listeria* in the environment.

Such findings must be considered a success!!

#### The Dilemma

- In order to resolve most contamination issues with Listeria, equipment must be operated to ultimately determine the source
- During the investigation, a number of environmental positives may result
- Through ongoing trend analysis and corrective action, the contamination source can be discovered and addressed

#### **Meat Patty Plant**

|         | 8/4 | 8/11 | 8/18 | 8/25 | 9/1 | 9/8 | 9/15 |  |
|---------|-----|------|------|------|-----|-----|------|--|
| Line 1  | 0   | 0    | 0    | 0    | 0   | 0   | 0    |  |
| Line 2  | 0   | 0    | 0    | 0    | 0   | 1   | 1    |  |
| Line 3  | 0   | 0    | 1    | 0    | 1   | 0   | 1    |  |
| Line 4  | 0   | 0    | 0    | 1    | 0   | 0   | 0    |  |
| Floor 1 | 0   | 0    | 0    | 1    | 0   | 0   | 0    |  |

0 = negative; 1 = positive

#### **Future Directions**

- Industry expands sharing of best practices
- Improved control of Listeria on floors
- Improvements in equipment design
- Equipment is approved before purchase
- Tighter control of equipment maintenance
- Equipment thermal treatments are implemented as scheduled, routine procedures

### **Product Sampling**

### The Problem with Routine Microbiological Testing of Product Samples

- Unreliable means to assess food safety
- Only provides a "snapshot" and does not indicate whether a food operation can consistently produce safe foods

### Microbiological Testing in Validated Food Operations

#### Microbiological testing is useful for:

- validating the effectiveness of a control system
- assessing control of the environment
- determining disposition of food following a deviation
- assessing an operation when an audit or inspection questions the control system

# Shortcoming of Routine Product Sampling: An Example

At a contamination level of 0.5%, there is a 61% probability that a production lot would be accepted even if 100 samples were tested (ICMSF).

# The Value Environmental Testing Gives Beyond Product Testing

- Information exists about a potential source of contamination
- Environmental data and trend analysis can then be used to resolve the problem
- Product testing does not offer this opportunity

### Product Types and Consumer Risk

- Any microbiological sampling initiatives should focus on enhancing public health
- Foods which do not support the growth of *Listeria* should receive much less attention than those which do

#### Minimal Risk Products

- Frozen foods held at ≤ -1 C
- Foods having a pH <4.4</li>
- Foods having a water activity of <0.92</li>
- Foods demonstrated not to support Lm growth due to other interactive or synergistic effects

### Listeria monocytogenes Growth on Beef Frankfurters Stored at 4 C



### Product Sampling Plans

 Should be be scientifically valid and based on product risk (e.g., ICMSF)

# The Canadian Risk-Based Approach

- Distinguish sampling and testing criteria based on product risk
  - <1 CFU/25 g for higher risk foods</p>
  - <100 CFU/g for lower risk foods</p>

### Best Avenues to Public Health Protection

- Promote aggressive environmental sampling plans designed to detect Listeria
- Quickly respond to positive sites
- Focus regulatory resources on plants not having environmental sampling programs
- Concentrate efforts on higher risk products
- Continue to apply and seek bacteriostatic and bacteriocidal treatment alternatives