CHAPTER 8: Estimated Aggregate Cost and Cost per Ton of Reduced Emissions	
8.1 Projected Sales and Cost Allocations	. 8-2
8.2 Aggregate Engine Costs	. 8-3
8.2.1 Aggregate Engine Fixed Costs	. 8-3
8.2.2 Aggregate Engine Variable Costs	. 8-7
8.3 Aggregate Equipment Costs	8-11
8.3.1 Aggregate Equipment Fixed Costs	8-11
8.3.2 Aggregate Equipment Variable Costs	8-13
8.4 Aggregate Fuel Costs and Other Operating Costs	8-15
8.4.1 Aggregate Fuel Costs	8-16
8.4.2 Aggregate Oil-Change Maintenance Savings	8-18
8.4.3 Aggregate CDPF Maintenance, CDPF Regeneration, and CCV Maintenance C	osts
	8-20
8.4.4 Summary of Aggregate Operating Costs	
8.4.5 Summary of Aggregate Operating Costs Associated with a Fuel-only Scenario	8-24
8.5 Summary of Aggregate Costs of the Final Rule	8-26
8.6 Emission Reductions	8-29
8.7 Cost per Ton	8-30
8.7.1 Cost per Ton for the NRT4 Final Rule	8-30
8.7.2 Cost per Ton for the NRLM Fuel-only Scenario	8-34
8.7.3 Costs and Costs per Ton for Other Control Scenarios	8-37
8.7.3.1 Costs and Costs per Ton of a 500 ppm NRLM Fuel-only Scenario	8-37
8.7.3.2 Costs and Costs per Ton of the 15 ppm L&M Fuel Increment	8-42
8.7.4 Costs per Ton Summary	8-63
Appendix 8A: Estimated Aggregate Cost and Cost per Ton of Sensitivity Analyses	8-65
Appendix 8B: Fuel Volumes used throughout Chapter 8	8-89

CHAPTER 8: Estimated Aggregate Cost and Cost per Ton of Reduced Emissions

This chapter aggregates the estimated incremental engine costs, operating costs, equipment costs, and fuel costs of the final rule. This chapter also presents detailed information on the calculation for the cost per ton of pollutant. Chapter 6 details the estimated fixed and variable costs for modifying new nonroad engines and equipment to meet new emission standards; Chapter 6 also discusses the effects of the new low-sulfur diesel fuels on operating costs for land-based nonroad diesel engines, locomotive engines, and marine diesel engines. Chapter 7 describes our estimates of the costs associated with the fuel requirements in this final rule.

We have calculated the cost per ton of emission reductions for this final rule based on the net present value of all costs incurred and all emission reductions generated over a 30-year time window after the program takes effect. This approach captures all the costs and emission reductions from the final rule, including those costs incurred and emission reductions generated by the existing fleet. The point of comparison for this evaluation is the existing set of fuel and engine standards (i.e., unregulated fuel and the Tier 2/Tier 3 program). The 30-year time window is meant to capture both the early period of the program when there are a small number of compliant engines in the fleet, and the later period when there is nearly complete turnover to compliant engines. Note that all costs and emission reductions presented here are 30-year numbers (the net present values in 2004 of the stream of costs/reductions occurring from 2007 through 2036, expressed in \$2002).

While there is a broad consensus among economists that future benefits and costs of regulatory programs should be discounted, there is no consensus in the literature regarding the most appropriate discounting concept and rate to apply. In particular, the theoretical literature is divided between two alternative approaches. The first approach is referred to as the "demandside approach" (see Arrow et al, 1996), which defines the appropriate discount rate as the rate at which society would collectively trade off current versus future consumption. This rate is difficult to establish empirically, but estimates in the literature commonly range from 1 to 4 percent. EPA's economic Guidelines suggest using a value of two to three percent.¹ The second approach is referred to as the "cost-side approach" (see Lind, 1982), and discount rates associated with this concept reflect trade-offs between current and future consumption derived by market rates driven by the marginal productivity of capital. This rate is also difficult to derive from empirical data, but estimates typically fall in the range of 4 to 10 percent. OMB's circular A-94 expresses a preference for the cost-side approach and specifies a seven percent rate.

Given both the lack of consensus in the literature on the most appropriate concept and the uncertainty surrounding the associated empirical estimates, EPA's Economic Guidelines and the two key outside expert groups which advise EPA on economic analytical issues all recommend evaluating benefits and costs using a range of discount rates. Consistent with this advice, we have analyzed the benefits and costs of the nonroad Tier 4 rule using both a three percent rate

and a seven percent rate. We present the results based on a three percent discount rate as our primary estimates.

8.1 Projected Sales and Cost Allocations

Projected nonroad engine and equipment sales estimates are used in several portions of this analysis. We have used two sources for our projected sales numbers—the PSR database for the 2000 model year, and our Nonroad Model.^{2, 3} The PSR database has been used as the basis for our current fleet mix; i.e., which equipment types were sold in 2000 and with engines from which power category. The sales estimates and growth rates used throughout this analysis are shown in Table 8.1-1.⁴

Estimate	a 2000 Eligine Sai	es and Future Sales	Olowii
Power range	2000 Model Year Sales	Annual Growth in Engines Sold	Linear Growth Rate
0 <hp<25< td=""><td>119,159</td><td>4,116</td><td>3.5%</td></hp<25<>	119,159	4,116	3.5%
25≤hp<50	132,981	3,505	2.6%
50≤hp<75	93,914	2,046	2.2%
75≤hp<100	68,665	1,499	2.2%
100≤hp<175	112,340	2,321	2.1%
175≤hp<300	61,851	1,414	2.3%
300≤hp<600	34,095	436	1.3%
$600 \le hp \le 750$	2,752	50	1.8%
hp>750	2,785	51	1.8%
Total	628,542	15,438	2.5%

Table 8.1-1 Estimated 2000 Engine Sales and Future Sales Growth

Because the new emission standards will reduce emissions of several different pollutants (i.e., NOx, PM, NMHC, and SOx), we have attempted to allocate the estimated costs to emission reductions of specific pollutants. This apportionment of costs by pollutant allows us to calculate the average cost per ton of emission reduction resulting from this rule. Table 8.1-2 summarizes the allocations we have used in the final rule. Deciding how to apportion costs can be difficult even in the case of technologies that, on the surface, seem to have an obvious split by which their costs should be attributed. For instance, we have apportioned 100 percent of the cost for CDPF technology to PM even though CDPFs are expected to reduce NMHC emissions significantly.^A For fuel-related costs where no technology enablement occurs (i.e., fuel-derived emissions

^A A CDPF is a catalyzed diesel particulate filter; a DOC is a diesel oxidation catalyst; CCV is a closed crankcase ventilation system; Regen is short for regeneration; EGR is exhaust gas recirculation; NRLM refers to nonroad, locomotive, and marine.

reductions where no new engine standards exist that rely on the new fuel), we have apportioned one-third of the costs to PM and two-thirds to SOx. This is different than how we allocated costs in the proposal where we allocated 100 percent of such costs to SOx control. We believe the allocation used here is more appropriate given that the lower sulfur fuel provides for substantial PM reductions even without new engine standards.^B The estimated costs for 15 ppm fuel are apportioned one-half to technology enablement (i.e., engine-derived emissions reductions) and one-half to fuel-derived emissions reductions. Respectively, these halves are allocated 50%/50% to NOx+NMHC/PM and 33%/67% to PM/SOx. This latter split is consistent with the fuel-derived allocation described above. This is different than the proposal where we allocated 15 ppm costs entirely to technology enablement. We believe the allocations used here in the final rule are more appropriate given the substantial PM and SOx reductions that occur solely because the fuel sulfur level has been reduced. We note throughout the discussion to which pollutant we have attributed costs.

8.2 Aggregate Engine Costs

This section presents aggregate engine fixed costs (recovered costs) and variable costs. These costs are discussed in detail in Section 6.2.

8.2.1 Aggregate Engine Fixed Costs

Chapter 6 presents the aggregate engine fixed costs, along with our best estimate of how those costs might be recovered (i.e., on which engines), for engine R&D, tooling, and certification, respectively (see Tables 6.2-4, 6.2-6, and 6.2-8).^C Table 8.2-1 presents the combined total of all engine fixed costs in the indicated years for each power category. Table 8.2-2 shows to what pollutant the total costs by year are allocated. Note that the cost allocations shown in Table 8.2-1 are not generated assuming any simple split of costs between NOx and PM control. Some engine fixed costs are solely attributed to PM control (for example, costs associated with the 2008 standards and costs associated with the 2013 standards for 50 to 75 hp engines). Therefore, the costs presented in Table 8.2-2 for PM do not represent the total fixed costs of the program if there were no new NOx standards; the same is true of NOx costs if there

^B A 50/50 split between PM/SOx could be argued, but that seems inappropriate given that 98 percent of fuel borne sulfur is exhausted as SOx and only two percent is exhausted as PM. Given that, a 2/98 split between PM/SOx could be argued, but that seems inappropriate given the importance of PM reductions—which have much higher human health benefits—relative to SOx reductions. The 33/67 split between PM/SOx that we have chosen here seems to provide an appropriate balance.

^C We have estimated a "recovered" cost for all engine and equipment fixed costs to present a per-production-unit analysis of the cost of the final rule (see Section 6.4.3 or Chapter 10 for our estimate of engine costs on a per-unit basis). In general, in environmental economics, it is more conventional to simply count the total costs of the program (i.e., opportunity costs) in the year they occur. However, this approach does not directly estimate a per-unit cost, since fixed costs occur before the standards take effect, resulting in costs that do not correspond to units certified to the new emission standards. As a result, we grow fixed costs until they can be "recovered" on complying units. Note that the approach used here results in a higher estimate of the total costs of the program, since the recovered costs include a seven percent interest rate to reflect the time value of money (i.e., the lost opportunity cost of that capital).

Final Regulatory Impact Analysis

were no new PM standards. Refer to Section 6.2 for detail on how we have estimated engine fixed costs and their recovery, and to Table 8.1-2 for how they are allocated among each pollutant.

Item	e Allocated Among Pollutants	NOx+NMHC	PM	SOx
Fuel Costs – incremental cent/gallon	500 ppm Affected NRLM		33%	67%
C	15 ppm Affected NR	50% of 50%	50% of 50% 33% of 50%	67% of 50%
	15 ppm Affected L&M		33%	67%
Operating Costs – Oil-Change Savings	500 ppm Affected NRLM		33%	67%
	15 ppm Affected NR	50% of 50%	50% of 50% 33% of 50%	67% of 50%
	15 ppm Affected L&M		33%	67%
Operating Costs – CDPF Maintenance	15 ppm NR in new CDPF engines		100%	
Operating Costs – CDPF Regen (FE impact)	15 ppm NR in new CDPF engines		100%	
Operating Costs – CCV Maintenance	All NR in new CCV engines	50%	50%	
Engine Variable Costs	CDPF System		100%	
	NOx Adsorber System	100%		
	DOC		100%	
	Fuel-Injection System	50%	50%	
	Regeneration System		100%	
	Cooled EGR	100%		
	Closed Crankcase Ventilation Sys	50%	50%	
Engine Fixed Costs – R&D	CDPF+NOx Adsorber	67%	33%	
	CDPF-only		100%	
	DOC-only		100%	
Engine Fixed Costs – Tooling	CDPF+NOx Adsorber	50%	50%	
	CDPF-only		100%	
	DOC-only		100%	
	Cooled EGR	100%		
Engine Fixed Costs – Certification	<75 hp 2008		100%	
	25-50 hp 2013	50%	50%	
	50-75 hp 2013		100%	
	75-750 hp at start of phase-in	50%	50%	
	75-750 hp at end of phase-in	100%		
	>750 hp	50%	50%	
Equipment Variable Costs	<25 hp; 25-75 hp 2008-2012		100%	
	25-50 hp 2013+	50%	50%	
	50-75 hp 2013+		100%	
	75-750 hp at start of phase-in ^b	25%	75%	
	75-750 hp at end of phase-in	50%	50%	
	>750 hp		100%	
Equipment Fixed Costs	<75 hp 2008 standards		100%	
	25-75 hp 2013 standards	50%	50%	
	75-750 hp at start of phase-in	50%	50%	
	75-750 hp at end of phase-in	100%		
	>750 hp 2011	100%		
	>750 hp 2015		100%	

Table 8.1-2Summary of How Cost are Allocated Among Pollutants under the NRT4 Final Program

^b All engines meet the new PM standard and half meet the new NOx standard. For NOx phase-in engines, the allocation is 50/50 to PM/NOx. For PM-only engines, the allocation is 100% PM. The resultant allocation is 75/25 to PM/NOx.

							(united)	10 0	1 2002 ut)11u	15)							
Year	0.	<hp<25< td=""><td>25</td><td><=hp<50</td><td>50<=hp</td><td><75</td><td>75<=hp<100</td><td>100</td><td>)<=hp<175</td><td>175</td><td><=hp<300</td><td>300</td><td><=hp<600</td><td>600<</td><td><=hp<=750</td><td>></td><td>•750hp</td><td>Total</td></hp<25<>	25	<=hp<50	50<=hp	<75	75<=hp<100	100)<=hp<175	175	<=hp<300	300	<=hp<600	600<	<=hp<=750	>	•750hp	Total
2008	\$	5.8	\$	8.0	\$	5.5	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ 19.3
2009	\$	5.8	\$	8.0	\$	5.5	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ 19.3
2010	\$	5.8	\$	8.0	\$	5.5	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ 19.3
2011	\$	5.8	\$	8.0	\$	5.5	\$-	\$	-	\$	17.4	\$	20.5	\$	3.8	\$	1.9	\$ 62.9
2012	\$	5.8	\$	8.0	\$	5.5	\$ 6.9	\$	10.9	\$	17.4	\$	20.5	\$	3.8	\$	1.9	\$ 80.7
2013	\$	-	\$	13.3	\$	9.2	\$ 6.9	\$	10.9	\$	17.4	\$	20.5	\$	3.8	\$	1.9	\$ 83.8
2014	\$	-	\$	13.3	\$	9.2	\$ 9.6	\$	15.4	\$	23.7	\$	29.5	\$	5.6	\$	1.9	\$ 108.2
2015	\$	-	\$	13.3	\$	9.2	\$ 9.6	\$	15.4	\$	23.7	\$	29.5	\$	5.6	\$	5.1	\$ 111.4
2016	\$	-	\$	13.3	\$	9.2	\$ 9.6	\$	15.4	\$	6.3	\$	9.0	\$	1.8	\$	3.2	\$ 67.8
2017	\$	-	\$	13.3	\$	9.2	\$ 2.7	\$	4.5	\$	6.3	\$	9.0	\$	1.8	\$	3.2	\$ 50.0
2018	\$	-	\$	-	\$	-	\$ 2.7	\$	4.5	\$	6.3	\$	9.0	\$	1.8	\$	3.2	\$ 27.6
2019	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	3.2	\$ 3.2
2020	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -
Total	\$	28.8	\$	106.1	\$	73.5	\$ 48.2	\$	77.0	\$	118.3	\$	147.7	\$	28.1	\$	25.7	\$ 653.4
30 Yr NPV at 3%	\$	24.2	\$	81.3	\$	56.3	\$ 35.3	\$	56.4	\$	88.7	\$	110.3	\$	21.0	\$	18.3	\$ 491.8
30 Yr NPV at 7%	\$	19.3	\$	58.3	\$	40.4	\$ 23.7	\$	37.9	\$	61.5	\$	76.2	\$	14.5	\$	11.9	\$ 343.6

8.2-1 Aggregate Engine Fixed Costs by Power Category (\$Millions of 2002 dollars)

(1	MI111	1011S OI 2	2002	dollars)	
Year		very of PM Costs		covery of Dx Costs	covery of ed Costs
2008	\$	19.3	\$	-	\$ 19.3
2009	\$	19.3	\$	-	\$ 19.3
2010	\$	19.3	\$	-	\$ 19.3
2011	\$	40.9	\$	22.0	\$ 62.9
2012	\$	49.8	\$	30.9	\$ 80.7
2013	\$	51.3	\$	32.5	\$ 83.8
2014	\$	51.3	\$	56.9	\$ 108.2
2015	\$	54.1	\$	57.3	\$ 111.4
2016	\$	32.5	\$	35.3	\$ 67.8
2017	\$	23.6	\$	26.4	\$ 50.0
2018	\$	2.8	\$	24.8	\$ 27.6
2019	\$	2.8	\$	0.4	\$ 3.2
2020	\$	-	\$	-	\$ -
Total	\$	366.9	\$	286.4	\$ 653.4
30 Yr NPV at 3%	\$	281.6	\$	210.3	\$ 491.8
30 Yr NPV at 7%	\$	201.8	\$	141.9	\$ 343.6

Table 8.2-2 Aggregate Engine Fixed Costs by Pollutant (\$Millions of 2002 dollars)

We have assumed that all engine R&D expenditures occur over a five-year span preceding the first year any emission-control device is introduced into the market, with the exception of R&D for the 2008 standards which occurs over a four-year span preceding the standards as described in Chapter 6. Where a phase-in exists (for example, for NOx standards on engines between 75 and 750 hp), expenditures are assumed to occur over the five years preceding the first year that NOx adsorbers will be introduced, then continuing during the phase-in years; the expenditures are then recovered by the engine manufacturer over an identical time span following the introduction of the technology. We include a cost of seven percent when amortizing engine R&D expenditures.

We have assumed that all tooling and certification costs are incurred one year in advance of the new standard and are recovered over a five-year period after the new standards take effect; we include a cost of seven percent when amortizing engine tooling costs.

We have calculated the net present value of the engine fixed costs over the 30-year period following implementation of the program as \$492 million. This value assumes a three percent social discount rate.

8.2.2 Aggregate Engine Variable Costs

Engine variable costs are discussed in detail in Section 6.2.2. As explained there, we have generated cost estimation equations to calculate engine variable costs. These cost estimation equations are summarized in Table 6.4-2. Using these equations, we have calculated the engine

Final Regulatory Impact Analysis

variable costs during the years 2008 through 2036 as shown in Tables 8.2-3 and 8.2-4 (refer to Table 8.1-2 for how costs have been allocated to PM and NOx). Because of their nature, variable costs are proportional to engine sales and are projected to increase in the future as engine sales increase. We have calculated the net present value of the engine variable costs over the 30-year period following implementation of the program as \$13.6 billion. This value assumes a three percent social discount rate.

Veer	0.								_		í í literatur a	7506.0		Tatal
Year		hp<25	 <=hp<50	 <=hp<75	_	<=hp<100	0<=np<175	'5<=hp<300	_	0<=np<600	<=np<=750	750hp	^	Total
2008	\$	19.7	\$ 23.7	\$ 18.4	\$	-	\$ -	\$	\$	-	\$ -	\$ -	\$	61.8
2009	\$	20.2	\$ 24.2	\$ 18.8	\$	-	\$ -	\$	\$	-	\$ -	\$ -	\$	63.2
2010	\$	19.7	\$ 23.4	\$ 18.0	\$	-	\$ -	\$	\$	-	\$ -	\$ -	\$	61.1
2011	\$	20.2	\$ 23.9	\$ 18.4	\$	-	\$ -	\$ 	\$	101.5	\$ 16.3	\$ 	\$	340.2
2012	\$	20.7	\$ 24.4	\$ 18.7	\$	98.2	\$ 192.8	\$	\$	102.6	\$ 16.6	\$ 	\$	636.8
2013	\$	21.2	\$ 158.4	\$ 100.9	\$	99.9	\$ 196.0	\$	\$	80.4	\$ 13.0	\$ 	\$	798.3
2014	\$	21.7	\$ 161.5	\$ 102.6	\$	100.6	\$ 195.6	\$ 	\$	102.3	\$ 16.6	\$ 5.4	\$	864.4
2015	\$	22.2	\$ 	\$ 79.3	\$	102.2	\$ 198.8	\$ 	\$	103.4	\$ 16.8	\$ 	\$	838.5
2016	\$	22.7	\$ 127.7	\$ 80.6	\$	103.9	\$ 201.9	\$ 	\$	104.5	\$ 17.1	\$ 	\$	852.0
2017	\$	23.2	\$ 	\$ 81.9	\$	105.6	\$ 205.0	\$	\$	105.6	\$ 17.3	\$ 	\$	859.6
2018	\$	23.7	\$ 132.4	\$ 83.2	\$	107.3	\$ 208.2	\$ 	\$	106.7	\$ 17.6	\$ 	\$	873.1
2019	\$	24.2	\$ 	\$ 84.5	\$	109.0	\$ 211.3	\$ -	\$	107.8	\$ 17.8	\$ 25.3	\$	886.5
2020	\$	24.7	\$ 137.1	\$ 85.8	\$	110.7	\$ 214.4	\$ 174.6	\$	109.0	\$ 18.0	\$ 25.6	\$	899.9
2021	\$	25.2	\$ 139.5	\$ 87.1	\$	112.3	\$ 217.6	\$ 177.3	\$	110.1	\$ 18.3	\$ 26.0	\$	913.3
2022	\$	25.7	\$ 141.9	\$ 88.4	\$	114.0	\$ 220.7	\$ 180.0	\$	111.2	\$ 18.5	\$ 26.3	\$	926.8
2023	\$	26.2	\$ 144.2	\$ 89.7	\$	115.7	\$ 223.8	\$ 182.8	\$	112.3	\$ 18.8	\$ 26.7	\$	940.2
2024	\$	26.8	\$ 146.6	\$ 91.0	\$	117.4	\$ 227.0	\$ 185.5	\$	113.4	\$ 19.0	\$ 27.0	\$	953.6
2025	\$	27.3	\$ 149.0	\$ 92.3	\$	119.1	\$ 230.1	\$ 188.2	\$	114.5	\$ 19.2	\$ 27.3	\$	967.0
2026	\$	27.8	\$ 151.3	\$ 93.6	\$	120.7	\$ 233.2	\$ 191.0	\$	115.6	\$ 19.5	\$ 27.7	\$	980.4
2027	\$	28.3	\$ 153.7	\$ 94.9	\$	122.4	\$ 236.4	\$ 193.7	\$	116.7	\$ 19.7	\$ 28.0	\$	993.9
2028	\$	28.8	\$ 156.1	\$ 96.2	\$	124.1	\$ 239.5	\$ 196.5	\$	117.8	\$ 20.0	\$ 28.4	\$	1,007.3
2029	\$	29.3	\$ 158.4	\$ 97.5	\$	125.8	\$ 242.6	\$ 199.2	\$	118.9	\$ 20.2	\$ 28.7	\$	1,020.7
2030	\$	29.8	\$ 160.8	\$ 98.8	\$	127.5	\$ 245.8	\$ 201.9	\$	120.1	\$ 20.4	\$ 29.1	\$	1,034.1
2031	\$	30.3	\$ 163.2	\$ 100.1	\$	129.2	\$ 248.9	\$ 204.7	\$	121.2	\$ 20.7	\$ 29.4	\$	1,047.6
2032	\$	30.8	\$ 165.5	\$ 101.4	\$	130.8	\$ 252.0	\$ 207.4	\$	122.3	\$ 20.9	\$ 29.7	\$	1,061.0
2033	\$	31.3	\$ 167.9	\$ 102.7	\$	132.5	\$ 255.2	\$ 210.2	\$	123.4	\$ 21.2	\$ 30.1	\$	1,074.4
2034	\$	31.8	\$ 170.3	\$ 104.0	\$	134.2	\$ 258.3	\$ 212.9	\$	124.5	\$ 21.4	\$ 30.4	\$	1,087.8
2035	\$	32.3	\$ 172.6	\$ 105.3	\$	135.9	\$ 261.5	\$ 215.6	\$	125.6	\$ 21.6	\$ 30.8	\$	1,101.2
2036	\$	32.8	\$ 175.0	\$ 106.6	\$	137.6	\$ 264.6	\$ 218.4	\$	126.7	\$ 21.9	\$ 31.1	\$	1,114.7
30 Yr NPV at 3%	\$	435.7	\$ 2,089.2	\$ 1,315.1	\$	1,627.3	\$ 3,151.4	\$ 2,670.3	\$	1,650.1	\$ 274.9	\$ 348.3	\$	13,562.1
30 Yr NPV at 7%	\$	236.9	\$ 1,057.6	\$ 672.3	\$	812.0	\$ 1,574.6	\$ 1,359.6	\$	849.2	\$ 140.6	\$ 168.5	\$	6,871.3

 Table 8.2-3

 Aggregate Engine Variable Costs by Power Category (\$Millions of 2002 dollars)

Year	l System	oled EGR	CCV		PF System	CD		<u>`</u>	al PM Costs	Total Dx+NMHC Costs	T	otal Costs
2008	\$ -	\$ -	\$ 0.5	\$ 61.2	\$ -	\$	-	\$ -	\$ 61.5	\$	\$	61.8
2009	\$ -	\$ -	\$ 0.6	\$ 62.6	\$ -	\$	-	\$ -	\$ 62.9	\$ 0.3	\$	63.2
2010	\$ -	\$ -	\$ 0.4	\$ 60.7	\$ -	\$	-	\$ -	\$ 60.9	\$ 0.2	\$	61.1
2011	\$ -	\$ 6.2	\$ 7.1	\$ 62.0	\$ 168.8	\$	28.7	\$ 67.4	\$ 263.1	\$ 77.1	\$	340.2
2012	\$ -	\$ 6.3	\$ 13.4	\$ 63.3	\$ 338.4	\$	73.2	\$ 142.1	\$ 481.7	\$ 155.1	\$	636.8
2013	\$ 53.3	\$ 29.2	\$ 11.8	\$ 21.2	\$ 414.1	\$	137.4	\$ 131.2	\$ 605.3	\$ 193.0	\$	798.3
2014	\$ 54.3	\$ 29.8	\$ 10.3	\$ 21.7	\$ 380.3	\$	128.8	\$ 239.3	\$ 563.1	\$ 301.4	\$	864.4
2015	\$ 41.6	\$ 24.4	\$ 10.4	\$ 22.2	\$ 381.3	\$	115.6	\$ 243.0	\$ 545.1	\$ 293.4	\$	838.5
2016	\$ 42.4	\$ 24.8	\$ 10.6	\$ 22.7	\$ 387.3	\$	117.5	\$ 246.8	\$ 554.0	\$ 298.0	\$	852.0
2017	\$ 43.1	\$ 25.2	\$ 10.8	\$ 23.2	\$ 388.0	\$	118.9	\$ 250.5	\$ 557.0	\$ 302.6	\$	859.6
2018	\$ 43.8	\$ 25.7	\$ 10.9	\$ 23.7	\$ 393.9	\$	120.8	\$ 254.2	\$ 565.8	\$ 307.2	\$	873.1
2019	\$ 44.6	\$ 26.1	\$ 11.1	\$ 24.2	\$ 399.8	\$	122.8	\$ 257.9	\$ 574.6	\$ 311.9	\$	886.5
2020	\$ 45.3	\$ 26.5	\$ 11.2	\$ 24.7	\$ 405.7	\$	124.7	\$ 261.6	\$ 583.4	\$ 316.5	\$	899.9
2021	\$ 46.1	\$ 27.0	\$ 11.4	\$ 25.2	\$ 411.7	\$	126.6	\$ 265.4	\$ 592.3	\$ 321.1	\$	913.3
2022	\$ 46.8	\$ 27.4	\$ 11.6	\$ 25.7	\$ 417.6	\$	128.5	\$ 269.1	\$ 601.1	\$ 325.7	\$	926.8
2023	\$ 47.6	\$ 27.8	\$ 11.7	\$ 26.2	\$ 423.5	\$	130.5	\$ 272.8	\$ 609.9	\$ 330.3	\$	940.2
2024	\$ 48.3	\$ 28.3	\$ 11.9	\$ 26.8	\$ 429.5	\$	132.4	\$ 276.5	\$ 618.7	\$ 334.9	\$	953.6
2025	\$ 49.1	\$ 28.7	\$ 12.0	\$ 27.3	\$ 435.4	\$	134.3	\$ 280.2	\$ 627.5	\$ 339.5	\$	967.0
2026	\$ 49.8	\$ 29.2	\$ 12.2	\$ 27.8	\$ 441.3	\$	136.2	\$ 284.0	\$ 636.3	\$ 344.1	\$	980.4
2027	\$ 50.5	\$ 29.6	\$ 12.4	\$ 28.3	\$ 447.3	\$	138.2	\$ 287.7	\$ 645.1	\$ 348.7	\$	993.9
2028	\$ 51.3	\$ 30.0	\$ 12.5	\$ 28.8	\$ 453.2	\$	140.1	\$ 291.4	\$ 653.9	\$ 353.3	\$	1,007.3
2029	\$ 52.0	\$ 30.5	\$ 12.7	\$ 29.3	\$ 459.1	\$	142.0	\$ 295.1	\$ 662.8	\$ 358.0	\$	1,020.7
2030	\$ 52.8	\$ 30.9	\$ 12.8	\$ 29.8	\$ 465.1	\$	143.9	\$ 298.8	\$ 671.6	\$ 00=.0	\$	1,034.1
2031	\$ 53.5	\$ 31.3	\$ 13.0	\$ 30.3	\$ 471.0	\$	145.8	\$ 302.6	\$ 680.4	\$ 367.2	\$	1,047.6
2032	\$ 54.3	\$ 31.8	\$ 13.2	\$ 30.8	\$ 476.9	\$	147.8	\$ 306.3	\$ 689.2	\$ 371.8	\$	1,061.0
2033	\$ 55.0	\$ 32.2	\$ 13.3	\$ 31.3	\$ 482.8	\$	149.7	\$ 310.0	\$ 698.0	\$ 	\$	1,074.4
2034	\$ 55.8	\$ 32.7	\$ 13.5	\$ 31.8	\$ 488.8	\$	151.6	\$ 313.7	\$ 706.8	\$ 	\$	1,087.8
2035	\$ 56.5	\$ 33.1	\$ 13.6	\$ 32.3	\$ 494.7	\$	153.5	\$ 317.5	\$ 715.6	\$ 	\$	1,101.2
2036	\$ 57.2	\$ 33.5	\$ 13.8	\$ 32.8	\$ 500.6	\$	155.5	\$ 321.2	\$ 724.4	\$ 	\$	1,114.7
30 Yr NPV at 3%	\$ 657.0	\$ 391.7	\$ 175.8	\$ 611.1	\$ 6,127.5	\$	1,860.1	\$ 3,738.8	\$ 9,015.3	\$.,	\$	13,562.1
30 Yr NPV at 7%	\$ 323.5	\$ 194.8	\$ 90.7	\$ 377.0	\$ 3,102.8	\$	933.3	\$ 1,849.0	\$ 4,620.3	\$ 2,251.0	\$	6,871.3

Table 8.2-4Aggregate Engine Variable Costs by Technology and by Pollutant (\$Millions of 2002 dollars)

8.3 Aggregate Equipment Costs

This section aggregates the amortized fixed and variable cost for equipment estimated in Section 6.3.

8.3.1 Aggregate Equipment Fixed Costs

In Table 6.3-4 we presented the aggregate equipment fixed costs, along with our best estimate of how those costs might be recovered, for equipment redesign and revisions to product literature. Table 8.3-1 presents aggregate equipment fixed costs and Table 8.3-2 shows to what pollutant these costs are attributed. Note that the cost allocations shown in Table 8.3-2 are not generated assuming any simple split of costs between NOx and PM control. Some equipment fixed costs are solely attributed to PM control (for example, costs associated with the 2008 standards and costs associated with the 2013 standards for 50 to 75 hp engines). The costs presented in Table 8.3-1 for PM therefore do not represent the total fixed costs of the program if there were no new NOx standards; the same is true of NOx costs if there were no new PM standards. Refer to Section 6.3 for detail on how we have estimated equipment fixed costs and their recovery, and to Table 8.1-2 for how they are allocated among each pollutant.

We have assumed that all equipment fixed costs (redesign and product literature) occur over a two-year span preceding the first year any emission-control device is introduced into the market. Where a phase-in exists (for example, for NOx standards on engines over 75 hp engines), expenditures are assumed to occur over the two years preceding the first year that NOx adsorbers will be introduced, then continuing during the phase-in years; the expenditures will be incurred consistent with the phase-in of the standard. All expenditures are then recovered by the equipment manufacturer over 10 years following the introduction of the technology. We include a cost of seven percent when amortizing equipment fixed costs.

We have calculated the net present value of the equipment fixed costs over the 30-year period following implementation of the program as \$847 million. This value assumes a three percent social discount rate.

Year Recovered	0<	1p<25	<pre><=hp<50</pre>	<=hp<75	75	5<=hp<100	/	0<=hp<175	-	5<=hp<300		<=hp<=750	>750hp	Total
2008	\$	2.3	\$ 1.3	\$ 0.9	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$ 4.5
2009	\$	2.3	\$ 1.3	\$ 0.9	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$ 4.5
2010	\$	2.3	\$ 1.3	\$ 0.9	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$ 4.5
2011	\$	2.3	\$ 1.3	\$ 0.9	\$	-	\$	-	\$	23.4	\$ 20.6	\$ 4.0	\$ 0.6	\$ 53.1
2012	\$	2.3	\$ 1.3	\$ 0.9	\$	9.4	\$	23.9	\$	23.4	\$ 20.6	\$ 4.0	\$ 0.6	\$ 86.4
2013	\$	2.3	\$ 7.5	\$ 5.3	\$	9.4	\$	23.9	\$	23.4	\$ 20.6	\$ 4.0	\$ 0.6	\$ 97.0
2014	\$	2.3	\$ 7.5	\$ 5.3	\$	11.9	\$	30.0	\$	29.4	\$ 25.8	\$ 5.0	\$ 0.6	\$ 117.7
2015	\$	2.3	\$ 7.5	\$ 5.3	\$	11.9	\$	30.0	\$	29.4	\$ 25.8	\$ 5.0	\$ 4.9	\$ 122.0
2016	\$	2.3	\$ 7.5	\$ 5.3	\$	11.9	\$	30.0	\$	29.4	\$ 25.8	\$ 5.0	\$ 4.9	\$ 122.0
2017	\$	2.3	\$ 7.5	\$ 5.3	\$	11.9	\$	30.0	\$	29.4	\$ 25.8	\$ 5.0	\$ 4.9	\$ 122.0
2018	\$	-	\$ 6.2	\$ 4.4	\$	11.9	\$	30.0	\$	29.4	\$ 25.8	\$ 5.0	\$ 4.9	\$ 117.5
2019	\$	-	\$ 6.2	\$ 4.4	\$	11.9	\$	30.0	\$	29.4	\$ 25.8	\$ 5.0	\$ 4.9	\$ 117.5
2020	\$	-	\$ 6.2	\$ 4.4	\$	11.9	\$	30.0	\$	29.4	\$ 25.8	\$ 5.0	\$ 4.9	\$ 117.5
2021	\$	-	\$ 6.2	\$ 4.4	\$	11.9	\$	30.0	\$	6.0	\$ 5.2	\$ 1.0	\$ 4.3	\$ 68.9
2022	\$	-	\$ 6.2	\$ 4.4	\$	2.4	\$	6.1	\$	6.0	\$ 5.2	\$ 1.0	\$ 4.3	\$ 35.6
2023	\$	-	\$ -	\$ -	\$	2.4	\$	6.1	\$	6.0	\$ 5.2	\$ 1.0	\$ 4.3	\$ 25.0
2024	\$	-	\$ -	\$ -	\$	-	\$	-	\$	-	\$ -	\$ -	\$ 4.3	\$ 4.3
Total	\$	23.0	\$ 75.0	\$ 52.9	\$	118.6	\$	299.7	\$	293.6	\$ 258.0	\$ 50.1	\$ 48.9	\$ 1,219.9
30 Yr NPV at 3%	\$	18.0	\$ 51.9	\$ 36.6	\$	81.3	\$	205.5	\$	206.1	\$ 181.2	\$ 35.2	\$ 31.5	\$ 847.2
30 Yr NPV at 7%	\$	13.2	\$ 32.8	\$ 23.1	\$	50.5	\$	127.7	\$	132.3	\$ 116.3	\$ 22.6	\$ 18.1	\$ 536.6

 Table 8.3-1

 Aggregate Equipment Fixed Costs by Power Range (\$Millions of 2002 dollars)

()	M1111	ions of 2	2002	donars)	
Year		covery of A Costs	NOX	covery of (+NMHC Costs	covery of ed Costs
2008	\$	4.5	\$	-	\$ 4.5
2009	\$	4.5	\$	-	\$ 4.5
2010	\$	4.5	\$	-	\$ 4.5
2011	\$	28.5	\$	24.6	\$ 53.1
2012	\$	45.1	\$	41.2	\$ 86.4
2013	\$	50.4	\$	46.5	\$ 97.0
2014	\$	50.4	\$	67.3	\$ 117.7
2015	\$	54.7	\$	67.3	\$ 122.0
2016	\$	54.7	\$	67.3	\$ 122.0
2017	\$	54.7	\$	67.3	\$ 122.0
2018	\$	50.2	\$	67.3	\$ 117.5
2019	\$	50.2	\$	67.3	\$ 117.5
2020	\$	50.2	\$	67.3	\$ 117.5
2021	\$	26.2	\$	42.7	\$ 68.9
2022	\$	9.6	\$	26.0	\$ 35.6
2023	\$	4.3	\$	20.7	\$ 25.0
2024	\$	4.3	\$	-	\$ 4.3
Total	\$	547.3	\$	672.5	\$ 1,219.9
30 Yr NPV at 3%	\$	384.9	\$	462.2	\$ 847.2
30 Yr NPV at 7%	\$	247.9	\$	288.7	\$ 536.6

Table 8.3-2
Aggregate Equipment Fixed Costs by Pollutant
(\$Millions of 2002 dollars)

8.3.2 Aggregate Equipment Variable Costs

The equipment variable costs, such as sheet metal costs, mounting hardware, and labor, were estimated by power category in Section 6.3. The aggregate equipment variable costs through 2036 are presented in Table 8.3-3. Table 8.3-4 shows the total aggregate equipment variable costs allocated by pollutant (refer to Table 8.1-2 for how costs have been allocated to PM and NOx). We have calculated the net present value of the equipment variable costs over the 30-year period following implementation of the program as \$434 million. This value assumes a three percent social discount rate.

Year	0 <hp<25< th=""><th>25<=hp<5</th><th><u> </u></th><th>0<=hp<75</th><th></th><th>, č</th><th>=hp<175</th><th><=hp<300</th><th><=hp<600</th><th><=hp<=750</th><th>>7</th><th>50hp</th><th>Т</th><th>Fotal</th></hp<25<>	25<=hp<5	<u> </u>	0<=hp<75		, č	=hp<175	<=hp<300	<=hp<600	<=hp<=750	>7	50hp	Т	Fotal
2008	\$ -	\$		\$ -	\$ -	\$	-	\$ 	\$ 	\$ -	\$	-	\$	-
2009	\$-	\$	-	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	-
2010	\$-	\$	-	\$ -	\$ -	\$	-	\$ -	\$ -	\$ -	\$	-	\$	_
2011	\$-	\$	-	\$ -	\$ -	\$	-	\$ 4.5	\$ 4.3	\$ 0.4	\$	-	\$	9.1
2012	\$-	\$	-	\$ -	\$ 3.9	\$	6.4	\$ 4.6	\$ 4.3	\$ 0.4	\$	-	\$	19.6
2013	\$-	\$3	.6	\$ 2.5	\$ 4.0	\$	6.5	\$ 3.7	\$ 3.5	\$ 0.3	\$	-	\$	24.2
2014	\$-	\$3	.7	\$ 2.6	\$ 4.3	\$	7.1	\$ 5.0	\$ 4.7	\$ 0.4	\$	-	\$	27.9
2015	\$-	\$3	.0	\$ 2.1	\$ 4.4	\$	7.2	\$ 5.1	\$ 4.8	\$ 0.4	\$	0.4	\$	27.5
2016	\$-	\$3	.1	\$ 2.1	\$ 4.5	\$	7.3	\$ 5.2	\$ 4.8	\$ 0.4	\$	0.4	\$	27.9
2017	\$-	\$3	.1	\$ 2.2	\$ 4.5	\$	7.4	\$ 5.3	\$ 4.9	\$ 0.4	\$	0.4	\$	28.2
2018	\$-	\$3	.2	\$ 2.2	\$ 4.6	\$	7.6	\$ 5.4	\$ 4.9	\$ 0.5	\$	0.4	\$	28.7
2019	\$-	\$3	.3	\$ 2.2	\$ 4.7	\$	7.7	\$ 5.5	\$ 5.0	\$ 0.5	\$	0.4	\$	29.1
2020	\$-	\$3	.3	\$ 2.3	\$ 4.7	\$	7.8	\$ 5.6	\$ 5.0	\$ 0.5	\$	0.4	\$	29.5
2021	\$-	\$3	.4	\$ 2.3	\$ 4.8	\$	7.9	\$ 5.6	\$ 5.1	\$ 0.5	\$	0.4	\$	29.9
2022	\$-	\$3	.4	\$ 2.3	\$ 4.9	\$	8.0	\$ 5.7	\$ 5.1	\$ 0.5	\$	0.4	\$	30.4
2023	\$-	\$3	.5	\$ 2.4	\$ 5.0	\$	8.1	\$ 5.8	\$ 5.2	\$ 0.5	\$	0.4	\$	30.8
2024	\$	\$3	.5	\$ 2.4	\$ 5.0	\$	8.2	\$ 5.9	\$ 5.2	\$ 0.5	\$	0.4	\$	31.2
2025	\$		-	\$ 2.4	\$ 5.1	\$	8.3	\$ 6.0	\$ 5.3	\$ 0.5	\$	0.4	\$	31.6
2026	\$-	\$3	.7	\$ 2.5	\$ 5.2	\$	8.5	\$ 6.1	\$ 5.3	\$ 0.5	\$	0.4	\$	32.1
2027	\$-	\$3	.7	\$ 2.5	\$ 5.3	\$	8.6	\$ 6.2	\$ 5.4	\$ 0.5	\$	0.4	\$	32.5
2028	\$-		-	\$ 2.5	\$ 5.3	\$	8.7	\$ 6.3	\$ 5.4	\$ 0.5	\$	0.4	\$	32.9
2029	\$-	· ·	-	\$ 2.6	\$ 5.4	\$	8.8	\$ 6.3	\$ 5.5	\$ 0.5	\$	0.4	\$	33.4
2030	\$-		-	\$ 2.6	\$ 5.5	\$	8.9	\$ 6.4	\$ 5.5	\$ 0.5	\$	0.4	\$	33.8
2031	\$-		-	\$ 2.7	\$ 5.5	\$	9.0	\$ 6.5	\$ 5.6	\$ 0.5	\$	0.4	\$	34.2
2032	\$-		-	\$ 2.7	\$ 5.6	\$	9.1	\$ 6.6	\$ 5.6	\$ 0.5	\$	0.4	\$	34.6
2033	\$-			\$ 2.7	\$ 5.7	\$	9.3	\$ 6.7	\$ 5.7	\$ 0.5	\$	0.4	\$	35.1
2034	\$-			\$ 2.8	\$ 5.8	\$	9.4	\$ 6.8	\$ 5.7	\$ 0.5	\$	0.4	\$	35.5
2035	\$ -			\$ 2.8	\$ 5.8	\$	9.5	\$ 6.9	\$ 5.8	\$ 0.6	\$	0.4	\$	35.9
2036	\$ -			\$ 2.8	\$ 5.9	\$	9.6	\$ 7.0	\$ 5.8	\$ 0.6	\$	0.5	\$	36.3
30 Yr NPV at 3%	\$-	\$ 47	_	\$ 32.6	\$ 69.3	\$	113.5	\$ 84.2	\$ 75.0	\$ 7.0	\$	4.8	\$	434.2
30 YR NPV at 7%	\$-	\$ 23	.4	\$ 16.0	\$ 34.5	\$	56.5	\$ 42.7	\$ 38.4	\$ 3.6	\$	2.3	\$	217.4

 Table 8.3-3

 Aggregate Equipment Variable Costs by Power Category (\$Millions of 2002 dollars)

	(\$N	lillions o	1200	02 dollars)		
Year	Р	M Costs	N	Ox Costs	Tot	al Variable
						Costs
2008	\$	-	\$	-	\$	-
2009	\$	-	\$	-	\$	-
2010	\$	-	\$	-	\$	-
2011	\$	6.8	\$	2.3	\$	9.1
2012	\$	14.7	\$	4.9	\$	19.6
2013	\$	19.7	\$	4.5	\$	24.2
2014	\$	17.1	\$	10.8	\$	27.9
2015	\$	16.5	\$	11.0	\$	27.5
2016	\$	16.8	\$	11.1	\$	27.9
2017	\$	17.0	\$	11.3	\$	28.2
2018	\$	17.2	\$	11.4	\$	28.7
2019	\$	17.5	\$	11.6	\$	29.1
2020	\$	17.7	\$	11.8	\$	29.5
2021	\$	18.0	\$	11.9	\$	29.9
2022	\$	18.3	\$	12.1	\$	30.4
2023	\$	18.5	\$	12.3	\$	30.8
2024	\$	18.8	\$	12.4	\$	31.2
2025	\$	19.0	\$	12.6	\$	31.6
2026	\$	19.3	\$	12.8	\$	32.1
2027	\$	19.6	\$	12.9	\$	32.5
2028	\$	19.8	\$	13.1	\$	32.9
2029	\$	20.1	\$	13.3	\$	33.4
2030	\$	20.4	\$	13.4	\$	33.8
2031	\$	20.6	\$	13.6	\$	34.2
2032	\$	20.9	\$	13.8	\$	34.6
2033	\$	21.1	\$	13.9	\$	35.1
2034	\$	21.4	\$	14.1	\$	35.5
2035	\$	21.7	\$	14.3	\$	35.9
2036	\$	21.9	\$	14.4	\$	36.3
30 Yr NPV at 3%	\$	268.9	\$	165.3	\$	434.2
30 Yr NPV at 7%	\$	136.3	\$	81.1	\$	217.4

Table 8.3-4 Aggregate Equipment Variable Costs by Pollutant (\$Millions of 2002 dollars)

8.4 Aggregate Fuel Costs and Other Operating Costs

Aggregate costs presented here are used in the calculation of costs per ton of emission reductions resulting from this final rule. This includes a two-step fuel sulfur control program consisting of a NRLM sulfur cap of 500 ppm beginning in 2007 to be followed by a nonroad (NR) sulfur cap of 15 ppm beginning in 2010 and a locomotive and marine (L&M) sulfur cap of 15 ppm beginning in 2012. Refer to Chapters 5 and 7 for more information about the fuel program and how the costs for that portion of the NRT4 final rule were estimated.

As noted, the second step in the fuel program limits NR sulfur levels to 15 ppm beginning in 2010. This fuel program enables the introduction of advanced emission-control technologies—CDPFs and NOx adsorbers—that will enable nonroad engines to meet the new Tier 4 standards, and it also achieves additional emissions reductions from the fuel control itself (i.e., independent of new engine standards). The combination of the two-step NRLM fuel

Final Regulatory Impact Analysis

program and the new diesel engine standards represents the full engine and fuel program (i.e., the NRT4 final rule). Section 8.4.1 presents our estimate of the aggregate fuel costs associated with the NRT4 final rule. Sections 8.4-2 through 8.4-4 present estimates of other operating costs—CDPF and CCV maintenance, fuel economy impacts, and oil change maintenance—associated with the NRT4 final rule. Section 8.4-5 presents the cost of the fuel program absent any new engine standards. These costs differ from the costs associated with the fuel program costs of the NRT4 final rule in that no CDPF and CCV maintenance costs, and no fuel economy impacts would be realized. We present these costs because they are used in calculations of \$/ton associated with such a "fuel-only" scenario.

8.4.1 Aggregate Fuel Costs

Fuel costs, described in detail in Chapter 7, are developed on a cent-per-gallon basis. Table 8.4-1 summarizes cent-per-gallon fuel costs (see Table 7.5-1), estimated fuel volumes for NR, L&M, and the resultant annual fuel costs associated with the two-step NRT4 final rule fuel program. Table 8.4-1 shows that the 30-year net present value of the new lower sulfur requirements is estimated at \$16.3 billion. This assumes a three percent social discount rate. Note that the affected fuel volumes presented in Table 8.4-1 are gallons consumed in both new and existing engines since both new and existing engines will have to pay for the higher cost fuel. We have not included spillover gallons or other such gallons that would have entered the NRLM fuel pool with a sulfur level below the new cap absent the new requirements since these gallons do not represent an incremental increase in costs associated with the NRT4 final rule.

Year	Affect	ed NR	Affecte	d L&M	Fuel				NR Fuel Costs	<u>`</u>	/	L&M Fuel Costs						M Annual
	500 ppm (10 ⁶ gallons)	15 ppm (10 ⁶ gallons)	500 ppm (10 ⁶ gallons)	15 ppm (10 ⁶ gallons)	500 ppm (\$/gal)	15 ppm (\$/gal)	500 ppm (10 ⁶ dolla	rs)	15 ppm (10 ⁶ dollars)		Total ⁶ dollars)	50 (10 ⁶	0 ppm ³ dollars)		5 ppm ⁶ dollars)		lotal dollars)	el Costs ⁶ dollars)
2007	4,790	-	1,990	-	\$ 0.021	\$ -	\$ 10		-	\$	101	\$	42	\$	-	\$	42	\$ 142
2008	8,406	-	3,454	-	\$ 0.021	\$-	\$ 1	77	-	\$	177	\$	73	\$	-	\$	73	\$ 249
2009	8,599	-	3,498	-	\$ 0.021	\$-	\$ 18	31	-	\$	181	\$	73	\$	-	\$	73	\$ 254
2010	4,014	6,189	3,185	0	\$ 0.028	\$ 0.058	\$ 1 [.]	12	359	\$	471	\$	89	\$	0	\$	89	\$ 561
2011	614	8,145	2,975	0	\$ 0.033	\$ 0.058	\$	20	472	\$	493	\$	98	\$	0	\$	98	\$ 591
2012	528	8,420	1,396	1,965	\$ 0.034	\$ 0.062	\$	18	518	\$	536	\$	48	\$	121	\$	169	\$ 704
2013	468	8,671	247	3,397	\$ 0.035	\$ 0.064	\$	16	555	\$	571	\$	9	\$	217	\$	226	\$ 797
2014	199	9,713	104	3,081	\$ 0.035	\$ 0.068	\$	7	656	\$	663	\$	4	\$	208	\$	212	\$ 874
2015	-	10,539	-	2,860		\$ 0.070	\$	-	738	\$	738	\$	-	\$	200	\$	200	\$ 938
2016	-	10,747	-	2,888		\$ 0.070	\$	-	752	\$	752	\$	-	\$	202	\$	202	\$ 954
2017	-	10,955	-	2,918		\$ 0.070	\$	-	767	\$	767	\$	-	\$	204	\$	204	\$ 971
2018	-	11,162	-	2,953		\$ 0.070	\$	-	781	\$	781	\$	-	\$	207	\$	207	\$ 988
2019	-	11,370	-	2,995		\$ 0.070	\$	-	796	\$	796	\$	-	\$	210	\$	210	\$ 1,006
2020	-	11,578	-	3,024		\$ 0.070	\$	-	810	\$	810	\$	-	\$	212	\$	212	\$ 1,022
2021	-	11,786	-	3,052		\$ 0.070	\$	-	825	\$	825	\$	-	\$	214	\$	214	\$ 1,039
2022	-	11,994	-	3,093		\$ 0.070	\$	-	840	\$	840	\$	-	\$	217	\$	217	\$ 1,056
2023	-	12,201	-	3,125		\$ 0.070	\$	-	854	\$	854	\$	-	\$	219	\$	219	\$ 1,073
2024	-	12,409	-	3,161		\$ 0.070	\$	-	869	\$	869	\$	-	\$	221	\$	221	\$ 1,090
2025	-	12,617	-	3,195		\$ 0.070	\$	-	883	\$	883	\$	-	\$	224	\$	224	\$ 1,107
2026	-	12,823	-	3,230		\$ 0.070	\$	-	898	\$	898	\$	-	\$	226	\$	226	\$ 1,124
2027	-	13,030	-	3,265		\$ 0.070	\$	-	912	\$	912	\$	-	\$	229	\$	229	\$ 1,141
2028	-	13,236	-	3,301		\$ 0.070	\$	-	927	\$	927	\$	-	\$	231	\$	231	\$ 1,158
2029	-	13,442	-	3,336		\$ 0.070	\$	-	941	\$	941	\$	-	\$	233	\$	233	\$ 1,174
2030	-	13,649	-	3,371		\$ 0.070	\$	-	955	\$	955	\$	-	\$	236	\$	236	\$ 1,191
2031	-	13,855	-	3,406		\$ 0.070	\$	-	970	\$	970	\$	-	\$	238	\$	238	\$ 1,208
2032	-	14,061	-	3,441		\$ 0.070	\$	-	984	\$	984	\$	-	\$	241	\$	241	\$ 1,225
2033	-	14,268	-	3,476		\$ 0.070	\$	-	999	\$	999	\$	-	\$	243	\$	243	\$ 1,242
2034	-	14,474	-	3,512		\$ 0.070	\$	-	1,013	\$	1,013	\$	-	\$	246	\$	246	\$ 1,259
2035	-	14,680	-	3,547		\$ 0.070	\$	-	1,028	\$	1,028	\$	-	\$	248	\$	248	\$ 1,276
2036	-	14,887	-	3,582		\$ 0.070	\$	-	1,042	\$	1,042	\$	-	\$	251	\$	251	\$ 1,293
30 Yr NPV at 3%	24,054	180,224	14,363	44,087			\$ 54	17	\$ 12,360	\$	12,907	\$	368	\$	3,052	\$	3,419	\$ 16,326
30 Yr NPV at 7%	20,174	92,196	11,729	22,124			\$ 4	56	\$ 6,261	\$	6,717	\$	297	\$	1,524	\$	1,821	\$ 8,538

Table 8.4-1 Aggregate Fuel Costs of the Two-Step Fuel Program (\$2002)

* Fuel costs are relative to uncontrolled fuel and assume that, during the transitional years of 2010, 2012, & 2014, the first 5 months are at the previous year's cost and the remaining 7 months are at the next year's cost. See Appendix 8B for how these fuel volumes were developed.

8.4.2 Aggregate Oil-Change Maintenance Savings

Maintenance savings associated with extended oil-change intervals are developed on a centper-gallon basis, as described in Section 6.2.3.1. The cent-per-gallon savings for nonroad engines is the fleet weighted value for nonroad engines presented in Section 6.2.3.1. This fleet weighted value is derived using data presented in Table 6.2-28 as discussed in that section. The cent-per-gallon savings for locomotive and marine engines is taken directly from Table 6.2-28. Table 8.4-2 summarizes the annual maintenance savings and associated fuel volumes for nonroad, locomotive, and marine engines. Note that the fuel volumes used for oil change maintenance savings are the same affected volumes presented in Table 8.4-1. We have not included savings associated with unaffected gallons (i.e., low sulfur gallons that would have entered the NRLM fuel pool absent the new requirements) since we assume that engines consuming those gallons benefit from the low sulfur fuel absent the NRT4 final rule. As shown in Table 8.4-2, the net present value of the oil change maintenance savings is estimated at \$7.1 billion. This assumes a three percent social discount rate.

Year	Affecte	0	Affecte	0		NR Sa		1	_	L&M S	/	S	NRLM	
	500 ppm	15 ppm	500 ppm	15 ppm	saving	s=\$0.029/gal	U	ngs=\$0.032/gal	sav	rings=\$0.010/gal	U	ngs=\$0.011/gal	Tota	al Savings
	(10 ⁶ gallons)	(10 ⁶ gallons)	(10 ⁶ gallons)	(10 ⁶ gallons)) ⁶ dollars)		(10 ⁶ dollars)		(10 ⁶ dollars)		(10 ⁶ dollars)		⁶ dollars)
2007	4,790	-	1,990	-	\$	140	\$	-	\$	21	\$	-	\$	161
2008	8,406	-	3,454	-	\$	246	\$	-	\$	36	\$	-	\$	282
2009	8,599	-	3,498	-	\$	251	\$	-	\$	37	\$	-	\$	288
2010	4,014	6,189	3,185	0	\$	117	\$	198	\$	33	\$	0	\$	349
2011	614	8,145	2,975	0	\$	18	\$	261	\$	31	\$	0	\$	310
2012	528	8,420	1,396	1,965	\$	15	\$	270	\$	15	\$	23	\$	322
2013	468	8,671	247	3,397	\$	14	\$	278	\$	3	\$	39	\$	333
2014	199	9,713	104	3,081	\$	6	\$	311	\$	1	\$	35	\$	353
2015	-	10,539	-	2,860	\$	-	\$	338	\$	-	\$	33	\$	370
2016	-	10,747	-	2,888	\$	-	\$	344	\$	-	\$	33	\$	377
2017	-	10,955	-	2,918	\$	-	\$	351	\$	-	\$	33	\$	384
2018	-	11,162	-	2,953	\$	-	\$	358	\$	-	\$	34	\$	391
2019	-	11,370	-	2,995	\$	-	\$	364	\$	-	\$	34	\$	399
2020	-	11,578	-	3,024	\$	-	\$	371	\$	-	\$	35	\$	406
2021	-	11,786	-	3,052	\$	-	\$	377	\$	-	\$	35	\$	412
2022	-	11,994	-	3,093	\$	-	\$	384	\$	-	\$	35	\$	420
2023	-	12,201	-	3,125	\$	-	\$	391	\$	-	\$	36	\$	427
2024	-	12,409	-	3,161	\$	-	\$	397	\$	-	\$	36	\$	434
2025	-	12,617	-	3,195	\$	-	\$	404	\$	-	\$	37	\$	441
2026	-	12,823	-	3,230	\$	-	\$	411	\$	-	\$	37	\$	448
2027	-	13,030	-	3,265	\$	-	\$	417	\$	-	\$	37	\$	455
2028	-	13,236	-	3,301	\$	-	\$	424	\$	-	\$	38	\$	462
2029	-	13,442	-	3,336	\$	-	\$	431	\$	-	\$	38	\$	469
2030	-	13,649	-	3,371	\$	-	\$	437	\$	-	\$	39	\$	476
2031	-	13,855	-	3,406	\$	-	\$	444	\$	-	\$	39	\$	483
2032	-	14,061	-	3,441	\$	-	\$	450	\$	-	\$	39	\$	490
2033	-	14,268	-	3,476	\$	-	\$	457	\$	-	\$	40	\$	497
2034	-	14,474	-	3,512	\$	-	\$	464	\$	-	\$	40	\$	504
2035	-	14,680	-	3,547	\$	-	\$	470	\$	-	\$	41	\$	511
2036	-	14,887	-	3,582	\$	-	\$	477	\$	-	\$	41	\$	518
30 Yr NPV at 3%	24,054	180,224	14,363	44,087	\$	703	\$	5,772	\$	150	\$	506	\$	7,132
30 Yr NPV at 7%	20,174	92,196	11,729	22,124	\$	590	\$	2,953	\$	123	\$	254	\$	3,919

 Table 8.4-2

 Oil-Change Maintenance Savings Associated with the Two-Step Fuel Program (\$2002)

8.4.3 Aggregate CDPF Maintenance, CDPF Regeneration, and CCV Maintenance Costs

Costs associated with CDPF maintenance and CCV maintenance are developed on a centper-gallon basis as described in Section 6.2.3. Table 8.4-3 summarizes the CDPF maintenance and CDPF regeneration costs associated with the NRT4 fuel program. The fuel volumes shown in Table 8.4-3 differ from those shown in Tables 8.4-1 through 8.4-2 because here we want only those gallons consumed in new CDPF equipped engines. Therefore, fuel consumed in existing engines and fuel consumed in new engines not yet equipped with a CDPF are not included in Table 8.4-3.

The cent-per-gallon costs shown for CDPF maintenance are taken from data presented in Table 6.2-29. As engines in different power categories add CDPFs, the weighted \$/gallon number changes until all new engines have added a CDPF and the fleet weighted average becomes the 0.6 cents/gallon value presented in Section 6.2.3.2. The cent-per-gallon costs shown for CDPF regeneration are taken from information presented in Section 6.2.3.3.2. The weighted value shown accounts for the 60 cent/gallon base fuel cost for diesel fuel and the NOx phase-in on different engines—engines equipped with a CDPF and no NOx adsorber incur a 2% fuel economy impact associated with regeneration while engines equipped with both a CDPF and a NOx adsorber incur a 1% fuel economy impact. This weighted number also accounts for the different 15 ppm fuel cost during the years 2010-2014 and then for 2015 and later.

As shown in Table 8.4-3, the 30-year net present value of these two CDPF-related operating costs is estimated at \$2.3 billion. This assumes a three percent social discount rate.

Table 8.4-3

CDPF Maintenance and CDPF Regeneration Costs Associated with the Two-Step Fuel Program

			(1	5200	2)						
Year	Fuel Consumed in New		eighted		eighted	CDF	PF Maintenance	CDP	F Regeneration		tal Costs
	CDPF Equipped Engines	Mai	ntenance		eneration		Cost		Cost	(10	0 ⁶ dollars)
	(10 ⁶ gallons)		Cost		Cost	((10 ⁶ dollars)		(10 ⁶ dollars)		
2007			(\$/gal)		(\$/gal)	¢		¢		¢	
2007 2008	-	\$ \$	-	\$ \$	-	\$ \$	-	\$ \$	-	\$ \$	-
2008	-	ֆ \$	-	э \$	-	ֆ \$	-	ə \$	-	э \$	-
2009	-	ֆ Տ	-	ծ \$	-	ֆ \$	-	ծ \$		ֆ \$	-
2010	- 559	ֆ \$	- 0.002	ծ \$	- 0.010	ֆ \$	-	ծ \$	- 6	ֆ Տ	- 6
2011	1.543	*	0.002	•	0.010		1 5	ծ \$	15	•	-
	,	\$		\$		\$	-	,		\$	20
2013	2,774	\$	0.005	\$	0.010	\$	14	\$	28	\$	42
2014	4,010	\$	0.006	\$	0.007	\$	23	\$	30	\$	53
2015	5,343	\$	0.006	\$	0.008	\$	31	\$	41	\$	73
2016	6,630	\$	0.006	\$	0.008	\$	40	\$	52	\$	92
2017	7,842	\$	0.006	\$	0.008	\$	47	\$	62	\$	110
2018	8,966	\$	0.006	\$	0.008	\$	55	\$	72	\$	127
2019	10,006	\$	0.006	\$	0.008	\$	61	\$	81	\$	142
2020	10,975	\$	0.006	\$	0.008	\$	67	\$	89	\$	156
2021	11,848	\$	0.006	\$	0.008	\$	72	\$	97	\$	169
2022	12,631	\$	0.006	\$	0.008	\$	77	\$	103	\$	180
2023	13,358	\$	0.006	\$	0.008	\$	82	\$	109	\$	191
2024	14,044	\$	0.006	\$	0.008	\$	86	\$	114	\$	200
2025	14,697	\$	0.006	\$	0.008	\$	90	\$	120	\$	210
2026	15,304	\$	0.006	\$	0.008	\$	94	\$	125	\$	218
2027	15,852	\$	0.006	\$	0.008	\$	97	\$	129	\$	226
2028	16,351	\$	0.006	\$	0.008	\$	100	\$	133	\$	234
2029	16,825	\$	0.006	\$	0.008	\$	103	\$	137	\$	240
2030	17,277	\$	0.006	\$	0.008	\$	106	\$	141	\$	247
2031	17,704	\$	0.006	\$	0.008	\$	109	\$	144	\$	253
2032	18,116	\$	0.006	\$	0.008	\$	111	\$	148	\$	259
2033	18,521	\$	0.006	\$	0.008	\$	113	\$	151	\$	264
2034	18,913	\$	0.006	\$	0.008	\$	116	\$	154	\$	270
2035	19,287	\$	0.006	\$	0.008	\$	118	\$	157	\$	275
2036	19,645	\$	0.006	\$	0.008	\$	120	\$	160	\$	280
30 Yr NPV at 3%	164,697					\$	997	\$	1,343	\$	2,340
30 Yr NPV at 7%	74,092					\$	445	\$	605	\$	1,050

(\$2002)

* Note that fuel used in CDPF engines includes some highway spillover fuel.

**Weighted Regeneration Cost (\$/gal) changes year-to-year due to different fuel economy impacts with a NOx adsorber (1 percent) and without a NOx adsorber (2 percent) matched with the phase-in schedules of the emission standards.

The cent-per-gallon costs for CCV maintenance are taken from data presented in Table 6.2-30. Table 8.4-4 presents the annual costs associated with CCV maintenance. The gallons shown in Table 8.4-4 are gallons of fuel consumed in engines in power ranges for which the new CCV requirements have gone into effect. However, these are not necessarily equal to the gallons consumed in new CCV equipped engines since only the turbocharged engines will be adding a CCV system. Therefore, the cent-per-gallon costs in early years is essentially zero since so few engines in the <75hp range are turbocharged and, hence, so few are adding a CCV system and incurring the associated maintenance costs. As shown in Table 8.4-4, the 30-year net present value of the CCV maintenance costs are estimated at \$275 million. This assumes a three percent social discount rate.

	(\$2002)				
Year	Fuel Consumed in Power		/eighted		al Costs
	Categories Adding CCV	Ma	intenance	(10°	dollars)
	System (10 ⁶ gallons)		Cost (\$/gal)		
2007	(TO galions)	\$	(ø/gai) -	\$	-
2008	242	\$	0.000	\$	0
2009	248	\$	0.000	\$	0
2010	254	\$	0.000	\$	0
2011	927	\$	0.001	\$	1
2012	2,023	\$	0.001	\$	3
2013	3,369	\$	0.002	\$	5
2014	4,716	\$	0.002	\$	7
2015	6,160	\$	0.002	\$	9
2016	7,552	\$	0.002	\$	11
2017	8,857	\$	0.002	\$	13
2018	10,042	\$	0.002	\$	15
2019	11,139	\$	0.002	\$	17
2020	12,161	\$	0.002	\$	18
2021	13,084	\$	0.002	\$	20
2022	13,913	\$	0.002	\$	21
2023	14,680	\$	0.002	\$	22
2024	15,402	\$	0.002	\$	23
2025	16,088	\$	0.002	\$	24
2026	16,724	\$	0.002	\$	25
2027	17,301	\$	0.002	\$	26
2028	17,827	\$	0.002	\$	27
2029	18,327	\$	0.002	\$	28
2030	18,805	\$	0.002	\$	28
2031	19,258	\$	0.002	\$	29
2032	19,695	\$	0.002	\$	30
2033	20,125	\$	0.002	\$	30
2034	20,543	\$	0.002	\$	31
2035	20,940	\$	0.002	\$	32
2036	21,323	\$	0.002	\$	32
30 Yr NPV at 3%	182,540			\$	275
30 Yr NPV at 7%	82,865			\$	124

Table 8.4-4 CCV Maintenance Costs Associated with the Two-Step Fuel Program (\$2002)

* Weighted Maintenance Cost (\$/gal) changes year-to-year due to the implementation schedule for engines adding the CCV system.

8.4.4 Summary of Aggregate Operating Costs

The net operating costs include the incremental costs for fuel (Table 8.4-1), cost savings from reduced oil changes (Table 8.4-2), costs for CDPF maintenance and regeneration (Table 8.4-3), and costs for CCV maintenance (Table 8.4-4). The results of this summation for the two-step NRT4 program are shown in Table 8.4-5. The oil-change maintenance savings, CDPF maintenance and regeneration costs, and the CCV maintenance costs are added together in Table 8.4-5 and presented as "Other Operating Costs." The other operating costs are presented as negative values because the oil change maintenance savings (negative costs) outweigh the other

operating costs and, thus, their summation represents a net savings. The "Net Operating Cost" is the sum of the incremental fuel costs shown in Table 8.4-1 and the other operating costs shown in Tables 8.4-2 through 8.4-4. As shown in Table 8.4-5, the 30-year net present value of the net operating costs is estimated at \$11.8 billion consisting of the \$16.3 billion fuel cost and the \$4.5 billion savings associated with other operating costs. These net present values assume a three percent social discount rate.

Also included in Table 8.4-5 are the costs by pollutant (refer to Table 8.1-2 for how these costs have been allocated). The sum of the SOx cost, the PM cost, and the NOx+NMHC cost is the value presented in the "Net Operating Cost" column.

					(\$2	002)		U				
Year		el Costs	Othe	er Operating	Net	Operating	SC	Dx Related	PM	Related	N	IOx+HC
	(10	⁶ dollars)		Costs		Costs		Costs		Costs		ated Costs
				0 ⁶ dollars)		0 ⁶ dollars)		0 ⁶ dollars)		⁶ dollars)		0 ⁶ dollars)
2007	\$	142	\$	(161)	\$	(18)	\$	(12)	\$	(6)	\$	-
2008	\$	249	\$	(282)	\$	(33)	\$	(22)	\$	(11)	\$	0
2009	\$	254	\$	(288)	\$	(34)	\$	(23)	\$	(11)	\$	0
2010	\$	561	\$	(349)	\$	212	\$	88	\$	84	\$	40
2011	\$	591	\$	(302)	\$	289	\$	117	\$	118	\$	54
2012	\$	704	\$	(299)	\$	406	\$	172	\$	170	\$	64
2013	\$	797	\$	(286)	\$	512	\$	217	\$	223	\$	72
2014	\$	874	\$	(294)	\$	581	\$	232	\$	259	\$	90
2015	\$	938	\$	(288)	\$	650	\$	245	\$	300	\$	105
2016	\$	954	\$	(274)	\$	680	\$	249	\$	324	\$	108
2017	\$	971	\$	(261)	\$	710	\$	253	\$	347	\$	111
2018	\$	988	\$	(250)	\$	738	\$	257	\$	368	\$	114
2019	\$	1,006	\$	(240)	\$	766	\$	261	\$	389	\$	116
2020	\$	1,022	\$	(231)	\$	791	\$	265	\$	408	\$	119
2021	\$	1,039	\$	(224)	\$	815	\$	268	\$	425	\$	122
2022	\$	1,056	\$	(219)	\$	838	\$	272	\$	441	\$	124
2023	\$	1,073	\$	(214)	\$	859	\$	276	\$	456	\$	127
2024	\$	1,090	\$	(210)	\$	880	\$	280	\$	470	\$	129
2025	\$	1,107	\$	(207)	\$	900	\$	284	\$	484	\$	132
2026	\$	1,124	\$	(204)	\$	920	\$	288	\$	497	\$	134
2027	\$	1,141	\$	(202)	\$	938	\$	292	\$	509	\$	137
2028	\$	1,158	\$	(201)	\$	956	\$	296	\$	521	\$	139
2029	\$	1,174	\$	(201)	\$	974	\$	300	\$	532	\$	141
2030	\$	1,191	\$	(201)	\$	991	\$	304	\$	543	\$	144
2031	\$	1,208	\$	(201)	\$	1,007	\$	308	\$	553	\$	146
2032	\$	1,225	\$	(201)	\$	1,024	\$	312	\$	563	\$	148
2033	\$	1,242	\$	(202)	\$	1,040	\$	316	\$	573	\$	151
2034	\$	1,259	\$	(203)	\$	1,056	\$	320	\$	583	\$	153
2035	\$	1,276	\$	(204)	\$	1,072	\$	324	\$	593	\$	155
2036	\$	1,293	\$	(205)	\$	1,088	\$	328	\$	602	\$	157
30 Yr NPV at 3%	\$	16,326	\$	(4,517)	\$	11,809	\$	3,934	\$	6,091	\$	1,784
30 Yr NPV at 7%	\$	8,538	\$	(2,745)	\$	5,793	\$	1,976	\$	2,928	\$	889

Table 8.4-5 Aggregate Net Operating Costs and Costs by Pollutant Associated with the NRT4 Program (\$2002)

8.4.5 Summary of Aggregate Operating Costs Associated with a Fuel-only Scenario

The aggregate operating costs of a fuel-only scenario would be essentially the same as those presented above for the full NRT4 program with the exception of those operating costs associated with maintenance or regeneration of new engine hardware. These operating cost elements would not be incurred because without new engine standards the new engine hardware would not be added. However, the oil change maintenance savings would still be realized just as they would under the full NRT4 program.

As noted several times throughout this chapter, Table 8.1-2 shows how we allocated costs to each pollutant under the full engine and fuel program. However, the allocations shown in that table assume an engine program to which a portion of the fuel-related costs are allocated. Specifically, the 15 ppm NR fuel, which enables aftertreatment devices and, thus, new NR engine standards, is split evenly between engine derived benefits and fuel derived benefits. Subsequently, the costs allocated to fuel derived benefits were split one-third to PM and two-thirds to SOx.

Under the fuel-only scenario, there are no new engine standards. As a result, all the fuel costs are allocated to fuel-derived benefits. Consistent with the approach taken in the full engine and fuel program, we have allocated one-third of those costs to PM and two-thirds of those costs to SOx. Table 8.4-6 shows the cost allocations under the fuel-only scenario.

Item		NOx+HC	PM	SOx
Fuel Costs - incremental cent/gallon	500 ppm Affected NRLM			
	15 ppm Affected NR			
	15 ppm Affected L&M		33%	67%
Operating Costs – Oil-Change Savings	500 ppm Affected NRLM		3370	0770
	15 ppm Affected NR			
	15 ppm Affected L&M			
Operating Costs - CDPF Maintenance				
Operating Costs – CDPF Regen (FE impact)	1	None		
Operating Costs – CCV Maintenance				

Table 8.4-6Cost Allocations under the Fuel-only Scenario

Note that there are no costs associated with CDPF and CCV maintenance or with CDPF regeneration since there would be no new engine standards under the fuel-only scenario. Note also that the oil change maintenance savings would still be realized absent any new engine standards.

Table 8.4-7 presents the net operating costs associated with a fuel-only scenario. The costs presented in Table 8.4-7 include the incremental costs for fuel (Table 8.4-1) and costs for oil-change maintenance savings (Table 8.4-2). The oil-change maintenance savings are presented in the table as "Other Operating Costs," and, thus represent a net savings. The "Net Operating

Cost" is the sum of the incremental fuel costs and the other operating costs. Table 8.4-7 also presents these costs by pollutant (refer to Table 8.4-6 for how these costs have been allocated). Since there are no new engine standards under a fuel-only scenario there are no costs associated with technology enablement and, hence, no costs allocated to NOx+NMHC. As shown in Table 8.4-7, the 30-year net present value of costs associated with a fuel-only scenario is estimated at \$9.2 billion consisting of the \$16.3 billion fuel cost and a \$7.1 billion savings associated with oil change maintenance. These values assume a three percent social discount rate.

				(\$2002)	-				
Year		el Costs	r Operating	Net	Operating		x Related	PN	I Related	 HC Related
	(10	6 dollars)	Costs		Costs		Costs		Costs	Costs
			⁶ dollars)		0 ⁶ dollars)) ⁶ dollars)		D ⁶ dollars)	 6 dollars)
2007	\$	142	\$ (161)	\$	(18)	\$	(12)	\$	(6)	\$ -
2008	\$	249	\$ (282)	\$	(33)	\$	(22)	\$	(11)	\$ -
2009	\$	254	\$ (288)	\$	(34)	\$	(23)	\$	(11)	\$ -
2010	\$	561	\$ (349)	\$	212	\$	141	\$	71	\$ -
2011	\$	591	\$ (310)	\$	281	\$	187	\$	94	\$ -
2012	\$	704	\$ (322)	\$	382	\$	255	\$	127	\$ -
2013	\$	797	\$ (333)	\$	464	\$	310	\$	155	\$ -
2014	\$	874	\$ (353)	\$	521	\$	347	\$	174	\$ -
2015	\$	938	\$ (370)	\$	568	\$	378	\$	189	\$ -
2016	\$	954	\$ (377)	\$	577	\$	385	\$	192	\$ -
2017	\$	971	\$ (384)	\$	587	\$	391	\$	196	\$ -
2018	\$	988	\$ (391)	\$	597	\$	398	\$	199	\$ -
2019	\$	1,006	\$ (399)	\$	607	\$	405	\$	202	\$ -
2020	\$	1,022	\$ (406)	\$	617	\$	411	\$	206	\$ -
2021	\$	1,039	\$ (412)	\$	626	\$	417	\$	209	\$ -
2022	\$	1,056	\$ (420)	\$	636	\$	424	\$	212	\$ -
2023	\$	1,073	\$ (427)	\$	646	\$	431	\$	215	\$ -
2024	\$	1,090	\$ (434)	\$	656	\$	437	\$	219	\$ -
2025	\$	1,107	\$ (441)	\$	666	\$	444	\$	222	\$ -
2026	\$	1,124	\$ (448)	\$	676	\$	451	\$	225	\$ -
2027	\$	1,141	\$ (455)	\$	686	\$	457	\$	229	\$ -
2028	\$	1,158	\$ (462)	\$	696	\$	464	\$	232	\$ -
2029	\$	1,174	\$ (469)	\$	706	\$	470	\$	235	\$ -
2030	\$	1,191	\$ (476)	\$	716	\$	477	\$	239	\$ -
2031	\$	1.208	\$ (483)	\$	725	\$	484	\$	242	\$ -
2032	\$	1.225	\$ (490)	\$	735	\$	490	\$	245	\$ -
2033	\$	1.242	\$ (497)	\$	745	\$	497	\$	248	\$ -
2034	\$	1,259	\$ (504)	\$	755	\$	503	\$	252	\$ -
2035	\$	1,276	\$ (511)	\$	765	\$	510	\$	255	\$ -
2036	\$	1,293	\$ (518)	\$	775	\$	517	\$	258	\$ -
30 Yr NPV at 3%	\$	16,326	\$ (7,132)	\$	9,194	\$	6,130	\$	3,065	\$ -
30 Yr NPV at 7%	\$	8,538	\$ (3,919)	\$	4,618	\$	3,079	\$	1,539	\$ -

Table 8.4-7
Aggregate Net Operating Costs and Costs by Pollutant
Associated with a Fuel-Only Scenario
(\$2002)

8.5 Summary of Aggregate Costs of the Final Rule

Table 8.5-1 presents a summary of all the costs presented above for the NRT4 final rule engine and fuel program. Engine costs are the summation of costs presented in Tables 8.2-1 and 8.2-3, equipment costs are the summation of costs presented in Tables 8.3-1 and 8.3-3, and fuel costs, other operating costs, and net operating costs are presented in Table 8.4-5. The "Total Program Costs" are the summation of engine costs, equipment costs, and net operating costs. As shown, the 30-year net present value of the NRT4 program is estimated at \$27.1 billion consisting of \$14.1 billion in engine costs, \$1.3 billion in equipment costs, \$16.3 billion in fuel costs, and a savings of \$4.5 billion in other operating costs. These values assume a three percent social discount rate.

Table 8.5-2 presents the summary of all the costs presented above by pollutant (refer to Table 8.1-2 for how we have allocated costs among the various pollutants).

Note that a similar summary of aggregate costs associated with a fuel-only scenario are presented in full in Table 8.4-6 since there are no new engine or equipment costs associated with that scenario.

		<u> </u>				2002 d				
Year		ingine Costs		uipment Costs	Fu	el Costs	Other erating	Or	Net perating	Total Annual
		00010		00010			Costs		Costs	Costs
2007	\$	-	\$	-	\$	142	\$ (161)	\$	(18)	\$ (18)
2008	\$	81	\$	5	\$	249	\$ (282)	\$	(33)	\$ 53
2009	\$	82	\$	5	\$	254	\$ (288)	\$	(34)	\$ 53
2010	\$	80	\$	5	\$	561	\$ (349)	\$	212	\$ 297
2011	\$	403	\$	62	\$	591	\$ (302)	\$	289	\$ 754
2012	\$	718	\$	106	\$	704	\$ (299)	\$	406	\$ 1,229
2013	\$	882	\$	121	\$	797	\$ (286)	\$	512	\$ 1,515
2014	\$	973	\$	146	\$	874	\$ (294)	\$	581	\$ 1,699
2015	\$	950	\$	149	\$	938	\$ (288)	\$	650	\$ 1,749
2016	\$	920	\$	150	\$	954	\$ (274)	\$	680	\$ 1,750
2017	\$	910	\$	150	\$	971	\$ (261)	\$	710	\$ 1,770
2018	\$	901	\$	146	\$	988	\$ (250)	\$	738	\$ 1,785
2019	\$	890	\$	147	\$	1,006	\$ (240)	\$	766	\$ 1,802
2020	\$	900	\$	147	\$	1,022	\$ (231)	\$	791	\$ 1,838
2021	\$	913	\$	99	\$	1,039	\$ (224)	\$	815	\$ 1,827
2022	\$	927	\$	66	\$	1,056	\$ (219)	\$	838	\$ 1,830
2023	\$	940	\$	56	\$	1,073	\$ (214)	\$	859	\$ 1,855
2024	\$	954	\$	36	\$	1,090	\$ (210)	\$	880	\$ 1,869
2025	\$	967	\$	32	\$	1,107	\$ (207)	\$	900	\$ 1,899
2026	\$	980	\$	32	\$	1,124	\$ (204)	\$	920	\$ 1,932
2027	\$	994	\$	33	\$	1,141	\$ (202)	\$	938	\$ 1,965
2028	\$	1,007	\$	33	\$	1,158	\$ (201)	\$	956	\$ 1,997
2029	\$	1,021	\$	33	\$	1,174	\$ (201)	\$	974	\$ 2,028
2030	\$	1,034	\$	34	\$	1,191	\$ (201)	\$	991	\$ 2,059
2031	\$	1,048	\$	34	\$	1,208	\$ (201)	\$	1,007	\$ 2,089
2032	\$	1,061	\$	35	\$	1,225	\$ (201)	\$	1,024	\$ 2,119
2033	\$	1,074	\$	35	\$	1,242	\$ (202)	\$	1,040	\$ 2,149
2034	\$	1,088	\$	35	\$	1,259	\$ (203)	\$	1,056	\$ 2,179
2035	\$	1,101	\$	36	\$	1,276	\$ (200)	\$	1,000	\$ 2,209
2036	φ \$	1,115	\$	36	\$	1,293	\$ (205)	φ \$	1,088	\$ 2,200
30 Yr NPV at 3%		14,054	φ \$	1,281	φ \$	16,326	(203)	Ŧ	11,809	\$ 27,144
30 Yr NPV at 7%	\$	7,215	\$	754	\$	8,538	(2,745)	\$	5,793	\$ 13,762

Table 8.5-1 Summary of Aggregate Costs for the NRT4 Final Engine and Fuel Program (\$Millions of 2002 dollars)

a	and Fuel Program by Pollutant										
	(\$1	Millions	s of	2002 d	olla	rs)					
Year	P	M Costs		x+NMHC	SO	x Costs	To	tal Costs			
				Costs							
2007	\$	(6)	\$	-	\$	(12)	\$	(18)			
2008	\$	74	\$	0	\$	(22)	\$	53			
2009	\$	75	\$	0	\$	(23)	\$	53			
2010	\$	169	\$	40	\$	88	\$	297			
2011	\$	458	\$	179	\$	117	\$	754			
2012	\$	761	\$	296	\$	172	\$	1,229			
2013	\$	949	\$	348	\$	217	\$	1,515			
2014	\$	940	\$	526	\$	232	\$	1,699			
2015	\$	970	\$	534	\$	245	\$	1,749			
2016	\$	982	\$	519	\$	249	\$	1,750			
2017	\$	999	\$	518	\$	253	\$	1,770			
2018	\$	1,004	\$	524	\$	257	\$	1,785			
2019	\$	1,034	\$	507	\$	261	\$	1,802			
2020	\$	1,059	\$	515	\$	265	\$	1,838			
2021	\$	1,061	\$	497	\$	268	\$	1,827			
2022	\$	1,070	\$	488	\$	272	\$	1,830			
2023	\$	1,088	\$	490	\$	276	\$	1,855			
2024	\$	1,112	\$	477	\$	280	\$	1,869			
2025	\$	1,130	\$	484	\$	284	\$	1,899			
2026	\$	1,153	\$	491	\$	288	\$	1,932			
2027	\$	1,174	\$	498	\$	292	\$	1,965			
2028	\$	1,195	\$	506	\$	296	\$	1,997			
2029	\$	1,215	\$	513	\$	300	\$	2,028			
2030	\$	1,235	\$	520	\$	304	\$	2,059			
2031	\$	1,254	\$	527	\$	308	\$	2,089			
2032	\$	1,273	\$	534	\$	312	\$	2,119			
2033	\$	1,292	\$	541	\$	316	\$	2,149			
2034	\$	1,311	\$	548	\$	320	\$	2,179			
2035	\$	1,330	\$	555	\$	324	\$	2,209			
2036	\$	1,348	\$	562	\$	328	\$	2,239			
30 Yr NPV at 3%	\$	16,041	\$	7,169	\$	3,934	\$	27,144			
30 Yr NPV at 7%	\$	8,134	\$	3,652	\$	1,976	\$	13,762			

Table 8.5-2 Summary of Aggregate Costs for the NRT4 Final Engine and Fuel Program by Pollutant (\$Millions of 2002 dollars)

8.6 Emission Reductions

Table 8.6-1 presents the emission reductions estimated to result from the fuel program in conjunction with the new engine standards. Also presented are reductions associated with a fuel-only scenario. A complete discussion of these emission reductions and how they were generated can be found in Chapter 3.

and the Fuel-only Scenario (tons)											
Year	NRT4 Fu	el and Engine	Program	NRLM Fuel-o	nly Program						
	PM	NOx+NMHC	SOx	PM	SOx						
2007	10,700	0	133,000	10,700	133,000						
2008	19,500	200	235,400	19,000	235,400						
2009	20,400	400	240,100	19,400	240,100						
2010	22,300	700	255,500	20,600	255,500						
2011	25,900	19,100	268,600	21,600	268,600						
2012	32,100	49,600	277,800	22,400	277,700						
2013	39,200	84,400	285,700	23,000	285,500						
2014	46,900	143,600	291,600	23,500	291,500						
2015	54,900	203,000	297,400	24,000	297,300						
2016	62,400	261,100	302,600	24,400	302,400						
2017	69,600	316,900	307,700	24,800	307,500						
2018	76,400	368,500	312,900	25,200	312,700						
2019	82,800	417,300	318,300	25,600	318,000						
2020	88,800	463,000	323,300	26,000	323,100						
2021	94,400	504,400	328,300	26,400	328,000						
2022	99,700	542,400	333,600	26,900	333,400						
2023	104,600	578,100	338,800	27,300	338,500						
2024	109,400	611,100	344,000	27,700	343,700						
2025	113,900	642,300	349,200	28,100	348,900						
2026	118,200	671,400	354,400	28,500	354,100						
2027	122,300	698,200	359,600	28,900	359,300						
2028	125,900	723,200	364,800	29,400	364,500						
2029	129,500	746,900	370,000	29,800	369,700						
2030	132,900	768,500	375,300	30,200	374,900						
2031	136,000	788,800	380,500	30,600	380,100						
2032	139,100	808,400	385,800	31,000	385,400						
2033	142,100	827,300	391,000	31,500	390,600						
2034	145,000	845,600	396,300	31,900	395,900						
2035	147,800	863,100	401,600	32,300	401,200						
2036	150,500	880,100	406,900	32,700	406,400						
30 Yr NPV at 3%	1,430,500	7,077,900	5,725,900	461,000	5,722,100						
30 Yr NPV at 7%	690,800	3,142,700	3,164,100	254,800	3,162,300						

Table 8.6-1 Emission Reductions Associated with the NRT4 Final Fuel and Engine Program and the Fuel-only Scenario (tons)

^b Note that the SOx reductions for the Final program and the fuel-only scenario are nearly identical while the PM reductions are very different. This is a result of there being no new engine standards under the fuel-only scenario and, therefore, no CDPFs added to new engines.

8.7 Cost per Ton

We have calculated the cost per ton of the final rule based on the net present value of all costs incurred and all emission reductions generated over a 30-year time window following implementation of the program. This approach captures all the costs and emission reductions from the final rule, including costs incurred and emission reductions generated by both the new and the existing fleet.

The baseline (i.e., the point of comparison) for this evaluation is the existing set of engine standards (i.e., the Tier 2/Tier 3 program) and fuel standards (i.e., unregulated sulfur level). The 30-year time window is meant to capture both the early period of the program when there are a small number of compliant engines in the fleet, and the later period when there is nearly complete turnover to compliant engines. The final rule also requires reduced sulfur content in NRLM diesel fuel with a 500 ppm cap beginning in 2007, a 15 ppm NR cap beginning in 2010, and a 15 ppm L&M cap beginning in 2012.

In Section 8.7.1 we present the cost per ton for the NRT4 final engine and fuel program—this represents the cost per ton of this final rule including all costs and emissions reductions associated with the new fuel standards and the new engine standards. In Section 8.7.2 we present the cost per ton for the fuel-only scenario—this scenario would include the same fuel standards as the full engine and fuel program but no new engine standards. In Section 8.7.3 we present two different sets of cost per ton information—cost per ton of a 500 ppm fuel scenario should it remain in place forever with no new engine standards, and the incremental cost per ton of the 15 ppm L&M portion of the fuel program. In Section 8.7.4, we summarize all the cost per ton calculations presented in Sections 8.7.1 through 8.7.3. In Appendix 8A, we present the cost per ton of two sensitivity cases—the case 1 sensitivity shows the cost per ton using future projections of fuel demand developed by the Energy Information Administration; and, the case 2 sensitivity shows the cost per ton if we increase the percentage of mobile versus stationary generator sets (i.e., increase the number of generator sets that will meet the new standards) and increase the usage rates for some >750hp equipment. The rationale for choosing these two sensitivity cases is presented in section 8A.1.

8.7.1 Cost per Ton for the NRT4 Final Rule

The NRT4 final rule adopts fuel requirements in two steps—reducing NRLM sulfur levels from current uncontrolled levels to 500 ppm in 2007 and then controlling NR fuel and L&M fuel to 15 ppm in 2010 and 2012, respectively. Beginning June 1, 2007, refiners must produce NRLM diesel fuel that meets a maximum sulfur level of 500 ppm. Then, beginning in June 1, 2010, NR fuel must meet a maximum sulfur level of 15 ppm and, beginning in June 1, 2012, L&M fuel must meet a maximum sulfur level of 15 ppm. This program also adopts new Tier 4 engine standards for nonroad diesel engines that begin in different years for different power categories. See Table 1 in the Executive Summary for details on the new engine standards and when they are implemented. All nonroad diesel-fueled engines with a CDPF must be refueled with the new 15 ppm diesel fuel.

The costs of the final rule include costs associated with both steps in the fuel program (500 ppm and 15 ppm) and costs for the engine standards including equipment modifications. Maintenance costs and savings realized by both the existing fleet (nonroad, locomotive, and marine), future locomotive and marine engines, and the new fleet of nonroad engines complying with the new emissions standards are included. Figure 8.7-1 presents in graphic form the cost of the final rule. These costs are summarized in Table 8.5-1. The cost streams include the amortized capital (fixed) costs and variable costs.

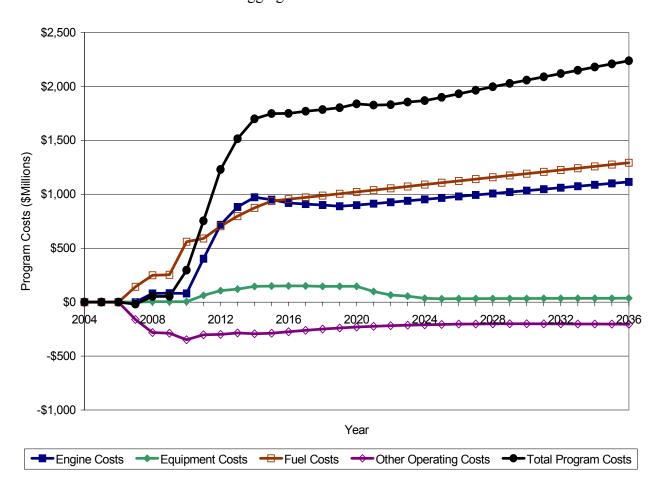


Figure 8.7-1 Estimated Aggregate Cost of the NRT4 Final Rule

Figure 8.7-1 shows that total annual costs are estimated to be \$50 million in the first year the new engine standards apply, increasing to \$2.2 billion in 2036 as increasing numbers of engines become subject to the new standards and an ever increasing amount of fuel is consumed. As shown in Table 8.5-1, the 30-year net present value of the costs for this program is estimated as \$27.1 billion using a three percent discount rate.

Final Regulatory Impact Analysis

The calculations of cost per ton of each emission reduced under the final program divides the net present value of the annual costs assigned to each pollutant (see Table 8.5-2 for costs by pollutant and Table 8.1-2 for how we have allocated costs by pollutant) by the net present value of the total annual reductions of each pollutant – NOx+NMHC, PM and SOx (see Table 8.6-1).

The net present value of the costs associated with each pollutant, calculated with a three percent discount rate, are shown in Table 8.5-1 as \$7.2 billion for NOx+NMHC, \$16.0 billion for PM and \$3.9 billion for SOx. The 30-year net present value, with a three percent discount rate, of emission reductions are 7.1 million tons for NOx+NMHC, 1.4 million tons for PM and 5.7 million tons for SOx (see Table 8.6-1). Our air quality analysis, emissions reduction analysis, and benefits analysis are found in Chapters 2, 3, and 9, respectively.

The cost per ton of emissions reduced for the NRT4 final rule is calculated by dividing the net present value of the annualized costs of the program through 2036 by the net present value of the annual emission reductions through 2036. These results are shown in Table 8.7-1.

30-year Net Pres	30-year Net Present Values at a 3% and 7% Discount Rate (\$2002)												
Item	Units	3% discount rate	7% discount rate	Source									
500ppm at \$0.021/gal, 2007-2010	(10 ⁶ gallons)	29,690	25,207	Table 8.4-1									
500ppm at \$0.033/gal, 2010-2012	(10 ⁶ gallons)	7,068	5,500	Table 8.4-1									
500ppm at \$0.035/gal, 2012-2014	(10 ⁶ gallons)	1,660	1,196	Table 8.4-1									
15ppm at \$0.058/gal, 2010-2012	(10 ⁶ gallons)	15,223	11,715	Table 8.4-1									
15ppm at \$0.064/gal, 2012-2014	(10 ⁶ gallons)	17,998	12,800	Table 8.4-1									
15ppm at \$0.070/gal, 2014+	(10 ⁶ gallons)	191,091	89,805	Table 8.4-1									
500ppm Fuel Cost	(\$million)	\$915	\$753	Table 8.4-1									
15ppm Fuel Cost	(\$million)	\$15,411	\$7,785	Table 8.4-1									
Other Operating Costs*	(\$million)	-\$4,517	-\$2,745	Table 8.4-5									
Engine Costs	(\$million)	\$14,054	\$7,215	Table 8.5-1									
Equipment Costs	(\$million)	\$1,281	\$754	Table 8.5-1									
Total Program Costs	(\$million)	\$27,144	\$13,762	Table 8.5-1									
NOx+NMHC Costs	(\$million)	\$7,169	\$3,652	Table 8.5-2									
PM Costs	(\$million)	\$16,041	\$8,134	Table 8.5-2									
SOx Costs	(\$million)	\$3,934	\$1,976	Table 8.5-2									
NOx+NMHC Reduction	(10^6 tons)	7.1	3.1	Table 8.6-1									
PM Reduction	(10^6 tons)	1.4	0.7	Table 8.6-1									
SOx Reduction	(10^6 tons)	5.7	3.2	Table 8.6-1									
Cost per Ton NOx+NMHC	(\$/ton)	\$1,010	\$1,160	Calculated									
Cost per Ton PM	(\$/ton)	\$11,200	\$11,800	Calculated									
Cost per Ton	(\$/ton)	\$690	\$620	Calculated									

Table 8.7-1Aggregate Costs and Costs per Ton for the NRT4 Final Rule0-year Net Present Values at a 3% and 7% Discount Rate (\$2002)

* Other operating costs include oil change maintenance savings, CDPF and CCV maintenance costs, and CDPF regeneration costs.

We have also calculated the cost per ton of emissions reduced in the year 2030 using the annual costs and emission reductions in that year alone. This number, shown in Table 8.7-2, approaches the long-term cost per ton of emissions reduced after all fixed costs of the program have been recovered by industry leaving only the variable costs of control (and maintenance costs), and after most (though not all) of the pre-control fleet has been retired.

Annual Values without Discounting (\$2002)	
Pollutant	Long-Term Cost per Ton in 2030
NOx+NMHC	\$680
РМ	\$9,300
SOx	\$810

Table 8.7-3Long-Term Cost per Ton of the NRT4 Final RuleAnnual Values without Discounting (\$2002)

8.7.2 Cost per Ton for the NRLM Fuel-only Scenario

The costs of the fuel-only scenario include costs associated with both steps in the fuel program absent any new engine standards. Oil change maintenance savings would be realized by both the existing fleet and the new fleet of engines as these savings are not dependent on any new engine standards. Figure 8.7-2 presents in graphic form the cost of the fuel-only scenario. These costs are summarized in Table 8.4-7. The cost streams include the amortized capital (fixed) costs and variable costs.

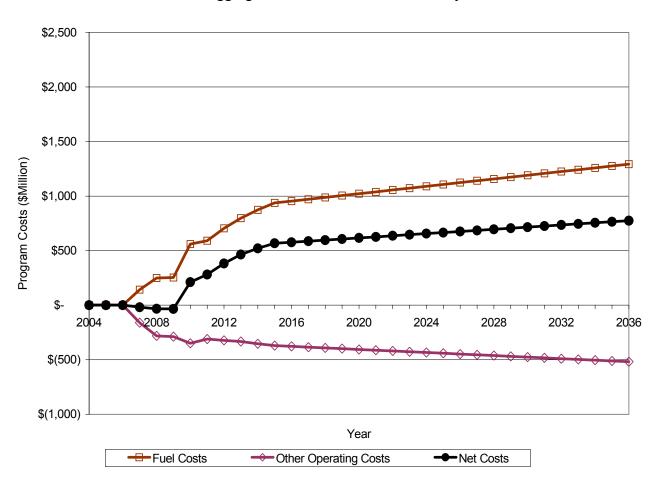


Figure 8.7-2 Estimated Aggregate Cost of the NRLM Fuel-only Scenario

Figure 8.7-2 shows that total annual costs are estimated to be -\$33 million in the first full year of the new fuel standards (i.e., a \$33 million savings), increasing to \$775 million in 2036 as an ever increasing amount of fuel is consumed. As shown in Table 8.4-7, the 30-year net present value of the fuel-only scenario is estimated as \$9.2 billion using a three percent discount rate.

The calculations of cost per ton of each emission reduced under the fuel-only scenario divides the net present value of the annual costs assigned to each pollutant (see Table 8.4-7 for costs by pollutant and Table 8.4-6 for how we have allocated costs by pollutant) by the net present value of the total annual reductions of each pollutant. The 30-year net present value of the costs associated with each pollutant, calculated with a three percent discount rate, are shown in Table 8.4-7 as \$3.1 billion for PM and \$6.1 billion for SOx. If we exclude the oil change maintenance savings, the costs of the fuel-only scenario would be \$5.4 billion for PM and \$10.9 billion for SOx. The 30-year net present value, with a three percent discount rate, of emission reductions are 461 thousand tons for PM and 5.7 million tons for SOx. Our air quality analysis, emissions reduction analysis, and benefits analysis are found in Chapters 2, 3, and 9,

respectively. Table 8.7-4 presents the cost per ton results for the fuel-only scenario including the oil change maintenance savings and excluding those savings.

30-year Net Present Va Item	Units	3% discount rate	7% discount rate	Source
500ppm at \$0.021/gal, 2007-2010	(10 ⁶ gallons)	29,690	25,207	Table 8.4-1
500ppm at \$0.033/gal, 2010-2012	(10 ⁶ gallons)	7,068	5,500	Table 8.4-1
500ppm at \$0.035/gal, 2012-2014	(10 ⁶ gallons)	1,660	1,196	Table 8.4-1
15ppm at \$0.058/gal, 2010-2012	(10 ⁶ gallons)	15,223	11,715	Table 8.4-1
15ppm at \$0.064/gal, 2012-2014	(10 ⁶ gallons)	17,998	12,800	Table 8.4-1
15ppm at \$0.070/gal, 2014+	(10 ⁶ gallons)	191,091	89,805	Table 8.4-1
500ppm Fuel Cost	(\$million)	\$915	\$753	Table 8.4-1
15ppm Fuel Cost	(\$million)	\$15,411	\$7,785	Table 8.4-1
Other Operating Costs*	(\$million)	-\$4,517	-\$2,745	Table 8.4-7
Total Costs (w/ maintenance savings)	(\$million)	\$9,194	\$4,618	Table 8.4-7
Total Costs (w/o maintenance savings)	(\$million)	\$16,326	\$8,538	Table 8.4-7
PM Costs (w/ maintenance savings)	(\$million)	\$3,065	\$1,539	Table 8.4-7
PM Costs (w/o maintenance savings)	(\$million)	\$5,442	\$2,846	Calculated**
SOx Costs (w/ maintenance savings)	(\$million)	\$6,130	\$3,079	Table 8.4-7
SOx Costs (w/o maintenance savings)	(\$million)	\$10,884	\$5,692	Calculated**
PM Reduction	(10^6 tons)	0.46	0.26	Table 8.6-1
SOx Reduction	(10^6 tons)	5.7	3.2	Table 8.6-1
Cost per Ton PM (w/ maintenance savings)	(\$/ton)	\$6,600	\$6,000	Calculated
Cost per Ton PM (w/o maintenance savings)	(\$/ton)	\$11,800	\$11,200	Calculated
Cost per Ton SOx (w/ maintenance savings)	(\$/ton)	\$1,070	\$970	Calculated
Cost per Ton Sox (w/o maintenance savings)	(\$/ton)	\$1,900	\$1,800	Calculated

Table 8.7-4Aggregate Costs and Costs per Ton for the Fuel-only Scenario0-year Net Present Values at a 3% and 7% Discount Rate (\$2002)

* Other operating costs include oil change maintenance savings.

** Calculated as one-third (PM) or two-thirds (SOx) of the Total Scenario Costs w/o maintenance savings.

We have also calculated the cost per ton of emissions reduced in the year 2030 using the annual costs and emission reductions in that year alone. This number, shown in Table 8.7-5, approaches the long-term cost per ton of emissions reduced.

Annual Values without Discounting (\$2002)						
Pollutant	Long-Term Cost per Ton in 2030					
PM (with maintenance savings)	\$7,900					
PM (without maintenance savings)	\$13,200					
SOx (with maintenance savings)	\$1,270					
SOx (without maintenance savings)	\$2,100					

Table 8.7-5 Long-Term Cost per Ton of the NRT4 Fuel-only Scenario Annual Values without Discounting (\$2002)

8.7.3 Costs and Costs per Ton for Other Control Scenarios

Here we look at the costs and costs per ton of other control scenarios. Specifically, we look at the cost per ton of the 500 ppm NRLM fuel scenario should it continue forever without any new engine standards. We also look at the incremental cost per ton of the 15 ppm L&M fuel scenario.

8.7.3.1 Costs and Costs per Ton of a 500 ppm NRLM Fuel-only Scenario

A 500 ppm NRLM fuel-only scenario would mirror the fuel-only scenario discussed above with the exception that no 15 ppm fuel step would occur. The incremental fuel cost would be \$0.021 per gallon during the years 2007 through 2010 and then \$0.022 per gallon thereafter (see Table 7.5-1). The oil change maintenance savings would be \$0.029 per gallon for NR and \$0.010 per gallon for L&M (see Table 8.4-2). Tables 8.7-6 and 8.7-7 present the fuel costs and oil change maintenance savings, respectively, associated with a 500 ppm NRLM fuel-only scenario.

	te Fuel Costs of a				
Year	Affected NR Fuel	Affected L&M Fuel 500 ppm	uel Cost* 500 ppm	NRLIV (10	I Fuel Costs 6 dollars)
	(10 ⁶ gallons)	(10 ⁶ gallons)	(\$/gal)		
2007	4,790	1,990	\$ 0.021	\$	142
2008	8,406	3,454	\$ 0.021	\$	249
2009	8,599	3,498	\$ 0.021	\$	254
2010	8,400	3,457	\$ 0.022	\$	256
2011	8,300	3,450	\$ 0.022	\$	258
2012	8,479	3,489	\$ 0.022	\$	263
2013	8,659	3,518	\$ 0.022	\$	268
2014	8,839	3,552	\$ 0.022	\$	273
2015	9,018	3,586	\$ 0.022	\$	277
2016	9,196	3,623	\$ 0.022	\$	282
2017	9,374	3,659	\$ 0.022	\$	287
2018	9,552	3,699	\$ 0.022	\$	292
2019	9,730	3,747	\$ 0.022	\$	296
2020	9,907	3,781	\$ 0.022	\$	301
2021	10,085	3,812	\$ 0.022	\$	306
2022	10,263	3,859	\$ 0.022	\$	311
2023	10,441	3,897	\$ 0.022	\$	315
2024	10,619	3,939	\$ 0.022	\$	320
2025	10,797	3,980	\$ 0.022	\$	325
2026	10,973	4,022	\$ 0.022	\$	330
2027	11,150	4,064	\$ 0.022	\$	335
2028	11,326	4,106	\$ 0.022	\$	340
2029	11,503	4,148	\$ 0.022	\$	344
2030	11,679	4,190	\$ 0.022	\$	349
2031	11,856	4,232	\$ 0.022	\$	354
2032	12,032	4,275	\$ 0.022	\$	359
2033	12,209	4,318	\$ 0.022	\$	364
2034	12,386	4,360	\$ 0.022	\$	368
2035	12,562	4,403	\$ 0.022	\$	373
2036	12,739	4,447	\$ 0.022	\$	378
30 Yr NPV at 3%	179,520	68,639		\$	5,428
30 Yr NPV at 7%	99,928	38,879		\$	3,027

Table 8.7-6

Aggregate Fuel Costs of a 500 nnm NRLM Fuel-only Scenario (\$2002)

* Fuel costs are relative to uncontrolled fuel and assume that, during the transitional years of 2010 & 2014, the first 5 months are at the previous year's cost and the remaining 7 months are at the next year's cost. See Appendix 8B for how these fuel volumes were developed.

On-Chang	ge Maintenance	Savings Associate (\$2	2002)	n a 500 ppn			y bee	nario
	Affected NR Fuel	Affected L&M Fuel	Ń	R Savings	L&M	l Savings	NRLM	
Year -	500 ppm (10 ⁶ gallons)	500 ppm (10 ⁶ gallons)	savin (1	gs=\$0.029/gal I0 ⁶ dollars)	savings (10 ⁶	=\$0.010/gal dollars)		l Savings dollars)
2007	4,790	1,990	\$	140	\$	21	\$	161
2008	8,406	3,454	\$	246	\$	36	\$	282
2009	8,599	3,498	\$	251	\$	37	\$	288
2010	8,400	3,457	\$	246	\$	36	\$	282
2011	8,300	3,450	\$	243	\$	36	\$	279
2012	8,479	3,489	\$	248	\$	37	\$	284
2013	8,659	3,518	\$	253	\$	37	\$	290
2014	8,839	3,552	\$	258	\$	37	\$	296
2015	9,018	3,586	\$	264	\$	38	\$	301
2016	9,196	3,623	\$	269	\$	38	\$	307
2017	9,374	3,659	\$	274	\$	38	\$	312
2018	9,552	3,699	\$	279	\$	39	\$	318
2019	9,730	3,747	\$	284	\$	39	\$	324
2020	9,907	3,781	\$	290	\$	40	\$	329
2021	10,085	3,812	\$	295	\$	40	\$	335
2022	10,263	3,859	\$	300	\$	40	\$	340
2023	10,441	3,897	\$	305	\$	41	\$	346
2024	10,619	3,939	\$	310	\$	41	\$	352
2025	10,797	3,980	\$	316	\$	42	\$	357
2026	10,973	4,022	\$	321	\$	42	\$	363
2027	11,150	4,064	\$	326	\$	43	\$	369
2028	11,326	4,106	\$	331	\$	43	\$	374
2029	11,503	4,148	\$	336	\$	43	\$	380
2030	11,679	4,190	\$	341	\$	44	\$	385
2031	11,856	4,232	\$	347	\$	44	\$	391
2032	12,032	4,275	\$	352	\$	45	\$	397
2033	12,209	4,318	\$	357	\$	45	\$	402
2034	12,386	4,360	\$	362	\$	46	\$	408
2035	12,562	4,403	\$	367	\$	46	\$	413
2036	12,739	4,447	\$	372	\$	47	\$	419
30 Yr NPV at 3%	179,520	68,639	\$	5,248	\$	719	\$	5,967
30 Yr NPV at 7%	99,928	38,879	\$	2,921	\$	407	\$	3,328

 Table 8.7-7

 Oil-Change Maintenance Savings Associated with a 500 ppm NRLM Fuel-only Scenario

 (\$2002)

Table 8.7-8 presents the annual net operating costs (Tables 8.7-6 and 8.7-7) along with the costs by pollutant associated with a 500 ppm NRLM fuel-only scenario. Because a 500 ppm NRLM fuel-only scenario is analogous to the NRT4 fuel-only scenario discussed above (i.e., no new engine standards and, thus, only fuel-derived benefits will occur), we would allocate costs to PM and SOx the same way as the NRT4 fuel-only scenario (see Table 8.4-6) except that costs for 15 ppm fuel would clearly be zero. Table 8.7-8 also presents the emission reductions that would result from a 500 ppm NRLM fuel-only scenario.

	Table	8.7-8
--	-------	-------

Aggregate Net Operating Costs, Costs by Pollutant, and Emissions Reductions	
Associated with a 500 ppm NRLM Fuel-only Scenario (\$2002)	

-					Fuel-only Scenario (\$2002)							
Year		el Costs		Operating		et Operating		0x Costs		1 Costs	PM Reduction	SOx Reduction
	(\$	million)	Costs	s (\$million)	Co	sts (\$million)	(\$	million)	(\$1	million)	(tons)	(tons)
2007	\$	142	\$	(161)	\$	(18)	\$	(12)	\$	(6)	10,700	133,000
2008	\$	249	\$	(282)	\$	(33)	\$	(22)	\$	(11)	19,000	235,400
2009	\$	254	\$	(288)	\$	(34)	\$	(23)	\$	(11)	19,400	240,100
2010	\$	256	\$	(282)	\$	(26)	\$	(17)	\$	(9)	19,700	244,000
2011	\$	258	\$	(279)	\$	(20)	\$	(14)	\$	(7)	20,000	248,500
2012	\$	263	\$	(284)	\$	(21)	\$	(14)	\$	(7)	20,400	253,100
2013	\$	268	\$	(290)	\$	(22)	\$	(15)	\$	(7)	20,800	257,600
2014	\$	273	\$	(296)	\$	(23)	\$	(15)	\$	(8)	21,100	262,200
2015	\$	277	\$	(301)	\$	(24)	\$	(16)	\$	(8)	21,500	266,700
2016	\$	282	\$	(307)	\$	(25)	\$	(17)	\$	(8)	21,900	271,300
2017	\$	287	\$	(312)	\$	(26)	\$	(17)	\$	(9)	22,200	275,800
2018	\$	292	\$	(318)	\$	(26)	\$	(18)	\$	(9)	22,600	280,400
2019	\$	296	\$	(324)	\$	(27)	\$	(18)	\$	(9)	23,000	285,200
2020	\$	301	\$	(329)	\$	(28)	\$	(19)	\$	(9)	23,300	289,700
2021	\$	306	\$	(335)	\$	(29)	\$	(19)	\$	(10)	23,700	294,200
2022	\$	311	\$	(340)	\$	(30)	\$	(20)	\$	(10)	24,100	299,000
2023	\$	315	\$	(346)	\$	(31)	\$	(20)	\$	(10)	24,500	303,600
2024	\$	320	\$	(352)	\$	(31)	\$	(21)	\$	(10)	24,800	308,200
2025	\$	325	\$	(357)	\$	(32)	\$	(21)	\$	(11)	25,200	312,900
2026	\$	330	\$	(363)	\$	(33)	\$	(22)	\$	(11)	25,600	317,500
2027	\$	335	\$	(369)	\$	(34)	\$	(23)	\$	(11)	25,900	322,200
2028	\$	340	\$	(374)	\$	(35)	\$	(23)	\$	(12)	26,300	326,800
2029	\$	344	\$	(380)	\$	(35)	\$	(24)	\$	(12)	26,700	331,500
2030	\$	349	\$	(385)	\$	(36)	\$	(24)	\$	(12)	27,100	336,200
2031	\$	354	\$	(391)	\$	(37)	\$	(25)	\$	(12)	27,400	340,800
2032	\$	359	\$	(397)	\$	(38)	\$	(25)	\$	(13)	27,800	345,500
2033	\$	364	\$	(402)	\$	(39)	\$	(26)	\$	(13)	28,200	350,200
2034	\$	368	\$	(408)	\$	(39)	\$	(26)	\$	(13)	28,600	354,900
2035	\$	373	\$	(413)	\$	(40)	\$	(27)	\$	(13)	29,000	359,700
2036	\$	378	\$	(419)	\$	(41)	\$	(27)	\$	(14)	29,300	364,400
30 Yr NPV at 3%	\$	5,428	\$	(5,967)	\$	(539)	\$	(359)	\$	(180)	419,800	5,210,600
30 Yr NPV at 7%	\$	3,027	\$	(3,328)	\$	(301)	\$	(201)	\$	(100)	233,800	2,901,700

The calculations of cost per ton of each emission reduced under the 500 ppm NRLM fuelonly scenario divides the net present value of the annual costs assigned to each pollutant (see Table 8.7-8) by the net present value of the total annual reductions of each pollutant (Table 8.7-8). The 30-year net present value of the costs (remember that negative costs are actually savings) associated with each pollutant, calculated with a three percent discount rate, are shown in Table 8.7-8 as -\$107 million for PM and -\$213 million for SOx. If we exclude the oil change maintenance savings, the costs of the fuel-only scenario would be \$1.9 billion for PM and \$3.8 billion for SOx. The 30-year net present value, with a three percent discount rate, of emission reductions are 420 thousand tons for PM and 5.2 million tons for SOx. Our air quality analysis, emissions reduction analysis, and benefits analysis are found in Chapters 2, 3, and 9, respectively. Table 8.7-9 presents the cost per ton results for the 500 ppm NRLM fuel-only scenario including the oil change maintenance savings and excluding those savings.

Item	Units	3% discount rate	7% discount rate	Source
500ppm at \$0.021/gal, 2007-2010	(10 ⁶ gallons)	31,316	26,500	Table 8.7-6
500ppm at \$0.022/gal, 2010+	(10 ⁶ gallons)	216,843	112,307	Table 8.7-6
500ppm Fuel Cost	(\$million)	\$5,428	\$3,027	Table 8.7-6
Other Operating Costs*	(\$million)	-\$5,967	-\$3,328	Table 8.7-7
Total Costs (w/ maintenance savings)	(\$million)	-\$539	-\$301	Table 8.7-7
Total Costs (w/o maintenance savings)	(\$million)	\$5,428	\$3,027	Table 8.7-7
PM Costs (w/ maintenance savings)	(\$million)	-\$180	-\$100	Table 8.7-8
PM Costs (w/o maintenance savings)	(\$million)	\$1,809	\$1,009	Calculated**
SOx Costs (w/ maintenance savings)	(\$million)	-\$359	-\$201	Table 8.7-8
SOx Costs (w/o maintenance savings)	(\$million)	\$3,619	\$2,018	Calculated**
PM Reduction	(10^6 tons)	0.42	0.23	Table 8.7-8
SOx Reduction	(10^6 tons)	5.2	2.9	Table 8.7-8
Cost per Ton PM (w/ maintenance savings)	(\$/ton)	-\$400	-\$400	Calculated
Cost per Ton PM (w/o maintenance savings)	(\$/ton)	\$4,300	\$4,400	Calculated
Cost per Ton SOx (w/ maintenance savings)	(\$/ton)	-\$70	-\$70	Calculated
Cost per Ton Sox (w/o maintenance savings)	(\$/ton)	\$690	\$700	Calculated

Table 8.7-9Aggregate Cost per Ton for the 500 ppm NRLM Fuel-only Scenario30-year Net Present Values at a 3% and 7% Discount Rate (\$2002)

* Other operating costs include oil change maintenance savings.

** Calculated as one-third (PM) or two-thirds (SOx) of the Total Scenario Costs w/o maintenance savings.

We have also calculated the cost per ton of emissions reduced in the year 2030 using the annual costs and emission reductions in that year alone. This number, shown in Table 8.7-10, approaches the long-term cost per ton of emissions reduced.

Table 8.7-10
Long-Term Cost per Ton of the 500 ppm NRLM Fuel-only Scenario
Annual Values without Discounting (\$2002)

Pollutant	Long-Term Cost per Ton in 2030				
PM (with maintenance savings)	-\$400				
PM (without maintenance savings)	\$4,300				
SOx (with maintenance savings)	-\$70				
SOx (without maintenance savings)	\$690				

8.7.3.2 Costs and Costs per Ton of the 15 ppm L&M Fuel Increment

In this section, we evaluate the incremental cost per ton of the 15 ppm L&M fuel cap in 2012 (final NRLM program) relative to retaining the 500 ppm cap on L&M fuel (the proposed NRLM program) indefinitely. Nonroad diesel fuel is assumed to be subject to a 15 ppm cap starting in 2010 in both cases. We assume that the emission standards applicable to nonroad engines are the same regardless of the sulfur cap applicable to L&M fuel. Therefore, the only differences between the 500 and 15 ppm cap on L&M fuel are in emissions of SO₂ and sulfate PM, fuel costs and engine maintenance savings. The cost of complying with emission standards for land-based nonroad equipment, as well as HC, NOx, and non-sulfate PM emissions from this equipment are unaffected.

The difference in costs between the two L&M fuel caps are primarily related to the production 15 ppm L&M fuel. The differences in sulfurous emissions arise from differences in the sulfur content of both L&M fuel and, in the Northeast/Middle Atlantic area, heating oil. While the difference in heating oil sulfur content is a direct result of the final NRLM fuel provisions for the Northeast/Middle Atlantic area, heating oil sulfur content is not directly regulated by this final rule. Therefore, we develop estimates of the incremental cost effectiveness of the 15 ppm L&M fuel cap both with and without the changes in heating oil sulfur. However, we believe that the most appropriate estimate of the incremental cost effectiveness of the 15 ppm L&M fuel cap is that including the change in heating oil sulfur content.

The key inputs to this sensitivity analysis are: 1) the volumes and sulfur contents of each type of distillate fuel being produced and consumed in the 2012-2036 timeframe, and 2) the cost of supplying these fuels over the same timeframe. The fuels produced prior to June 1, 2012 are identical under the two scenarios being evaluated here. Thus, we ignore all emissions and costs prior to June 1, 2012. This incremental analysis models the U.S. minus California., although it would also apply for the total U.S. as well since California's fuel quality is not expected to change with the requirement that L&M fuel meet a 15 ppm cap.

The process for estimating the annual production volumes of each fuel was described in Chapter 7. The first step in the process was to develop a comprehensive description of fuel production and demand in 2001 for non-highway and highway diesel fuel which accounted for the spillover of low sulfur, highway fuel into the non-highway markets. The analysis also considered the downgrade of jet fuel and highway diesel fuel, along with some gasoline, to lower quality fuels during pipeline distribution.

We then developed a set of analogous estimates for 2014, starting with demand. Fuel demand in 2014 was projected using the EPA draft NONROAD2004 model and EIA's AEO 2003. We also estimated the volume of highway diesel fuel demand considering the highway diesel fuel requirements being implemented in 2006 and 2010. Spillover of highway fuel into the non-highway markets was assumed to remain constant (in terms of the percentage of each non-highway market represented by spillover). The volume of gasoline, jet fuel and highway diesel fuel in 2014 downgraded to 500 ppm and high sulfur distillate was projected to increase in proportion to the growth in jet fuel demand and the supply of highway diesel fuel. This downgraded fuel was first distributed to the non-highway fuel markets assuming sulfur controls on highway fuel only, followed by the 500 ppm standard on NRLM fuel in 2007 and subsequent 15 ppm standards on nonroad fuel and L&M fuel in 2010 and 2012, respectively. NRLM fuel not already complying with the required sulfur limit prior to the NRLM rule from spillover of highway fuel or downgrade, had to be desulfurized at refineries.

We then used these 2014 estimates of fuel production, downgrade and spillover to develop similar estimates for individual calendar years starting with 2007 and going through 2040 consistent with the phase of NRLM program in place at the time. These individual, annual estimates were based on a slightly more approximate methodology which assumed that the fraction of each non-highway distillate fuel's market demand represented by spillover and downgrade remained constant at its 2014 level. Regarding spillover, this is the same assumption made in developing our estimate of spillover in 2014. However, with respect to downgrade, this assumption differs from that used in the more comprehensive 2014 analysis. Because the demand for jet fuel and highway diesel fuel is projected to grow faster than that for NRLM fuel and heating oil, the percentage of downgrade in the NRLM and heating oil markets is higher in 2014 than in 2001. Thus, the net effect of assuming that the percentage of downgrade remains constant at 2014 levels underestimates the percentage of downgrade in the non-highway fuel markets after 2014, and overestimates it prior to 2014.

The effect of assuming constant downgrade percentages in the non-highway markets on the estimated costs and benefits of the overall rule is very small, given that it affects only a small portion of the overall fuel demanded, that none of the benefits of the engine emission standards are involved and that the changes in costs and benefits are offsetting. However, it has a larger impact on this incremental analysis, as about half of the 30-year sulfur dioxide emission benefits of the 15 ppm L&M cap are due to a shift in downgrade from the L&M fuel market to the heating oil market in the Northeast/Middle Atlantic area. Thus, for this incremental analysis, we revised the assumption that the downgrade fraction of the demand for the various non-highway fuels for years other than 2014 will remain constant at their 2014 levels. Instead, we estimated the volume of downgrade generated each year, based on future highway diesel fuel supply and

jet fuel demand. We made one simplifying assumption: that highway diesel fuel supply grew at the same rate as highway fuel demand. Highway fuel supply includes spillover to the non-highway fuel markets. While nonroad fuel demand is projected to grow at roughly the same rate as highway fuel, L&M fuel and heating oil demand are expected to grow much more slowly. Thus, this simplifying assumption overestimates highway fuel supply. However, the degree of overestimation is slight, since only about 10% of highway diesel fuel supply is spillover to the non-highway pool, and about 70% of that goes to the nonroad fuel market.

Estimates of the demand for highway and jet fuel through 2025 are taken from EIA's AEO 2003. After 2025 the yearly projected demand for both highway diesel fuel and jet fuel are estimated from the average projected growth from AEO 2003 between 2020 and 2025. The year-over-year growth rates for highway and jet fuel from 2020 to 2025 were 1.019 and 1.021, respectively. The annual demand for highway and jet fuel from 2012 to 2036 and the volume ratios to the projected 2014 volumes are summarized in Table 8.7-11. In last column of Table 8.7-11 an average set of volume ratios are shown which represents the combined growth for highway and jet-based downgrade in heating oil. The relative volume of highway and jet-based downgrade volumes for NRLM diesel fuel as well.

Projected Highway Diesel Fuel and Jet Fuel Demand - AEO 2003 (Trillion BTU)								
Year	Hig	ghway	Jet F	uel	Avg Ratio to			
	Fuel Demand	Ratio to 2014	Fuel Demand	Ratio to 2014	2014			
2012	7,500	0.957	4,140	0.945	0.954			
2013	7,670	0.978	4,260	0.973	0.977			
2014	7,840	1.000	4,380	1.000	1.000			
2015	7,980	1.018	4,500	1.027	1.020			
2016	8,110	1.034	4,620	1.055	1.039			
2017	8,250	1.052	4,730	1.080	1.059			
2018	8,390	1.070	4,860	1.110	1.079			
2019	8,560	1.092	4,970	1.135	1.102			
2020	8,700	1.110	5,090	1.162	1.122			
2021	8,850	1.129	5,200	1.187	1.142			
2022	9,020	1.151	5,310	1.212	1.165			
2023	9,200	1.173	5,430	1.240	1.189			
2024	9,400	1.199	5,540	1.265	1.214			
2025	9,580	1.222	5,660	1.292	1.238			
2026	9,762	1.245	5,780	1.319	1.262			
2027	9,947	1.269	5,900	1.347	1.287			
2028	10,140	1.293	6,020	1.375	1.312			
2029	10,330	1.317	6,150	1.404	1.338			
2030	10,530	1.343	6,280	1.434	1.364			
2031	10,730	1.368	6,410	1.464	1.390			
2032	10,930	1.394	6,550	1.495	1.417			
2033	11,140	1.421	6,680	1.526	1.445			
2034	11,350	1.447	6,820	1.558	1.473			
2035	11,560	1.475	6,970	1.591	1.502			
2036	11,780	1.503	7,110	1.624	1.531			

Table 8.7-11 viected Highway Diesel Fuel and Jet Fuel Demand - AEO 2003 (Trillion BTU)

The next step is to estimate the annual demand, spillover, downgrade and production volumes for NRLM fuel from 2012 to 2036 for both the proposed and final rule NRLM programs. Starting with the proposed NRLM fuel program, we estimated the jet and highway-based downgrade in the nonroad, locomotive and marine fuel markets from mid-2012 to mid-2014 by multiplying the 2014 highway and jet-based downgrade volumes shown in Table 7.1.4-1 by the ratio of highway and jet fuel demand in each year to 2014 from Table 8.7-11, respectively. For the years following 2014, we multiplied the 2014 highway and jet-based downgrade volumes shown in Table 7.1.4-2 by the ratio of highway and jet fuel demand in each year to 2014 from Table 8.7-11, respectively. Annual demand for NRLM fuel, and the contribution of spillover and small refiner fuel to these markets, were estimated by multiplying the 2014 estimates of these volumes in Tables 7.1.4-1 (for 2012-2014) and 7.1.4-2 (for 2015 and beyond) by the growth in NRLM fuel demand contained in Tables 7.1.5-1 (for nonroad and locomotive fuel) and 7.1.5-2 (for marine fuel). Annual production volumes of NRLM fuel were

estimated by subtracting the downgrade, spillover and small refiner fuel volumes from total demand. The resulting estimates of downgrade, spillover, small refiner fuel, and 15 and 500 ppm production volumes for nonroad, locomotive and marine diesel fuel for the proposed rule program are summarized in Tables 8.7-12, 8.7-13 and 8.7-14, respectively. The highway-based and jet fuel-based downgrade volumes are combined together into one column.

the Shift of Downgrade to the Heating Oil Market (million gallons) *								
Year	Downgrade	Small Refiner Fuel	Spillover	New 15 ppm Fuel	Total Volume			
2012	1,061	627	2,760	8,327	12,774			
2013	1,085	640	2,818	8,501	13,045			
2014	463	272	2,940	9,641	13,316			
2015	0	0	3,047	10,539	13,586			
2016	0	0	3,107	10,747	13,854			
2017	0	0	3,167	10,955	14,122			
2018	0	0	3,227	11,162	14,390			
2019	0	0	3,288	11,370	14,658			
2020	0	0	3,352	11,578	14,926			
2021	0	0	3,408	11,786	15,193			
2022	0	0	3,468	11,993	15,461			
2023	0	0	3,528	12,201	15,729			
2024	0	0	3,588	12,409	15,997			
2025	0	0	3,648	12,616	16,265			
2026	0	0	3,708	12,823	16,531			
2027	0	0	3,767	13,029	16,797			
2028	0	0	3,827	13,236	17,063			
2029	0	0	3,887	13,443	17,329			
2030	0	0	3,946	13,649	17,595			
2031	0	0	4,006	13,855	17,861			
2032	0	0	4,066	14,062	18,127			
2033	0	0	4,125	14,268	18,393			
2034	0	0	4,185	14,474	18,659			
2035	0	0	4,245	14,681	18,925			
2036	0	0	4,304	14,887	19,191			

Table 8.7-12
Nonroad Fuel Supply Under the Proposed NRLM Fuel Program With
the Shift of Downgrade to the Heating Oil Market (million gallons) *

Table 8.7-13

Locomotive Volumes Under the Proposed NRLM Fuel Program With the Shift of Downgrade to the Heating Oil Market (million gallons) *

the Heating On Market (million gallons) *						
Year	Downgrade	New 500 ppm Fuel	Spillover	Total Volume		
2012	579	1,705	602	2,886		
2013	593	1,710	607	2,909		
2014	1,176	1,190	566	2,932		
2015	1,614	804	539	2,956		
2016	1,644	800	544	2,988		
2017	1,675	791	549	3,015		
2018	1,707	777	554	3,038		
2019	1,743	766	559	3,067		
2020	1,775	751	563	3,089		
2021	1,807	731	566	3,104		
2022	1,843	719	571	3,132		
2023	1,881	703	576	3,160		
2024	1,921	686	581	3,187		
2025	1,959	673	586	3,218		
2026	1,997	656	591	3,244		
2027	2,036	638	596	3,270		
2028	2,076	619	601	3,295		
2029	2,116	600	605	3,321		
2030	2,157	580	610	3,347		
2031	2,199	559	615	3,373		
2032	2,242	537	619	3,399		
2033	2,286	515	624	3,425		
2034	2,330	491	629	3,450		
2035	2,376	467	634	3,476		
2036	2,422	442	638	3,502		

Marine Volumes Under the Proposed NRLM Fuel Program With the Shift of Downgrade to the Heating Oil Market (million gallons) *

Heating Oil Market (million gallons) *						
Year	Downgrade	New 500 ppm Fuel	Spillover	Total Volume		
2012	446	1,333	280	2,059		
2013	456	1,338	283	2,078		
2014	451	1,369	281	2,103		
2015	436	1,409	280	2,126		
2016	445	1,419	283	2,146		
2017	453	1,431	286	2,170		
2018	462	1,451	290	2,203		
2019	471	1,473	295	2,240		
2020	480	1,488	299	2,266		
2021	489	1,503	302	2,294		
2022	498	1,526	307	2,331		
2023	509	1,538	311	2,357		
2024	519	1,555	315	2,389		
2025	530	1,568	319	2,417		
2026	540	1,585	323	2,448		
2027	551	1,602	327	2,479		
2028	561	1,618	331	2,510		
2029	572	1,634	335	2,542		
2030	583	1,650	339	2,573		
2031	595	1,666	343	2,604		
2032	606	1,682	347	2,635		
2033	618	1,697	352	2,667		
2034	630	1,712	356	2,698		
2035	642	1,727	360	2,729		
2036	655	1,742	364	2,760		

* Excludes NRLM fuel demand in California

Annual estimates of downgrade, spillover, small refiner fuel, and 15 and 500 ppm production volumes under the final NRLM fuel program in years other than 2014 were estimated from the estimates for 2014 in the same manner. The only difference is a new set of 2014 estimates. The 2014 estimates of downgrade, spillover, small refiner fuel, and total demand for NRLM fuel for mid-2012 to mid-2014 were taken from Table 7.1.3-19. The 2014 estimates of downgrade, spillover, small refiner fuel for 2015 and beyond were taken from Table 7.1.3-20. The resulting estimates of downgrade, spillover, small refiner fuel, and 15 and 500 ppm production volumes for nonroad, locomotive and marine diesel fuel for the proposed rule program are summarized in Tables 8.7-15, 8.7-16 and 8.7-17, respectively.

Table 8.7-15

Nonroad Fuel Supply Under the Final Rule Fuel Program With the Shift of Downgrade to the Heating Oil Market (million gallons) *

Year	Downgrade	Small Refiner Fuel	Spillover	New 15 ppm Fuel	Total Volume
2012	1,061	528	2,760	8,426	12,774
2013	1,085	468	2,818	8,674	13,045
2014	463	199	2,941	9,713	13,316
2015	-	-	3,047	10,539	13,586
2016	-	-	3,107	10,747	13,854
2017	-	-	3,167	10,955	14,122
2018	-	-	3,227	11,162	14,390
2019	-	-	3,288	11,370	14,658
2020	-	-	3,352	11,578	14,926
2021	-	-	3,408	11,786	15,193
2022	-	-	3,468	11,993	15,461
2023	-	-	3,528	12,201	15,729
2024	-	-	3,588	12,409	15,997
2025	-	-	3,648	12,616	16,265
2026	-	-	3,708	12,823	16,531
2027	-	-	3,767	13,029	16,797
2028	-	-	3,827	13,236	17,063
2029	-	-	3,887	13,443	17,329
2030	-	-	3,946	13,649	17,595
2031	-	-	4,006	13,855	17,861
2032	-	-	4,066	14,062	18,127
2033	-	-	4,125	14,268	18,393
2034	-	-	4,185	14,474	18,659
2035	-	-	4,245	14,681	18,925
2036	-	-	4,304	14,887	19,191

Table 8.7-16

Locomotive Fuel Supply Under the Final Rule Fuel Program With the Shift of Downgrade to the Heating Oil Market (million gallons) *

Year	Downgrade	Small Refiner Fuel	Spillover	New 15 ppm Fuel	Total Volume
2012	397	761	602	1,127	2,841
2013	274	99	607	1,930	2,909
2014	849	42	589	1,476	2,932
2015	1,281	-	577	1,099	2,956
2016	1,304	-	583	1,100	2,988
2017	1,329	-	589	1,098	3,015
2018	1,355	-	593	1,090	3,038
2019	1,383	-	599	1,086	3,067
2020	1,408	-	603	1,069	3,089
2021	1,434	-	606	1,053	3,104
2022	1,462	-	611	1,058	3,132
2023	1,492	-	617	1,051	3,160
2024	1,524	-	622	1,041	3,187
2025	1,554	-	628	1,035	3,218
2026	1,585	-	633	1,026	3,244
2027	1,616	-	638	1,016	3,270
2028	1,647	-	643	1,005	3,295
2029	1,679	-	648	994	3,321
2030	1,712	-	653	982	3,347
2031	1,745	-	658	969	3,373
2032	1,779	-	663	956	3,399
2033	1,814	-	668	942	3,425
2034	1,849	-	674	928	3,450
2035	1,885	-	679	912	3,476
2036	1,922	-	684	897	3,502

Table 8.7-17

Marine Fuel Supply Under the Final Rule Fuel Program With the Shift of Downgrade to the	
Heating Oil Market (million gallons) *	

Year	Downgrade	Small Refiner Fuel	Spillover	New 15 ppm Fuel	Total Volume
2012	285	636	280	874	2,059
2013	173	148	283	1,474	2,078
2014	155	62	281	1,605	2,103
2015	141	-	280	1,705	2,126
2016	143	-	283	1,720	2,146
2017	146	-	286	1,738	2,170
2018	149	-	290	1,763	2,203
2019	152	-	295	1,793	2,240
2020	155	-	299	1,813	2,266
2021	158	-	302	1,834	2,294
2022	161	-	307	1,863	2,331
2023	164	-	311	1,883	2,357
2024	168	-	315	1,906	2,389
2025	171	-	319	1,927	2,417
2026	174	-	323	1,951	2,448
2027	178	-	327	1,975	2,479
2028	181	-	331	1,998	2,510
2029	185	-	335	2,022	2,542
2030	188	-	339	2,046	2,573
2031	192	-	343	2,069	2,604
2032	196	-	347	2,092	2,635
2033	199	-	352	2,116	2,667
2034	203	-	356	2,139	2,698
2035	207	-	360	2,162	2,729
2036	211	-	364	2,185	2,760

The cost of supplying NRLM fuel under the final NRLM program and for the proposed NRLM program are developed in Chapter 7 and summarized in Table 7.5-1. The engine maintenance savings associated with reduced sulfur contents are developed in Chapter 6 and summarized in Table 6.2-29. We assume that the per gallon costs developed for 2014 apply through 2036. With the increase in downgrade volume, the cost of reprocessing downgrade which occurs in some regions would increase. However, this increase occurs both with and without the 15 ppm L&M fuel cap. Thus, we did not update the estimated cost of reprocessing downgrade. The per gallon costs and savings under both L&M fuel caps are summarized here in Table 8.7-18.

10	nal Diesei	Fuel Costs Unde	er 500 and 15	ppm L&M Fuel Ca	ips.
	Refining	Additive and	Maintenance	Total w/o	Total with
	Cost	Distribution Cost	Savings	Maintenance Savings	Maintenance Savings
		Final NR	LM Fuel Progra	am	
2012-2014					
15 ppm Nonroad	5.6	0.8	-3.2	6.4	3.2
Small Refiner 500 ppm Nonroad	2.9	0.2	-2.9	3.1	0.2
Small Refiner 500 ppm L&M	2.9	0.2	-1	3.1	2.1
2014 +					
15 ppm Nonroad	5.8	1.2	-3.2	7	3.8
15 ppm L&M	5.8	1.2	-1.1	7	5.9
500 ppm NR	LM Fuel Cap	o in 2007 and 15 pp	m Nonroad Fue	l Cap in 2010 (proposed	l rule program)
2012-2014					
15 ppm Nonroad	5	0.8	-3.2	5.8	2.6
Small Refiner 500 ppm Nonroad	2.7	0.2	-2.9	2.9	0
500 ppm L&M	2.7	0.3	-1.0	3	2.0
2014 +					
15 ppm NR	5.2	1.2	-3.2	6.4	3.2
500 ppm L&M	2.7	0.2	-1.0	2.9	1.9

Table 8.7-18
Total Diesel Fuel Costs Under 500 and 15 ppm L&M Fuel Caps*

* Fuel costs are relative to uncontrolled fuel and assume that, during the transitional years of 2012 & 2014, the first 5 months are at the previous year's cost and the remaining 7 months are at the next year's cost.

We then multiplied the production volume of each fuel in a given calendar year by the net cost of using that fuel from Table 8.7-18. For this incremental analysis, we only present estimated annual costs including the maintenance savings because, on the increment, these maintenance savings are minor (0.1 c/gal) compared to the incremental cost of producing 15 ppm L&M fuel. Little information would be gained from presenting costs without the maintenance savings, as is done for the final rule analysis and the other sensitivity cases. We do present the

final discounted costs without the maintenance savings, as well as the cost-effectiveness based on the costs without maintenance savings, in Table 8.7-24. The resulting annual costs are shown in Table 8.7-19.

	Heating	Oil Mar		02 million)		
Year Final NRLM Fuel 15 ppm NR Cap					15	5 ppm L&M
	Pr	ogram	and 500	ppm L&M Cap	Incr	emental Costs
2012	\$	268	\$	162	\$	10
2013	\$	472	\$	282	\$	19
2014	\$	524	\$	337	\$	18
2015	\$	566	\$	379	\$	18
2016	\$	575	\$	386	\$	18
2017	\$	583	\$	393	\$	19
2018	\$	592	\$	400	\$	19
2019	\$	602	\$	406	\$	19
2020	\$	610	\$	413	\$	19
2021	\$	618	\$	420	\$	19
2022	\$	628	\$	426	\$	20
2023	\$	637	\$	433	\$	20
2024	\$	645	\$	440	\$	20
2025	\$	654	\$	446	\$	20
2026	\$	663	\$	453	\$	2
2027	\$	671	\$	459	\$	21
2028	\$	680	\$	466	\$	2
2029	\$	688	\$	473	\$	2
2030	\$	697	\$	479	\$	2
2031	\$	705	\$	486	\$	22
2032	\$	714	\$	492	\$	22
2033	\$	722	\$	499	\$	22
2034	\$	731	\$	505	\$	22
2035	\$	739	\$	511	\$	22
2036	\$	747	\$	518	\$	22
Fotal 30-Year Costs (2007						
Undiscounted	\$	15,731	\$	10,664	\$	5,0
30 Yr NPV at 3%	\$	8,640	\$	5,829	\$	2,8
30 Yr NPV at 7%	\$	4,249	\$	2,847	\$	1,40

Table 8.7-19 Annual Fuel Costs & Oil Change Maintenance Savings With the Shift of Downgrade to the Heating Oil Market (\$2002 million)

The absence of the shift of downgrade to the heating oil market in the Northeast/Middle Atlantic area has no impact on the supply of NRLM fuel under the proposed NRLM fuel program. Thus, the various volumes of NRLM fuel shown in Tables 8.7-12 through 8.7-14 still apply. Without the shift of downgrade to heating oil, the production volumes of NRLM fuel under the final NRLM fuel program become very similar to those for the proposed NRLM fuel program, except that L&M fuel produced after mid-2012 would have to meet a 15 ppm cap instead of a 500 ppm cap. The volumes of spillover, downgrade and demand are identical. The only difference is that the volume of 500 ppm, small refiner fuel is slightly greater with a long-term 500 ppm L&M fuel cap than with a 15 ppm cap. Thus, the incremental volume of 15 ppm fuel from mid-2012 to mid-2014 under the 15 ppm L&M fuel cap is slightly higher than simply

the volume of 500 ppm L&M fuel which must be produced under the 500 ppm L&M cap. Table 8.7-20 shows the breakdown of nonroad, locomotive and marine fuel supply for the final NRLM fuel program without a shift in downgrade to heating oil.

	to Heating Oil (million gallons) *							
Year	Downgrade	Small Refiner Fuel	Spillover	New 15 ppm Fuel	Total Volume			
		N	onroad Diesel F	uel				
2012	1,061	528	2,760	8,426	12,774			
2013	1,085	468	2,818	8,674	13,045			
2014	463	199	2,940	9,713	13,316			
2015 +	Same as for Pr	coposed NRLM Fuel	Program					
		Loc	omotive Diesel	Fuel				
2012	579	761	602	944	2,886			
2013	593	99	607	1610	2,909			
2014	1,176	42	566	1148	2,932			
2015 +	Same as for Pr	oposed NRLM Fuel	Program					
		Ν	Iarine Diesel F	uel				
2012	446	636	280	697	2,059			
2013	456	148	283	1191	2,078			
2014	451	62	280	1310	2,103			
2015 +	Same as for Pr	oposed NRLM Fuel	Program					

Table 8.7-20

NRLM Fuel Supply Under the Final NRLM Fuel Program Without a Downgrade Shift to Heating Oil (million gallons) *

* Excludes NRLM fuel demand in California

The per gallon costs shown in Table 8.7-19 are unaffected by the absence of a shift in downgrade to the heating oil market.^D Thus, the annual costs with a 500 ppm L&M cap are the same as before. The annual costs under the final NRLM program decrease slightly, as 15 ppm L&M fuel does not need to replace downgrade shifted from the L&M market to the heating oil market in the Northeast/Middle Atlantic exclusion area. The annual costs under both programs are shown in Table 8.7-21.

^D The reduced volume of 15 ppm L&M fuel under the final NRLM fuel program could reduce the per gallon cost of 15 ppm fuel, as those refiners facing the highest costs might be the first to avoid producing this fuel. However, as indicated by the sensitivity analysis of potentially lower nonroad fuel demand (Case 1 Sensitivity) discussed in Section 3 of Appendix 8A, significantly lowering the demand for 15 ppm NRLM fuel has little effect on the cost per gallon.

	-	arket (\$2002 million)	t blift of Downgrade to the
Year	Final NRLM Fuel	Proposed NRLM Fuel	Incremental Cost of 15 ppm L&M
	Program	Program	Сар
2012	\$249	\$162	\$88
2013	\$432	\$282	\$150
2014	\$488	\$337	\$151
2015	\$531	\$379	\$152
2016	\$539	\$386	\$153
2017	\$547	\$393	\$155
2018	\$556	\$400	\$156
2019	\$564	\$406	\$158
2020	\$572	\$413	\$159
2021	\$580	\$420	\$160
2022	\$588	\$427	\$162
2023	\$596	\$433	\$163
2024	\$604	\$440	\$164
2025	\$612	\$446	\$165
2026	\$619	\$453	\$166
2027	\$627	\$460	\$168
2028	\$635	\$466	\$169
2029	\$643	\$473	\$170
2030	\$650	\$479	\$171
2031	\$658	\$486	\$172
2032	\$665	\$492	\$173
2033	\$673	\$499	\$174
2034	\$680	\$505	\$175
2035	\$687	\$512	\$176
2036	\$695	\$518	\$177
	Total 30-Ye	ear Costs (2007 - 2036)	
Undiscounted	\$14,690	\$10,665	\$4,025
30-Year NPV at 3%	\$8,070	\$5,830	\$2,240
30-Year NPV at 7%	\$3,969	\$2,847	\$1,121

Table 8.7-21

Annual Fuel Costs & Oil Change Maintenance Savings Without Shift of Downgrade to the

Moving to emission reductions, we used the methodology used in the draft 2004 NONROAD model to estimate SO₂ and sulfate PM emissions from NRLM engines (Section 3.1 of the Final RIA). To calculate the emission reductions, we needed estimates for the sulfur levels for nonroad, locomotive and marine diesel fuel.

In Section 7.1.6 of the Final RIA, we present our estimate of the sulfur levels of on-purpose produced diesel fuel, spillover, and downgrade. These sulfur levels, spillover (11 ppm), small refiner fuel (340 ppm), and non-small refiner fuel (either 340 or 11 ppm), are unaffected by changing the volume of downgrade projected to be generated during fuel distribution. For downgrade, in Section 7.1, we estimated that jet-based downgrade contained 400-470 ppm sulfur and highway-based downgrade contained 25-35 ppm sulfur. The relative volumes of these downgrades varies by region. We calculated a national average sulfur content for combined

highway-based and jet-based downgrade used in the L&M markets by weighting the sulfur contents of each downgrade type in each region. The result was an average downgrade sulfur content of 101 ppm for the proposed NRLM program and 172 ppm for the final NRLM program. These sulfur levels were used for downgrade volumes for all the years of the incremental analysis.^E We also applied these downgrade sulfur contents to the small volume of downgrade used in the nonroad fuel market from mid-2012 to mid-2014. The resulting overall sulfur levels for NRLM fuel are summarized in Table 8.7-22.

^E The downgrade comprised of highway diesel fuel and jet fuel likely changes in sulfur level throughout the period as the relative volume of highway and jet fuel varies relative to each other. However, the growth of highway diesel fuel and jet fuel is very similar so very little change is expected throughout the analysis period. Thus, this assumption seems reasonable.

	Sulfur Levels of NRLM Diesel Fuel Based on Revised 48 State Analysis					e Analysis	<u></u>	
Year	Proposed Rule Final R		l Rule	Rule Propose		Final	inal Rule	
	NR	L&M	NR	L&M	NR	L&M	NR	L&M
2012	36	236	32	122	36	237	33	125
2013	36	235	29	43	36	237	30	47
2014	21	215	19	49	22	214	19	51
2015	11	201	11	55	11	198	11	54
2016	11	200	11	55	11	197	11	54
2017	11	199	11	55	11	196	11	54
2018	11	198	11	56	11	195	11	55
2019	11	198	11	56	11	194	11	55
2020	11	197	11	56	11	194	11	55
2021	11	195	11	57	11	192	11	56
2022	11	193	11	57	11	190	11	56
2023	11	192	11	57	11	189	11	57
2024	11	191	11	58	11	188	11	57
2025	11	190	11	58	11	187	11	57
2026	11	189	11	59	11	186	11	58
2027	11	188	11	59	11	185	11	58
2028	11	187	11	59	11	184	11	59
2029	11	187	11	60	11	183	11	59
2030	11	186	11	60	11	182	11	59
2031	11	185	11	61	11	181	11	60
2032	11	184	11	61	11	180	11	60
2033	11	183	11	62	11	179	11	61
2034	11	181	11	62	11	178	11	61
2035	11	180	11	62	11	177	11	62
2036	11	179	11	63	11	176	11	62
2037	11	178	11	63	11	175	11	62
2038	11	177	11	64	11	174	11	63
2039	11	176	11	64	11	173	11	63
2040	11	175	11	65	11	171	11	64

Table 8.7-22

Sulfur Levels of NRLM Diesel Fuel Based on Revised Downgrade Estimates (million gallons)

We developed these for 50-state and 48-state regions, as this was done for the other alternatives evaluated in Chapter 3. We use the 50-state sulfur levels here, even though the volumes developed above are for the U.S. excluding California. Thus, the total sulfur dioxide and sulfate PM emissions resulting from combining the fuel volumes with the sulfur contents are not correct. However, as the 15 ppm L&M cap has no impact on sulfur levels in California, the difference in sulfurous emissions between the two L&M fuel caps is correct. To avoid any possible mis-use of the absolute emissions under either L&M cap, we only present the differential emission estimates below.

In Section 7.1.6, we also estimate the sulfur content of heating oil by assuming that heating oil has the same sulfur content as NRLM fuel prior to the final NRLM rule. That is acceptable for the analysis of the overall NRLM rule, since the emission reductions related to changes in the sulfur content of heating oil are minor relative to emission reductions related to changes in sulfur content of NRLM. However, in analyzing the incremental step of reducing L&M fuel sulfur from 500 to 15 ppm, heating oil related emission represent a significant portion of the emission reductions and therefore warrant closer scrutiny. The impacts on the sulfur content of heating oil occur in the overall program primarily as a result of changes in where spillover and downgrade are projected to be used. With the imposition of the 15 ppm limit, downgrade product in particular is forced from other markets into the heating oil market. When this downgraded distillate cannot be used in NR or in L&M fuel, it will shift to the heating oil market. The main impact of this is felt as the last increment of diesel fuel, the L&M portion, is required to meet a 15 ppm limit, and primarily in the Northeast and Mid-Atlantic area where the majority of heating oil is marketed, and when under the provisions of the final rule downgraded material cannot continue to be sold into the NRLM markets. The downgrade contains between 31 (highwaybased) and 435 ppm (jet-based) sulfur, well below that of heating oil. Thus, the sulfur content of heating oil decreases significantly in the Northeast/Mid-Atlantic area with a 15 ppm cap on L&M fuel.

In the Northeast and Middle Atlantic area of the U.S., certain states regulate the sulfur content of heating oil, so some of the heating oil in this area contains much less sulfur than NRLM fuel. As a result, the sulfur level estimates based on high sulfur diesel fuel may not be entirely accurate for representing the sulfur level of heating oil, particularly in this area of the country. Given that the majority of the impact on emissions from heating oil for analyzing the L&M increment to 15 ppm are in this part of the country, we looked to see what other data might be available to better assess the sulfur levels. We obtained heating oil surveys from TRW ^{5,6}. TRW surveys covers heating oil produced in the U.S. TRW's districts A and B match the Northeast/Mid-Atlantic area area quite closely. In 2001 and 2002, heating oil produced by refineries for this market averaged 1385 ppm sulfur. (As was described in Section 7.1.6, we exclude sulfur measurements less than 500 ppm, as these likely represent spillover from the highway fuel supply.) This is less than half that of average NRLM fuel in PADD 1 (2925 ppm, see Table 7.1.6-3).

One difficulty in using the heating oil survey results directly is that the heating oil may be marketed as a single high sulfur distillate fuel to both the diesel fuel and heating oil markets. Thus, much of the intended sales for heating oil purposes could have been used as diesel fuel. The TRW surveys for both diesel fuel and heating oil cover only a small fraction of the total volume of fuel sold in the U.S. It is not clear whether the heating oil not covered by the data submitted by refiners to TRW resembles the high sulfur diesel fuel containing roughly 2900 ppm sulfur or the heating oil containing roughly 1400 ppm sulfur. Because of this uncertainty, we assume that the average heating oil in the Northeast/Mid-Atlantic Area contains 2155 ppm sulfur, the average of the TRW survey estimates for high sulfur diesel fuel and heating oil.

With the imposition of the 15 ppm L&M standard in 2012, and because of the Northeast/Mid-Atlantic area provisions of the final NRLM fuel program, 616 million gallons of

downgrade is shifted from the NRLM market to the heating oil market in 2014. Of this, 143 million gallons is jet-based downgrade and 473 million gallons is highway-based downgrade. In PADD 1, jet-based downgrade is estimated to contain 470 ppm sulfur, while highway-based downgrade contains 35 ppm sulfur. Thus, the average sulfur content of both downgrades is 129 ppm. Shifting this downgrade from the NRLM fuel market to the heating oil market reduces the sulfur content of the 616 million gallons of heating oil by 2026 ppm (2155 ppm minus 129 ppm). The volume of downgrade used in heating oil is estimated for the years before and after 2014 using the overall downgrade growth rates shown in Table 8.7-11. The resulting incremental volume of downgrade estimated to be shifted over to heating oil from 2012 to 2036 due to the final NRLM program is summarized in Table 8.7-23. The same 2026 ppm sulfur reduction due to the shift of downgrade to the heating oil pool is used for all the years.

Table 8.7-23

Incremental Volume of Downgrade Forced into Heating Oil by the Final NRLM Program (Million gallons)

	illion gallons)
Year	Volume
2012	343
2013	602
2014	616
2015	628
2016	640
2017	652
2018	665
2019	679
2020	691
2021	704
2022	718
2023	732
2024	748
2025	763
2026	778
2027	793
2028	808
2029	824
2030	840
2031	856
2032	873
2033	890
2034	907
2035	925
2036	943

We estimate that 99% of the sulfur in heating oil is emitted in the form of sulfur dioxide and 1% in the form of sulfate PM.⁷ Otherwise, the reductions in sulfur dioxide and sulfate PM emissions due to this shift of downgrade to the PADD 1 heating oil market were estimated using the formula described in Chapter 3.^F Table 8.7-16 presents the annual sulfur dioxide and sulfate PM emission reductions from NRLM fuel and heating oil. The reductions in NRLM emissions represent the difference in sulfur dioxide and sulfate PM emissions under the proposed and final NRLM fuel programs. These emissions under each fuel program are derived from combining the sulfur contents shown in Table 8.7-24 for the 50-state region with the NRLM fuel demands shown in Tables 8.7-12 through 8.7-17.

^F As described in Chapter 3, sulfur dioxide has twice the mass of sulfur contained within it. Diesel fuel and heating oil are both assumed to have a density of 7.1 pounds per gallon. Thus, the formula for calculating the sulfur dioxide emission reduction from heating oil consumption in 2014 is: 616 million gallons * 7.1 lb/gal * 2026 parts sulfur per million parts heating oil by mass * 99% conversion of sulfur to $SO_2 * 2$ lbs SO_2 per lb sulfur / 2000 lb/ton. Sulfate PM in the atmosphere is estimated to have 7 times the mass of the sulfur contained within it. Thus, the formula for calculating the sulfate PM emission reduction from heating oil consumption in 2014 is: 616 million gallons * 7.1 lb/gal * 2026 parts sulfur gallong the sulfate PM emission reduction from heating oil consumption in 2014 is: 616 million gallons * 7.1 lb/gal * 2026 parts sulfur per million parts heating oil by mass * 1% conversion of sulfur to sulfate PM * 7 lbs sulfate PM per lb sulfur / 2000 lb/ton.

Year	Sulfur Dioxide				Sulfate PM	
	NRLM Fuel	Heating Oil	Total	NRLM Fuel	Heating Oil	Total
2012	4,305	4,884	9,189	372	173	545
2013	7,450	8,572	16,022	709	303	1012
2014	6,264	8,772	15,036	580	310	890
2015	5,319	8,944	14,263	415	316	731
2016	5,332	9,108	14,440	416	322	738
2017	5,342	9,276	14,618	417	328	745
2018	5,353	9,453	14,806	418	334	752
2019	5,381	9,649	15,030	420	341	761
2020	5,385	9,822	15,207	420	347	767
2021	5,346	9,999	15,345	417	354	771
2022	5,327	10,195	15,522	416	360	776
2023	5,309	10,404	15,713	414	368	782
2024	5,310	10,627	15,937	414	376	790
2025	5,310	10,836	16,146	414	383	797
2026	5,309	11,046	16,355	414	391	805
2027	5,311	11,261	16,572	414	398	812
2028	5,305	11,479	16,784	414	406	820
2029	5,300	11,702	17,002	414	414	828
2030	5,294	11,929	17,223	413	422	835
2031	5,283	12,160	17,443	412	430	842
2032	5,274	12,396	17,670	412	438	850
2033	5,258	12,637	17,895	410	447	857
2034	5,245	12,882	18,127	409	455	864
2035	5,226	13,132	18,358	408	464	872
2036	5,209	13,387	18,596	407	473	880
30-Year (2007-2036	6) Emission Reduct	ion				
Undiscounted	134,700	264,600	399,300	10,760	9,350	20,100
30 Yr NPV at 3%	76,800	144,600	221,400	6,180	5,110	11,300
30 Yr NPV at 7%	39,700	70,800	110,500	3,230	2,500	5,730

Table 8.7-24 Annual Sulfur Dioxide and Sulfate PM Emission Reductions: 15 ppm Versus 500 ppm L&M Cap (tons per year)

If no shift in downgrade to heating oil is assumed, the sulfur dioxide and sulfate PM emission reductions due to the 15 ppm L&M fuel cap are simply the differences in the emissions in the two columns of Table 8.7-24 labeled NRLM fuel.^G

The 30-year cost effectiveness of the 15 ppm L&M cap is the ratio of the 30-year costs shown in Tables 8.7-19 and 8.7-21 divided by the 30-year emission reductions of sulfur dioxide and sulfate PM shown in Table 8.7-24. We have allocated 67 percent of the costs to sulfur dioxide emission control and 33 percent to sulfate PM control consistent with our allocation of

^G We ignored the small change in L&M fuel sulfur content which would occur if the downgrade remained in the L&M market.

costs associated with fuel-derived benefits throughout our analysis. The results are presented in Table 8.7-25.

<u>30-year Net Present Values at a 3% Discount Rate (\$2002)</u>						
	3% Di	scount Rate	7% Discount Rate			
	SOx	PM	SOx	PM		
With Shift of Downgrade to Heating Oil						
Cost (\$ million)	\$ 1,870	\$ 940	\$ 935	\$ 467		
Emissions Reduction (tons)	221,400	11,300	110,500	5,730		
Cost per ton (\$/ton)	\$ 8,450	\$ 83,200	\$ 8,460	\$ 81,500		
Without Shift of Downgrade t	o Heating Oil	_	_			
Cost (\$ million)	\$1,493	\$747	\$747	\$374		
Emissions Reduction (tons)	76,800	6,180	39,700	3,230		
Cost per ton (\$/ton)	\$ 19,400	\$ 120,700	\$ 18,800	\$ 115,800		

Table 8.7-25 Incremental Cost Effectiveness of the 15 ppm L&M Fuel Sulfur Cap 30-year Net Present Values at a 3% Discount Rate (\$2002)

As can be seen, the incremental cost effectiveness of the 15 ppm L&M fuel cap worsens without the shift in downgrade to the heating oil market. This indicates that the cost effectiveness of shifting downgrade from the L&M market to the heating oil market and replacing it with 15 ppm L&M fuel is more cost effective than simply reducing L&M fuel sulfur from 500 ppm to 15 ppm. The shift in downgrade itself is environmentally neutral from sulfur perspective, since all of the sulfur is emitted regardless of whether it is burned in a locomotive or marine diesel engine or a furnace or stationary diesel engine. The conversion of sulfur to PM is less for heating oil, but as the majority of the sulfur is emitted as sulfur dioxide in either case, sulfur dioxide emissions are the same. The difference is that, with the downgrade shift to heating oil, the new 15 ppm L&M fuel replaces high sulfur heating oil. Without the shift, the new 15 ppm L&M fuel replaces 500 ppm L&M fuel. The cost of producing 15 ppm L&M fuel from high sulfur fuel are higher than from 500 ppm fuel, 8.3 cents per gallon versus 3.1 cents per gallon. However, the sulfur reduction is also higher and to a much greater degree. With heating oil at 2155 ppm, the in-use reduction is 2144 ppm, while that from 500 ppm L&M fuel is only 329 ppm. Thus, the sulfur benefits are a factor of seven time higher, while costs are less than a factor of three higher.

While we evaluate the incremental cost effectiveness of the 15 ppm L&M cap with and without the shift of downgrade to the heating oil market, we believe that the former is the most appropriate way to evaluate this fuel control step as it is consistent with the design of the program which reflects the characteristics of the distribution system. The prohibition on using downgrade in the NRLM markets in the Northeast/Middle Atlantic area eliminates the marking of the significant volume of heating oil in this area beginning in 2007. This is an important and

valuable aspect of the final NRLM fuel program which was made regardless of any decision to control L&M fuel to 15 ppm. Thus, it is appropriate to include the effect of this provision on the cost effectiveness of 15 ppm L&M fuel control.

8.7.4 Costs per Ton Summary

Table 8.7-26 presents a summary of the cost per ton calculations presented in Sections 8.7.1 through 8.7.4.

As noted in section 8.1, we have allocated costs slightly differently in the final analysis than we did in the proposed analysis.^H Table 8.7-27 presents the costs per ton using the allocations used in the proposal. To clarify, Table 8.7-27 does not present the costs per ton from the proposed analysis. Instead, the values presented in Table 8.7-27 are the costs per ton using the final rule's costs and emissions reductions but allocating the costs using the method used in the proposal. As such, Table 8.7-27 provides a comparison of how the new cost allocations affect the costs per ton and does not provide a comparison of the final costs per ton to the proposed costs per ton.

^H The cost allocations used in the proposal differed slightly in that costs associated with fuel-derived benefits were allocated entirely to SOx (FRM allocations split them one-third to PM and two-thirds to SOx) and costs of 15 ppm fuel were allocated entirely to engine-derived benefits (FRM allocations split them one-half to fuel-derived benefits and one-half to engine-derived benefits).

NRT4 Full Program	3% discount rate		7% discount rate	
NPV of Total Cost (\$millions)	\$	27,100	\$ 13,800	
\$/ton PM	\$	11,200	\$	11,800
\$/ton NOx+NMHC	\$	1,010	\$	1,160
\$/ton SOx	\$	690	\$	620
15ppm NRLM Fuel-only Scenario				
NPV of Total Cost w/ Savings (\$millions)	\$	9,200	\$	4,600
NPV of Total Cost w/o Savings (\$millions)	\$	16,300	\$	8,500
\$/ton PM w/ Savings	\$	6,600	\$	6,000
\$/ton PM w/o Savings	\$	11,800	\$	11,200
\$/ton SOx w/ Savings	\$	1,070	\$	970
\$/ton SOx w/o Savings	\$	1,900	\$	1,800
500ppm NRLM Fuel-only Scenario				
NPV of Total Cost w/ Savings (\$millions)	\$	(500)	\$	(300)
NPV of Total Cost w/o Savings (\$millions)	\$	5,400	\$	3,000
\$/ton PM w/ Savings	\$	(400)	\$	(400)
\$/ton PM w/o Savings	\$	4,300	\$	4,300
\$/ton SOx w/ Savings	\$	(70)	\$	(70)
\$/ton SOx w/o Savings	\$	690	\$	700
15 ppm L&M Fuel-only Scenario (Increment) *				
NPV of Incremental Cost w/ Savings (\$millions)	\$	2,810	\$	1,400
\$/ton PM w/ Savings (incremental)	\$	83,200	\$	81,500
<pre>\$/ton SOx w/ Savings (incremental)</pre>	\$	8,450	\$	8,460

Table 8.7-26
Summary of Costs and Cost per Ton Estimates based on 30 Year NPVs
(\$2002)

* Includes shift of downgrade to heating oil in the Northeast/Middle Atlantic area

Table 8.7-27

Costs and Costs per Ton of the NRT4 Full Program using the Proposal's Cost Allocations 30 Year NPVs using a 3% Discount Rate (\$2002)

NRT4 Full Program	3% discount rate	
NPV of Total Cost (\$millions)	\$	27,100
\$/ton PM	\$	11,000
\$/ton NOx+NMHC	\$	1,250
\$/ton SOx	\$	460

Appendix 8A: Estimated Aggregate Cost and Cost per Ton of Sensitivity Analyses

8A.1 What Sensitivity Analyses Have Been Performed?

This Appendix contains two sensitivity analyses EPA performed regarding the emissions inventory predictions from the NONROAD model, as well as cost and cost per ton analysis which correspond to these two NONROAD model sensitivities. In the NONROAD model sensitivity Case 1, we have adjusted the emissions predictions so that NONROAD's fuel consumption estimates match the predictions of fuel volume from the Energy Information Agency. In the NONROAD model sensitivity Case 2, we have increased the fraction of diesel generators sold in the U.S. which are considered "mobile" (and therefore decreased the percentage which are "stationary") and we have increased the annual hours of use for several categories of nonroad equipment in the >750 hp category.

In the remainder of section 8A.1, we describe why we have included these sensitivity analyses in the final rule. In section 8A.2, we describe what changes were made to the NONROAD model, how each of the sensitivities were performed, and the emission inventory impacts of Case 1 and Case 2. In section 8A.3, we describe how we have altered our engine and fuel program cost methodology to match Case 1 and Case 2, what the resulting program cost estimates are using Case 1 and Case 2, and finally what the cost-per-ton estimates are for Case 1 and Case 2. In section 8A.4, we summarize the results presented in sections 8A.1 through 8A.3.

8A.1.1 What is the Case 1 Sensitivity Analysis?

The Case 1 sensitivity analysis results from comments we received on the proposal which suggested that the NONROAD model over-predicts the growth rate of the nonroad fleet. The commenters suggested that the NONROAD model's growth rates should be adjusted downward so that overall fuel consumption matches the predictions made by the Department of Energy's Energy Information Agency (EIA). As described in detail in the Summary and Analysis of Comments for this rule, we disagree with these comments and we have not made a change to the NONROAD model as a result of these comments (see section 2.3.2.2.3 of the Summary and Analysis of Comments document for this final rule). However, we are performing a sensitivity analysis (Case 1) which estimates what the impact of such a change would have on our estimates of the emissions reduction of this rule, the costs of this rule, and our cost-per-ton estimates.

8A.1.2 What is the Case 2 Sensitivity Analysis?

The Case 2 sensitivity analysis results from information we received during the development of the rule on two issues which indicates NONROAD is under-predicting emissions from some nonroad engines. One of these issues is the partitioning of generator sets into mobile and stationary. The second issue is the annual hours of use estimates for large engines (those >750 hp).

8A.1.2.1 Information Regarding Mobile & Stationary Generator Sets

During our discussions with several engine manufacturers who produce the >750 hp diesel engines, three manufacturers (who together represent a majority of the market), provided EPA with recent year sales estimates of engines used in mobile machines in the >750 hp category (e.g., mining trucks, dozers, wheel loaders, etc.) and generator sets. These manufacturers produce engines for generator sets which are certified to the existing Tier 1 nonroad standards, as well as engines which are not certified to the nonroad standards because the engines are designed for stationary power generation and therefore are not subject to EPA's nonroad standards. Many of the >750 hp nonroad certified engines which are used in generator sets are used in applications such as the large portable power generators that are contained in a Class 8 truck trailer, where power generation ratings of 1, 1.5 and 2 megawatts are common. These products are designed to be portable and are used by rental companies and in other industries where large amounts of power are needed for a relatively short duration of time. The data from the engine manufacturers indicates that approximately 30 percent of the >750 hp diesel generator sets sold in the U.S. are portable and subject to EPA nonroad diesel standards. In addition, manufacturers build some stationary engines to nonroad certified configurations to simplify their product base and thus the nonroad engine standards yield an added indirect, yet real, emission benefit.

The data which is used to estimate the nonroad equipment population in NONROAD comes from the PSR database. This database does not distinguish between mobile and stationary diesel generator sets. As documented in EPA report EPA420-P-02-004, we estimate for all of the diesel generators what percent of the PSR database diesel generator sets are mobile (and therefore subject to the EPA's nonroad standards) and what percent is stationary. These estimates vary by power range, with the percent that are considered stationary increasing with increasing rated power. For example, for <25 hp engines we estimate 10 percent are stationary, and for >600 hp, we estimate that 100 percent are stationary. Once these percentages are applied to the PSR database data to remove the estimated stationary generator sets, the remaining generator set data is used to estimate the population of generator sets in NONROAD.

The recent information we received from the engine manufacturers (~ 30 percent of generator sets >750 hp are mobile/portable) is substantially different from the current assumptions which go into NONROAD (no generators >600 hp are mobile/portable). Because at this time we do not have reference-able industry-wide information on this issue, we have not performed a new analysis to update NONROAD. However, it is clear that the recent confidential information from the engine companies indicates NONROAD is underestimating the number of nonroad diesel generators. As discussed in Chapter 8A.2, we have performed a sensitivity analysis which includes a higher percentage of mobile diesel generator sets based on the information we received from the engine manufacturers.

8A.1.2.2 Information Regarding Usage Factors for >750hp Mobile Machines and Generators

As discussed in the preamble for this final rule, we have recognized some of the unique features of the >750 hp mobile machines. Most of the >750 hp engines used in the mobile

machine category are used in mining applications, such as mining trucks, dozers, excavators and loaders. As part of our feasibility analysis, we spent a considerable amount of time with a number of engine manufacturers and equipment manufacturers to understand the applications these large engines are used in. In addition, several manufacturers provided EPA with data regarding the >750 hp mobile machine applications. One of the pieces of data which we noticed was the high annual hours of use for this equipment, which in some cases was greater than 4,000 hours per year. During our discussions with both engine and equipment manufacturers, companies made the point these large pieces of equipment are very expensive (in excess of \$1 million), and that mining operations are often run 7 days a week, "around the clock". Because of these two factors, the large mobile machines are operated at higher annual usage rates than most nonroad applications.

While we received this type of information from multiple companies, the most convincing data we received came from one of the industry's larger equipment companies. This equipment company provided EPA with confidential data for mobile machines >750 hp which included sales and annual hours of use estimates. The equipment types covered by the data included applications such as off-highway trucks, dozers, wheel loaders, and off-highway tractors. The data was representative of 10 years worth of sales, and several thousand pieces of equipment. On average, the manufacturer estimated the annual hours of use for this equipment was > 3,500 hours per year. We also received information from several engine and equipment companies which indicates the annual hours of use for >750 portable generator sets are on the order of 1,000 hours per year.

The NONROAD model contains estimates of annual hours of use which are used in the process of estimating annual emissions. The annual hours of use values are documented in EPA report EPA420-P-02-014. The annual hours of use do not vary by power category, therefore the estimate for a 250 hp dozer is the same as the estimate for a 1,000 hp dozer. For the >750 hp applications on which we received new data, the highest annual hours of use value in NONROAD is 1,641 hours/year for off-highway trucks, and for generator sets the value is 338 hours/year. These values are substantially lower than the usage information we received from engine and equipment manufacturers. While we now believe NONROAD underestimates the emissions impact of the >750hp equipment based on the new information we have received, we have not changed NONROAD at this time. The information we received, though useful for this sensitivity analysis, is not adequately reference-able and may not be sufficiently representative. In addition, while we believe it is directionally correct, we have not had an opportunity to independently verify the information or collect additional data from other sources. As a result, though not reflected in the NONROAD model results for this final rule, the Case 2 sensitivity analysis does include higher annual hours of use values for several categories of mobile machines >750hp and for generator sets >750hp, which is based on the information we received from engine and equipment companies.

8A.2 What Emissions Modeling was Done?

8A.2.1 Case 1: Inventories Adjusted to Match Fuel Consumption Derived from EIA Sources

To represent the emissions inventory for Case 1, we did not perform additional NONROAD runs. Rather, we adjusted the NONROAD fuel consumption and emissions estimates so that estimated fuel consumption matched fuel consumption estimates derived from EIA sources. We performed the adjustment by applying ratios to the NONROAD fuel consumption and emissions outputs. Specifically,, we calculated an adjustment ratio *r* as

$$r_{y} = \frac{F_{\text{NONROAD},y}}{F_{\text{EIA},y}}$$

where $F_{\text{NONROAD},y}$ is a national fuel consumption estimate as generated by Draft NONROAD2004 for year y, and $F_{\text{EIA},y}$ is a corresponding estimate derived from EIA's *Annual Energy Outlook 2003* (AEO 2003). These reports provide distillate fuel consumption projections by economic sector.

The derivation of F_{EIA} is based on a linear projection of nonroad diesel fuel consumption from 2002 to 2040, as described below. To establish a basis for estimaton of a growth rate, we derived estimates for the years 2002 and 2014 from AEO 2003, the derivation of which is described in Chapter 7.1 of the RIA. These two estimates, along with corresponding estimates from Draft NONROAD2004, are shown in Table 8A.2-1.

Table 8A.2-1 Nonroad Fuel Consumption: Draft NONROAD2004 and Estimates derived from EIA Sources (Million gallons per year)

Year	Draft NONROAD2004	Derived from EIA Sources
2002	10,625	8,428
2014	14,433	9,814

Using the following equation, we estimated a 1.4%/year average linear growth rate (without compounding) in fuel consumption g_{EIA} over this 12-year period:

$$g_{\rm EIA} = \frac{F_{\rm EIA,2014} - F_{\rm EIA,2002}}{2014 - 2002} \left(\frac{1}{F_{\rm EIA,2002}}\right)$$

Using the resulting growth rate (0.014/year), we projected fuel consumption from 2002 to 2040, based on the expression

$$F_{\text{EIA},y} = F_{\text{EIA},2002} (1 + (y - 2002)g_{\text{EIA}})$$

The resulting EIA-derived fuel consumption estimates are shown in Table 8A.2-2, along with fuel consumption estimates from Draft NONROAD2004. The ratio of the two fuel consumption estimates in each year are also shown.

Table 8A.2-3 shows projected land-based nonroad diesel fuel consumption and associated emissions inventories (NO_x , SO_2 , PM_{10}) at the national level for selected years between 2001 and 2040, as estimated by NONROAD and from EIA sources. Results are shown for both the base and control cases. These results are also presented graphically in Figures 8A.2-1 - 8A.2-4.

Calendar Year	Draft NONROAD2004	EIA FOKS/AEO Derived	Ratio
Culondul I cul	(F_{NONROAD})	$(F_{\rm EIA})$	(<i>r</i>)
2001	10,625	9,080	1.170
2002	10,919	8,428	1.296
2003	11,213	8,544	1.312
2004	11,507	8,659	1.329
2005	11,801	8,775	1.345
2006	12,092	8,890	1.360
2007	12,384	9,006	1.375
2008	12,676	9,121	1.390
2009	12,968	9,237	1.404
2010	13,259	9,352	1.418
2011	13,553	9,468	1.431
2012	13,846	9,583	1.445
2013	14,139	9,699	1.458
2014	14,433	9,814	1.471
2015	14,726	9,930	1.483
2016	15,016	10,045	1.495
2017	15,307	10,160	1.507
2018	15,597	10,276	1.518
2019	15,887	10,391	1.529
2020	16,178	10,507	1.540
2021	16,468	10,622	1.550
2022	16,759	10,738	1.561
2023	17,049	10,853	1.571
2024	17,339	10,969	1.581
2025	17,630	11,084	1.591
2026	17,918	11,200	1.600
2027	18,206	11,315	1.609
2028	18,495	11,431	1.618
2029	18,783	11,546	1.627
2030	19,071	11,662	1.635
2031	19,360	11,777	1.644
2032	19,648	11,892	1.652
2033	19,936	12,007	1.660
2034	20,225	12,123	1.668
2035	20,513	12,239	1.676
2036	20,801	12,354	1.684
2037	21,090	12,470	1.691
2038	21,378	12,585	1.699
2039	21,666	12,701	1.706
2040	21,955	12,816	1.713

Table 8A.2-22001-2040 Nonroad Fuel Consumption (Million gallons per year)

Projected Nonioad Dieser Emissions inventories							
Year (y)	National Emissions Inventory (thousand tons)						
	N	Ox	SC	SO_2		PM ₁₀	
	Base	Control	Base	Control	Base	Control	
2002	1,184	1,184	133	133	128	128	
2005	1,096	1,096	139	139	111	111	
2010	906	906	140	10.7	94.0	82.4	
2015	781	650	145	0.673	87.9	55.4	
2020	731	442	154	0.644	86.8	33.7	
2025	722	334	162	0.644	88.1	21.2	
2030	733	282	171	0.660	90.2	13.7	
2035	754	259	179	0.684	92.8	9.5	
2040	780	251	188	0.712	96.3	7.5	

Table 8A.2-3Case 1: Adjustment to Match EIA ProjectionsProjected Nonroad Diesel Emissions Inventories

8A.2.2 Case 2: Large Equipment Population and Activity

To represent Case 2, we performed NONROAD runs with modified inputs for selected equipment types. Specifically, we used modified activity for large equipment (>750 hp) in five equipment types, as shown in Table 8A.2-4. This change represents the use of large equipment on a continuous shift basis. Additionally, we modified the fractions of generators assumed to be mobile, as opposed to stationary equipment, as shown in Table 8A.2-5. The modified fractions increased populations for generators of size 100 hp and greater, resulting in an increase in the total generator population of approximately 135,000 pieces. As in Case 1, we repeated the analysis for both the base and control cases.

Table 8A.3-6 shows projected land-based nonroad diesel fuel consumption and associated emissions inventories (NO_x , SO_2 , PM_{10}) at the national level for selected years between 2001 and 2040, for both the base and control cases. These results are also presented graphically in Figures 8A.2-1 - 8A.2-4.

Equipment Type	Activity (hours/year)					
	FRM Base	Sensitivity Case				
Excavators	1,092	3,800				
Off-Highway Trucks	1,641	3,800				
Rubber Tire Loaders	761	3,800				
Crawler Tractors/Dozers	936	3,800				
Off-Highway Tractors	855	3,800				
Generators	338	1,000				

Table 8A.2-4Case 2: Large Equipment Population and ActivityAnnual Activity Estimates for Large Equipment (>750 hp)

Hp Class	FR	M Base	Sensit	ivity Case
	Mobile Fraction	Mobile Population	Mobile Fraction	Mobile Population
< 25	0.90	240,180	0.90	240,180
25-40	0.90	121,050	0.90	121,050
40-50	0.70	16,530	0.70	16,530
50-75	0.70	61,000	0.70	61,000
75-100	0.70	74,240	0.70	74,240
100-175	0.20	25,340	0.62	78,560
175-300	0.15	14,090	0.54	50,720
300-600	0.10	7,320	0.46	33,660
600-750	0.0	0	0.38	6,260
> 750	0.0	0	0.30	12,290
Total		559,750		694,490

Table 8A.2-5Case 2: Large Equipment Population and ActivityModified Mobile-Equipment Population Fractions for Diesel Generators

Year (y)	Fuel Consumption (million gal)	National Emissions Inventory (thousand tons)								
	NONROAD FRM 50-state	NONROAD Sensitivity-Case	NOx		SC	\mathbf{D}_2	PM ₁₀				
	Base		Base	Control	Base	Control	Base	Control			
2001	10,630	12,550	1,817	1,817	198	198	189	189			
2005	11,800	13,960	1,759	1,759	220	220	165	165			
2010	13,260	15,710	1,519	1,518	234	17.9	148	128			
2015	14,730	17,470	1,409	1,132	256	1.15	145	89.3			
2020	16,180	19,220	1,393	848	282	1.16	149	57.0			
2025	17,630	20,970	1,434	692	307	1.21	156	38.2			
2030	19,070	22,710	1,502	916	333	1.28	164	26.4			
2035	20,510	24,440	1,585	595	358	1.37	173	19.3			
2040	21,950	26,180	1,678	594	384	1.45	183	16.0			

Table 8A.2-6Case 2: Large Equipment Population and Activity:Projected Nonroad Diesel Fuel Consumption and Emissions Inventories

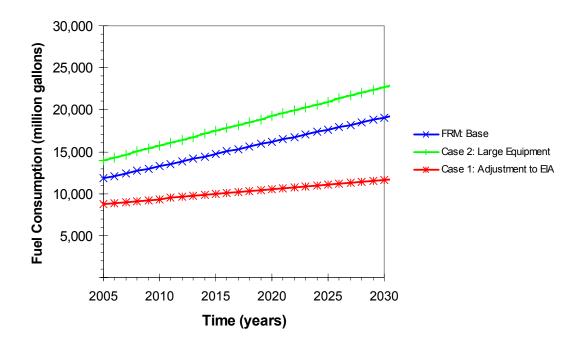


Figure 8A.2-1. Projected land-based nonroad diesel fuel consumption at the national level for the FRM base and two sensitivity cases. Case 1 represents Draft NONROAD2004 estimates adjusted to match EIA-based projections; Case 2 represents modified population and activity estimates for large equipment (>750 hp).

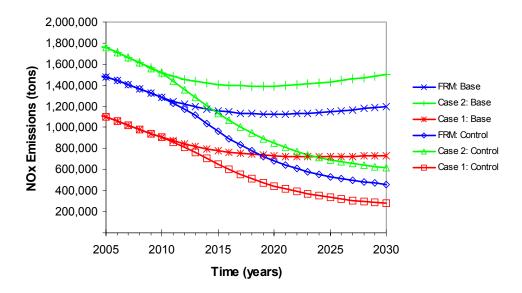


Figure 8A.2-2. Projected land-based nonroad NOx inventories at the national level for the FRM base and two sensitivity cases. Case 1 represents Draft NONROAD2004 estimates adjusted to match EIA-based projections; Case 2 represents modified population and activity estimates for large equipment (>750 hp).

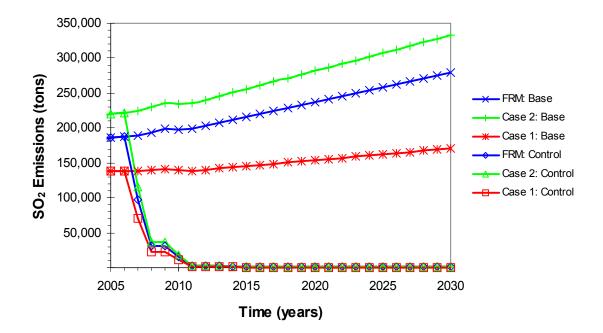


Figure 8A.2-3. Projected land-based nonroad SO₂ inventories at the national level for the FRM base and two sensitivity cases. Case 1 represents Draft NONROAD2004 estimates adjusted to match EIA-based projections; Case 2 represents modified population and activity estimates for large equipment (>750 hp).

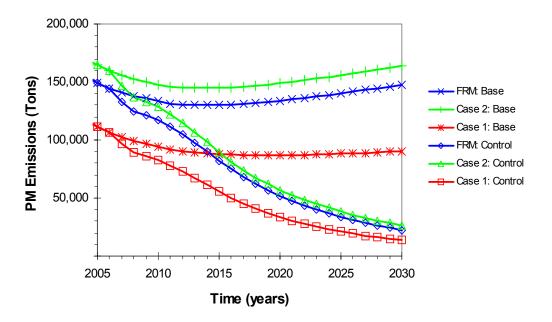


Figure 8A.2-4. Projected land-based nonroad PM_{10} inventories at the national level for the FRM base and two sensitivity cases. Case 1 represents Draft NONROAD2004 estimates adjusted to match EIAbased projections; Case 2 represents modified population and activity estimates for large equipment (>750 hp).

8A.3 What Are the Costs and Costs per Ton?

Here we look at the cost per ton of two sensitivity cases—a Case 1 sensitivity using future fuel consumption projections developed by the Energy Information Administration (EIA); and, a Case 2 sensitivity that incorporates more generator sets in both the costs and emissions reductions estimates than are incorporated under NRT4 full engine and fuel program (i.e., the NRT4 final rule estimates).

8A.3.1 Costs and Costs per Ton for the Case 1 Sensitivity

Under the Case 1 sensitivity we use future fuel projections developed by EIA rather than using the projections generated in our NONROAD model as discussed in Section 8A.1. Doing this results in lower fuel-related costs (including all operating costs expressed throughout this Regulatory Impact Analysis on a cent-per-gallon basis) since the EIA projections are lower than our model's projections. Doing this also results in lower emissions reductions as discussed in Section 8A.2. The engine and equipment costs under the Case 1 sensitivity would be identical to those under the full engine and fuel program since all engine standards would still be implemented. Tables 8A.3-1 though 8A.3-4 show all fuel-related costs associated with the Case 1 sensitivity. All these tables are analogous to Tables 8.4-1 through 8.4-4 presented above for the NRT4 final program. The cent per gallon fuel costs are presented in Table 7.5-1.

Year	Affected	NR Fuel	Affected L	_&M Fuel		Fuel C						el Costs)		l	_&M	Fuel Cost	S			M Annual
	500 ppm	15 ppm	500 ppm	15 ppm	500) ppm		ppm		0 ppm	15 p			Total		0 ppm	1	5 ppm		Total		el Costs ⁶ dollars)
	(10 ⁶ gallons)	(10 ⁶ gallons)	(10 ⁶ gallons)	(10 ⁶ gallons)		/gal)		gal)		³ dollars)	(10 ⁶ d	lollars)		6 dollars)		³ dollars)		⁶ dollars)		³ dollars)		
2007	3,671	-	1,981	-	\$	0.021	\$	-	\$	77		-	\$	77	\$	42	\$	-	\$	42	\$	119
2008	6,373	-	3,438	-	\$	0.021	\$	-	\$	134		-	\$	134	\$	72	\$	-	\$	72	\$	206
2009	6,454	-	3,483	-	\$	0.021	\$	-	\$	136		-	\$	136	\$	73	\$	-	\$	73	\$	209
2010	3,086	3,873	3,069	-	\$	0.029	· ·	0.058	\$	88		225	\$	313	\$	88	\$	-	\$	88	\$	401
2011	631	6,721	2,785	-	\$	0.034		0.058	\$	21		390	\$	411	\$	95	\$	-	\$		\$	506
2012	531	6,574	1,243	2,116	\$	0.035		0.062	\$	18		404	\$	423	\$	43	\$	130	\$	173	\$	596
2013	460	6,488	120	3,657	\$	0.036	\$ C	0.064	\$	16		415	\$	431	\$	4	\$	234	\$	238	\$	670
2014	194	7,153	50	3,527	\$	0.036	\$ C	0.067	\$	7		479	\$	485	\$	2	\$	236	\$	238	\$	723
2015	-	7,662	-	3,441			\$ C	0.069	\$	-		529	\$	529	\$	-	\$	237	\$	237	\$	766
2016	-	7,751	-	3,476			\$ C	0.069	\$	-		535	\$	535	\$	-	\$	240	\$	240	\$	775
2017	-	7,840	-	3,511			\$ C	0.069	\$	-		541	\$	541	\$	-	\$	242	\$	242	\$	783
2018	-	7,929	-	3,551			\$ C	0.069	\$	-		547	\$	547	\$	-	\$	245	\$	245	\$	792
2019	-	8,018	-	3,598			\$ C	0.069	\$	-		553	\$	553	\$	-	\$	248	\$	248	\$	802
2020	-	8,107	-	3,632			\$ C	0.069	\$	-		559	\$	559	\$	-	\$	251	\$	251	\$	810
2021	-	8,196	-	3,663			\$ C	0.069	\$	-		566	\$	566	\$	-	\$	253	\$	253	\$	818
2022	-	8,285	-	3,709			\$ C	0.069	\$	-		572	\$	572	\$	-	\$	256	\$	256	\$	828
2023	-	8,374	-	3,747			\$ C	0.069	\$	-		578	\$	578	\$	-	\$	259	\$	259	\$	836
2024	-	8,464	-	3,788			\$ C	0.069	\$	-		584	\$	584	\$	-	\$	261	\$	261	\$	845
2025	-	8,553	-	3,828			\$ C	0.069	\$	-		590	\$	590	\$	-	\$	264	\$	264	\$	854
2026	-	8,642	-	3,868			\$ C	0.069	\$	-		596	\$	596	\$	-	\$	267	\$	267	\$	863
2027	-	8,731	-	3,909			\$ C	0.069	\$	-		602	\$	602	\$	-	\$	270	\$	270	\$	872
2028	-	8,820	-	3,949			\$ C	0.069	\$	-		609	\$	609	\$	-	\$	272	\$	272	\$	881
2029	-	8.909	-	3,989			\$ C	0.069	\$	-		615	\$	615	\$	-	\$	275	\$	275	\$	890
2030	-	8,998	-	4,029			\$ C	0.069	\$	-		621	\$	621	\$	-	\$	278	\$	278	\$	899
2031	_	9,087	_	4,070				0.069	\$	-		627	\$	627	\$	-	\$	281	\$	281	\$	908
2032	_	9,176	_	4,110				0.069	\$	-		633	\$	633	\$	-	\$	284	\$	284	\$	917
2033	-	9.265	_	4.150				0.069	\$	-		639	\$	639	\$	-	\$	286	\$	286	\$	926
2034	_	9,354	-	4.190			· ·	0.069	\$	-		645	\$	645	\$	-	\$	289	\$		\$	935
2035	-	9,444	-	4,231				0.069	\$	-		652	\$	652	\$	-	\$	292	\$	292	\$	944
2036	-	9,533	-	4,271				0.069	\$	-	1	658	\$	658	\$	-	\$	295	¢ \$		\$	952
30 Yr NPV at 3%	18,602	124,895	13,818	52,202					\$	430	\$	8,447	\$	8,877	¢ \$	354	\$	3,570	¢ \$	3,924	\$	12,801
30 Yr NPV at 7%	15,567	64,783	11,317	26,078					\$	357		4,342	\$	4,698	\$	287	\$	1,776	¢ \$,	\$	6,762
	10,001	04,700	11,017	20,070					Ψ	007	Ψ	1,042	Ψ	7,000	Ψ	201	Ψ	1,110	Ψ	2,000	Ψ	0,102

Table 8A.3-1 Aggregate Fuel Costs of the Case 1 Sensitivity (\$2002)

*Fuel costs are relative to uncontrolled fuel and assume that, during the transitional years of 2010, 2012, & 2014, the first 5 months are at the previous year's cost and the remaining 7 months are at the next year's cost. See Appendix 8B for information on how these fuel volumes were developed.

Year	Affected	NR Fuel	Affected	L&M Fuel	NR Sa	avings	S		L&M S	avings	6		NRLM
	500 ppm (10 ⁶ gallons)	15 ppm (10 ⁶ gallons)	500 ppm (10 ⁶ gallons)	15 ppm (10 ⁶ gallons)	ngs=\$0.029/gal (10 ⁶ dollars)		ings=\$0.032/gal (10 ⁶ dollars)	/galsavings=\$0.010/gal (106 dollars)savings=\$0.011/gal (106 dollars)		al Total Savings (10 ⁶ dollars)			
2007	3,671	-	1,981	-	\$ 107	\$	-	\$	21	\$	-	\$	128
2008	6,373	-	3,438	-	\$ 186	\$	-	\$	36	\$	-	\$	222
2009	6,454	-	3,483	-	\$ 189	\$	-	\$	36	\$	-	\$	225
2010	3,086	3,873	3,069	-	\$ 90	\$	124	\$	32	\$	-	\$	246
2011	631	6,721	2,785	-	\$ 18	\$	215	\$	29	\$	-	\$	263
2012	531	6,574	1,243	2,116	\$ 16	\$	211	\$	13	\$	24	\$	263
2013	460	6,488	120	3,657	\$ 13	\$	208	\$	1	\$	42	\$	264
2014	194	7,153	50	3,527	\$ 6	\$	229	\$	1	\$	40	\$	276
2015	-	7,662	-	3,441	\$ -	\$	245	\$	-	\$	39	\$	285
2016	-	7,751	-	3,476	\$ -	\$	248	\$	-	\$	40	\$	288
2017	-	7,840	-	3,511	\$ -	\$	251	\$	-	\$	40	\$	291
2018	-	7,929	-	3,551	\$ -	\$	254	\$	-	\$	41	\$	295
2019	-	8,018	-	3,598	\$ -	\$	257	\$	-	\$	41	\$	298
2020	-	8,107	-	3,632	\$ -	\$	260	\$	-	\$	42	\$	301
2021	-	8,196	-	3,663	\$ -	\$	263	\$	-	\$	42	\$	305
2022	-	8,285	-	3,709	\$ -	\$	265	\$	-	\$	43	\$	308
2023	-	8,374	-	3,747	\$ -	\$	268	\$	-	\$	43	\$	311
2024	-	8,464	-	3,788	\$ -	\$	271	\$	-	\$	43	\$	315
2025	-	8,553	-	3,828	\$ -	\$	274	\$	-	\$	44	\$	318
2026	-	8,642	-	3,868	\$ -	\$	277	\$	-	\$	44	\$	321
2027	-	8,731	-	3,909	\$ -	\$	280	\$	-	\$	45	\$	324
2028	-	8,820	-	3,949	\$ -	\$	282	\$	-	\$	45	\$	328
2029	-	8,909	-	3,989	\$ -	\$	285	\$	-	\$	46	\$	331
2030	-	8,998	-	4,029	\$ -	\$	288	\$	-	\$	46	\$	334
2031	-	9,087	-	4,070	\$ -	\$	291	\$	-	\$	47	\$	338
2032	-	9,176	-	4,110	\$ -	\$	294	\$	-	\$	47	\$	341
2033	-	9,265	-	4,150	\$ -	\$	297	\$	-	\$	48	\$	344
2034	-	9,354	-	4,190	\$ -	\$	300	\$	-	\$	48	\$	348
2035	-	9,444	-	4,231	\$ -	\$	302	\$	-	\$	49	\$	351
2036	-	9,533	-	4,271	\$ -	\$	305	\$	-	\$	49	\$	354
30 Yr NPV at 3%	18,602	124,895	13,818	52,202	\$ 544	\$	4,000	\$	145	\$	599	\$	5,287
30 Yr NPV at 7%	15,567	64,783	11,317	26,078	\$ 455	\$	2,075	\$	118	\$	299	\$	2,948

 Table 8A.3-2

 Oil Change Maintenance Savings Associated with the Case 1 Sensitivity (\$2002)

Table 8A.3-3

CDPF Maintenance and CDPF Regeneration Costs Associated with the Case 1 Sensitivity

(\$2002)

Year	Fuel Consumed in New	V	Veighted) <u>2</u> 00	/eighted	CD	PF Maintenance	CD	PF Regeneration	Τc	tal Costs
i cai	CDPF Equipped	Maintenance			eneration		Cost		Cost	-) ⁶ dollars)
	Engines	IVIC	Cost	1.05	Cost		(10 ⁶ dollars)	(10 ⁶ dollars)			
	(10 ⁶ gallons)		(\$/gal)		(\$/gal)		((
2007	-	\$	-	\$	-	\$	-	\$	-	\$	-
2008	-	\$	-	\$	-	\$	-	\$	-	\$	-
2009	-	\$	-	\$	-	\$	-	\$	-	\$	-
2010	-	\$	-	\$	-	\$	-	\$	-	\$	-
2011	461	\$	0.002	\$	0.010	\$	1	\$	5	\$	5
2012	1,204	\$	0.003	\$	0.010	\$	4	\$	12	\$	16
2013	2,076	\$	0.005	\$	0.010	\$	10	\$	21	\$	32
2014	2,953	\$	0.006	\$	0.007	\$	17	\$	22	\$	39
2015	3,885	\$	0.006	\$	0.008	\$	23	\$	30	\$	53
2016	4,782	\$	0.006	\$	0.008	\$	29	\$	38	\$	66
2017	5,612	\$	0.006	\$	0.008	\$	34	\$	45	\$	79
2018	6,369	\$	0.006	\$	0.008	\$	39	\$	51	\$	90
2019	7,056	\$	0.006	\$	0.008	\$	43	\$	57	\$	100
2020	7,685	\$	0.006	\$	0.008	\$	47	\$	62	\$	110
2021	8,239	\$	0.006	\$	0.008	\$	50	\$	67	\$	118
2022	8,726	\$	0.006	\$	0.008	\$	53	\$	71	\$	124
2023	9,168	\$	0.006	\$	0.008	\$	56	\$	75	\$	131
2024	9,579	\$	0.006	\$	0.008	\$	59	\$	78	\$	137
2025	9,962	\$	0.006	\$	0.008	\$	61	\$	81	\$	142
2026	10,314	\$	0.006	\$	0.008	\$	63	\$	84	\$	147
2027	10,622	\$	0.006	\$	0.008	\$	65	\$	87	\$	152
2028	10,896	\$	0.006	\$	0.008	\$	67	\$	89	\$	156
2029	11,151	\$	0.006	\$	0.008	\$	68	\$	91	\$	159
2030	11,390	\$	0.006	\$	0.008	\$	70	\$	93	\$	163
2031	11,612	\$	0.006	\$	0.008	\$	71	\$	95	\$	166
2032	11,823	\$	0.006	\$	0.008	\$	72	\$	96	\$	169
2033	12,027	\$	0.006	\$	0.008	\$	74	\$	98	\$	172
2034	12,224	\$	0.006	\$	0.008	\$	75	\$	100	\$	174
2035	12,407	\$	0.006	\$	0.008	\$	76	\$	101	\$	177
2036	12,579	\$	0.006	\$	0.008	\$	77	\$	102	\$	180
30 Yr NPV at 3%	111,737					\$	675	\$	911	\$	1,587
30 Yr NPV at 7%	50,796					\$	305	\$	415	\$	720

 * Note that fuel used in CDPF engines includes some highway spillover fuel.
 **Weighted Regeneration Cost (\$/gal) changes year-to-year due to different fuel economy impacts with a NOx adsorber (1 percent) and without a NOx adsorber (2 percent) matched with the phase-in schedules of the emission standards.

	(\$2002)				
Year	Fuel Consumed in Engines Adding CCV System (10 ⁶ gallons)	/eighted intenance Cost (\$/gal)	Total Costs (10 ⁶ dollars)		
2007	-	\$ -	\$	-	
2008	183	\$ 0.000	\$	0	
2009	186	\$ 0.000	\$	0	
2010	173	\$ 0.000	\$	0	
2011	778	\$ 0.001	\$	1	
2012	1,606	\$ 0.001	\$	2	
2013	2,561	\$ 0.002	\$	4	
2014	3,496	\$ 0.002	\$	5	
2015	4,478	\$ 0.002	\$	7	
2016	5,447	\$ 0.002	\$	8	
2017	6,339	\$ 0.002	\$	10	
2018	7,133	\$ 0.002	\$	11	
2019	7,855	\$ 0.002	\$	12	
2020	8,516	\$ 0.002	\$	13	
2021	9,099	\$ 0.002	\$	14	
2022	9,612	\$ 0.002	\$	14	
2023	10,076	\$ 0.002	\$	15	
2024	10,505	\$ 0.002	\$	16	
2025	10,905	\$ 0.002	\$	16	
2026	11,271	\$ 0.002	\$	17	
2027	11,593	\$ 0.002	\$	18	
2028	11,879	\$ 0.002	\$	18	
2029	12,146	\$ 0.002	\$	18	
2030	12,398	\$ 0.002	\$	19	
2031	12,631	\$ 0.002	\$	19	
2032	12,853	\$ 0.002	\$	19	
2033	13,069	\$ 0.002	\$	20	
2034	13,277	\$ 0.002	\$	20	
2035	13,471	\$ 0.002	\$	20	
2036	13,654	\$ 0.002	\$	21	
30 Yr NPV at 3%	124,105		\$	187	
30 Yr NPV at 7%	56,982		\$	86	

Table 8A.3-4 CCV Maintenance Costs Associated with the Case 1 Sensitivity

* Weighted Maintenance Cost (\$/gal) changes year-to-year due to the implementation schedule for engines adding the CCV system.

Using Tables 8A.3-1 through 8A.3-4 and Table 8.2-2 (engine fixed costs by pollutant), Table 8.2-4 (engine variable costs by pollutant), Table 8.3-2 (equipment fixed costs by pollutant), and Table 8.3-4 (equipment variable costs) we can generate the annual costs and costs by pollutant for the Case 1 sensitivity. Table 8A.3-5 shows these results (this table is analogous to Tables 8.5-1 and 8.5-2 for the NRT4 final program). Note that the pollutant allocations for the Case 1 sensitivity are identical to those used for the NRT4 final program (see Table 8.1-2). Also shown in Table 8A.3-5 are the emissions reductions associated with the Case 1 sensitivity (these values are analogous to Table 8.6-1 for the NRT4 final program).

Fuel Costs Year Engine Costs Equipment Other Operating Net Operating **Total Annual** PM Costs NOx+NMHC SOx Costs PM Reduction NOx+NMHC SOx (\$million) (\$million) (\$million) Costs Costs Costs Costs Costs (\$million) (tons) Reduction Reduction (\$million) (\$million) (\$million) (\$million) (\$million) (tons) (tons) 2007 \$ \$ \$ 119 \$ (128) \$ (9) \$ (9) \$ (3) \$ \$ (6) 7.100 87.600 ----2008 \$ 81 \$ 5 \$ 206 \$ (222)\$ (16)\$ 69 \$ 80 \$ \$ (11) 12,700 100 153,200 0 \$ (225) 71 13.200 200 2009 82 \$ 5 \$ 209 \$ \$ (16)\$ \$ 81 \$ 0 \$ (11)154.400 2010 \$ 80 \$ 154 \$ 239 25 69 15.800 400 186.500 5 \$ 401 \$ (246)\$ \$ 145 \$ \$ 2011 \$ 403 \$ 62 \$ 506 \$ (256)250 \$ 715 \$ 441 \$ 170 104 19,000 13,200 201,600 \$ \$ 106 209,500 2012 \$ 718 \$ \$ 596 \$ (245)\$ 351 \$ 1.174 \$ 735 \$ 282 \$ 157 23.200 34.100 2013 \$ 882 \$ 121 \$ 670 \$ (229)440 \$ 1,444 \$ 330 201 27,900 57,500 215,500 \$ 912 \$ \$ 2014 \$ 973 \$ 146 \$ 723 \$ (232) \$ 491 \$ 1,610 \$ 893 \$ 501 \$ 215 32.800 97.100 218,500 \$ 221,300 2015 950 \$ 149 \$ 766 \$ (225)\$ 541 \$ 1.640 \$ 911 \$ 503 \$ 226 37.900 136.200 2016 \$ 920 150 \$ \$ 1,631 229 42,500 173,800 223,400 \$ 775 (214)\$ 561 \$ \$ 914 \$ 487 \$ 2017 \$ 910 \$ 150 \$ 783 \$ (203)580 \$ 1.640 \$ 231 47.000 209.400 225.500 \$ 924 \$ 485 \$ 2018 \$ 901 \$ 146 \$ 792 \$ (194)\$ 598 \$ 1,645 \$ 922 \$ 489 \$ 234 51,100 241,700 227,700 \$ 271.800 2019 890 \$ 147 \$ 802 \$ (186)\$ 615 \$ 1.652 \$ 944 \$ 471 \$ 237 54.900 230.100 2020 \$ 900 \$ 299.400 232.200 \$ 147 810 \$ (179)\$ 631 \$ 1.678 \$ 962 \$ 477 \$ 239 58.500 2021 \$ 913 \$ 99 \$ 818 \$ (173)\$ 645 \$ 1,657 \$ 957 \$ 458 \$ 241 61,700 324,000 234,200 \$ 927 2022 \$ 66 \$ 828 \$ (169)\$ 659 \$ 1.651 \$ 959 \$ 448 \$ 244 64.700 346.100 236.600 \$ \$ \$ \$ \$ \$ \$ \$ 247 366.500 2023 940 56 836 (165)671 1,667 972 \$ 448 67.400 238.800 2024 \$ 954 \$ 36 \$ \$ \$ 683 \$ \$ \$ 250 70.000 385.000 241.100 845 (162)1.672 989 433 \$ 2025 \$ 967 \$ 32 \$ 854 \$ (159) \$ 695 \$ 1.694 \$ 1.002 \$ 439 \$ 252 72.400 402.200 243.300 2026 \$ 980 \$ 32 \$ \$ \$ 706 \$ 255 74,700 417,900 245,600 863 (157)1,719 \$ 1,019 \$ 445 \$ \$ 2027 994 \$ 33 \$ \$ (155) \$ 717 \$ 1.743 \$ 1.035 \$ \$ 258 76.800 432.200 247.900 872 451 \$ 33 \$ 727 \$ 260 250,100 2028 1,007 \$ 881 \$ (154)\$ 1,767 \$ 1,050 \$ 457 \$ 78,600 445,200 2029 \$ 1.021 \$ 33 \$ 890 \$ (153) \$ 737 \$ 1.791 \$ 1.065 \$ 463 \$ 263 80 400 457.300 252.400 2030 \$ 1.034 \$ 34 \$ \$ 746 \$ 1.814 \$ 1.080 265 82.100 468.000 254,700 899 (153)\$ \$ 469 \$ \$ \$ 755 \$ 268 2031 1,048 \$ 34 \$ (153)\$ 1,837 \$ 1,094 474 \$ 83,600 477,900 257,100 908 \$ 2032 \$ 1.061 \$ 35 \$ 917 \$ (153) \$ 764 \$ 1.860 \$ 1.109 \$ 480 \$ 271 85.000 487.400 259,400 \$ \$ 1,882 2033 1,074 \$ 35 926 \$ (153)\$ 773 \$ \$ 1,123 \$ 486 \$ 273 86,400 496.300 261,700 2034 \$ \$ \$ 781 \$ 276 504.900 264.100 1.088 \$ 35 935 (153)\$ 1.905 \$ 1.137 \$ 492 \$ 87.800 2035 \$ 1.101 \$ 36 \$ 944 \$ (154) \$ 790 \$ 1.927 \$ 1.151 \$ 497 \$ 279 89.000 512.900 266.400 2036 1,115 \$ 36 \$ 952 (154) 798 1,949 1,165 503 281 90.200 520,600 268.800 \$ \$ \$ \$ \$ \$ \$ 30 Yr NPV at 3% \$ \$ 9.286 6.590 3.527 4.421.600 4.032.300 \$ 14.054 \$ 1.281 12.801 (3,514) \$ \$ 24.622 \$ 14.505 \$ \$ 919.400 754 4,619 \$ 12,588 7,429 450,100 30 Yr NPV at 7% \$ 7,215 \$ \$ 6,762 \$ (2, 143)\$ \$ \$ 3,372 \$ 1,787 1,981,700 2,240,800

 Table 8A.3-5

 Summary of Aggregate Costs, Costs by Pollutant, and Emissions Reductions Associated with the Case 1 Sensitivity (\$2002)

The calculations of cost per ton of each emission reduced under the Case 1 sensitivity divides the net present value of the annual costs assigned to each pollutant (Table 8A.3-5) by the net present value of the total annual reductions of each pollutant (Table 8A.3-5). The 30-year net present value of the costs associated with each pollutant, calculated with a three percent discount rate, are shown in Table 8A.3-5 as \$6.6 billion for NOx+NMHC, \$14.5 billion for PM, and \$3.5 billion for SOx with the total cost of the program estimated at \$24.6 billion. The 30-year net present value, with a three percent discount rate, of emission reductions are estimated at 4.4 million tons of NOx+NMHC, 919 thousand tons of PM and 4.0 million tons of SOx (see Table 8A.3-5). How these emissions reductions were developed is described in Section 8A.2 (see Table 8A.2-3).¹ The results of the cost per ton calculations are shown in Table 8A.3-6.

30-year Net Present Values at a 3% and 7% Discount Rate (\$2002)									
Item	3% discount rate	7% discount rate	Source						
Cost per Ton NOx+NMHC	\$1,490	\$1,700	Calculated						
Cost per Ton PM	\$15,800	\$16,500	Calculated						
Cost per Ton SOx	\$870	\$800	Calculated						

Table 8A.3-6 Aggregate Cost per Ton for the Case 1 Sensitivity 0-year Net Present Values at a 3% and 7% Discount Rate (\$2002)

We have also calculated the cost per ton of emissions reduced in the year 2030 using the annual costs and emission reductions in that year alone. This number, shown in Table 8A.3-7, approaches the long-term cost per ton of emissions reduced.

¹ Note that the emissions reductions shown in Table 8A.3-5 are not identical to the reductions one would get using the inventories presented in Table 8A.2-3. The emissions inventories in Table 8A.2-3 are for land based nonroad engines only and do not include emissions associated with locomotive and marine engines. To make the comparison between the Case 1 \$/ton and the NRT4 full program \$/ton, the Case 1 locomotive and marine emissions reductions are included with the Case 1 nonroad land based emissions reductions. Because the emissions reductions associated with locomotive and marine engines are directly proportional to gallons of fuel consumed (because no new emission control hardware is being added to those engines), we have calculated the locomotive and marine emissions reductions by taking the ratio of the Case 1 locomotive and marine gallons consumed to the NRT4 full program locomotive and marine gallons consumed and multiplied that ratio by the NRT4 locomotive and marine emissions reductions to arrive at the Case 1 locomotive and marine emissions reductions. These Case 1 locomotive and marine emissions reductions were then added to the Case 1 nonroad land based emissions reductions to arrive at the Case 1 locomotive and marine emissions reductions by the NRT4 locomotive and marine emissions reductions were then added to the Case 1 nonroad land based emissions reductions to arrive at the Case 1 nonroad land based emissions reductions to arrive at the Case 1 nonroad land based emissions reductions to arrive at the Case 1 nonroad land based emissions reductions to arrive at the Case 1 emissions reductions were then added to the Case 1 nonroad land based emissions reductions to arrive at the Case 1 emissions reductions shown in Table 8A.3-5.

Annual Values without	t Discounting (\$2002)
Pollutant	Long-Term Cost per Ton in 2030
NOx+NMHC	\$1,000
РМ	\$13,200
SOx	\$1,050

Table 8A.3-7Long-Term Cost per Ton of the Case 1 SensitivityAnnual Values without Discounting (\$2002)

8A.3.2 Costs and Costs per Ton of the Case 2 Sensitivity

Under the Case 2 sensitivity, more generator sets are assumed to be mobile than are assumed under NRT4 full engine and fuel program, as described in Section 8A.1. This results in higher engine and equipment variable costs since more generator sets (gensets) add NOx adsorbers and CDPFs and more equipment fixed costs since more machines must undergo redesign and product support literature changes. Engine fixed costs would not change since we believe that the R&D work estimated for the NRT4 full program would cover these additional gensets. Fuel-related costs would also increase because more machines would incur CDPF and CCV maintenance costs and CDPF regeneration costs. Increased costs for the incrementally higher cost fuel and savings associated with that fuel should not change since our earlier calculations for the NRT4 full engine and fuel program would have included these costs (i.e., those costs and savings are included in the NRT4 final rule).

We have calculated the increased engine variable costs using the equations shown in Table 6.4-2 and have applied those costs to the same nonroad engine fleet with the exception that more gensets are included. Likewise, we followed the same process for developing equipment costs as described in Chapter 6 to generate the higher equipment fixed and variable costs.

Because more machines are adding the new engine hardware (CDPFs and NOx adsorbers), the emissions reductions associated with the Case 2 sensitivity would be higher than under the NRT4 final program. These higher emissions reductions were generated using our NONROAD model as discussed in section 8A.2.2. These emissions reductions are directly proportional to the increased amount of fuel that would be consumed in these additional engines and, likewise, to the increased fuel-related costs under this sensitivity. Using that direct relationship, we can estimate the incremental fuel-related costs by calculating the ratio of fuel-related costs under the full engine and fuel program to the emissions reductions under the full engine and fuel program and then applying that ratio to the emissions reductions under the Case 2 sensitivity. Table 8A.3-8 presents the annual costs, the costs by pollutant, and the emissions reductions of the Case 2 sensitivity. Note that costs have been allocated as done under the NRT4 full engine and fuel program (see Table 8.1-2). Note also that the emissions reductions shown in Table 8A.3-8 include the higher reductions from gensets and the nonroad, locomotive, and marine reductions that would occur under the full engine and fuel program.

Year Engine Costs Equipment Fuel Costs Other Operating Net Operating Total Annual PM Costs NOx+NMHC SOx Costs PM NOx+NMHC SOx (\$million) (\$million) Costs (\$million) Costs (\$million) (\$million) Costs Costs Costs (\$million) Reduction Reduction Reduction (\$million) (\$million) (\$million) (tons) (tons) (tons) 2007 \$ \$ \$ 161 \$ (181 \$ (21 \$ (21)\$ (7)\$ \$ (14)12.100 149 900 ----2008 \$ 81 \$ \$ 281 \$ (318) \$ (37) \$ 49 \$ 73 \$ 0 \$ (25) 21,900 200 265,500 5 22.900 2009 \$ 82 \$ 5 \$ 286 \$ (324)\$ (38) \$ 49 \$ 74 \$ 0 \$ (26)300 270.900 2010 \$ 80 \$ 228 312 \$ 25.000 600 289.300 5 \$ 602 \$ (375)\$ \$ \$ 179 34 \$ 99 2011 \$ 423 \$ 67 (415)396 885 486 267 133 29,700 45,600 304,900 \$ 811 \$ \$ \$ \$ \$ \$ 100.500 2012 \$ 745 \$ 111 \$ 902 \$ (383) \$ 520 \$ 1,376 \$ 803 \$ 377 \$ 195 37.000 315.000 2013 \$ 906 \$ 126 (352 \$ 1,663 996 45,000 152,300 323,800 \$ 984 \$ 631 \$ \$ \$ 421 \$ 246 2014 \$ 1,000 \$ 151 \$ 1.041 \$ (349) \$ 691 \$ 1,842 \$ 987 \$ 591 \$ 264 53.100 215.900 330.700 2015 \$ 989 \$ 157 \$ 1.103 \$ (339) \$ 764 \$ 1.910 \$ 1.037 \$ 596 \$ 278 62.400 281 600 337.600 2016 \$ 959 1,911 1,052 70,900 345,100 343,500 \$ 158 \$ 1,113 \$ (319)\$ 793 \$ \$ \$ 576 \$ 282 2017 \$ \$ (302 822 1.927 79.000 405.600 349.500 947 158 \$ 1.124 \$ \$ \$ \$ 1.070 \$ 571 \$ 287 2018 \$ 939 \$ 154 \$ 1,136 \$ (287 \$ 849 \$ 1,941 \$ 1,075 \$ 574 \$ 292 86,100 461,200 355,600 \$ 2019 928 \$ 155 \$ 1.149 \$ (274)\$ 875 \$ 1.958 \$ 1.105 \$ 556 \$ 296 92.600 514.100 361.800 \$ 367,700 2020 939 \$ 155 \$ 1.162 \$ (262 \$ 900 \$ 1.994 \$ 1.130 \$ 563 \$ 301 98.800 563.900 2021 \$ 953 \$ 103 \$ 1,177 \$ (254)\$ 923 \$ 1,979 \$ 1,132 \$ 542 \$ 305 104,600 609,600 373,600 2022 \$ 967 \$ 70 \$ 1.193 \$ (247 \$ 946 \$ 1.984 \$ 1,140 \$ 533 \$ 310 110.100 652.200 379.800 \$ \$ \$ \$ \$ 2023 981 60 1,210 (241)969 \$ 2,010 \$ 1,160 \$ 535 \$ 315 115,300 692,700 385.800 \$ 995 \$ \$ \$ 991 2.025 522 \$ 120.200 730.500 391.900 2024 39 \$ 1.227 (237 \$ \$ 1.184 \$ 319 2025 \$ 1.009 \$ 33 \$ 1.245 \$ (233) \$ 1.012 \$ 2.054 \$ 1,201 \$ 529 \$ 324 125.100 766.600 398.000 1,023 \$ 2,090 1,224 537 \$ 129.600 800,400 404.000 2026 \$ \$ 33 \$ 1,263 \$ (229)1,034 \$ \$ \$ 329 2027 \$ 1.037 \$ \$ \$ (227 \$ \$ 2.125 \$ 1.247 \$ \$ 333 133.900 831.200 34 1.281 1.054 545 410.100 2028 \$ 1,051 \$ 34 \$ 1,300 \$ (226)\$ 1,074 \$ 2,159 \$ 1,268 \$ 552 \$ 338 137,900 860,200 416,100 2029 \$ 1.065 \$ 34 \$ \$ (225)\$ 1.093 \$ 2.192 \$ 1.290 \$ 560 \$ 343 141.700 887.700 422.200 1.318 1.079 \$ 2.226 347 145,400 913.100 2030 \$ \$ 35 \$ 1.337 \$ (225)1.112 \$ \$ 1.311 \$ 568 \$ 428.300 2031 \$ 1,093 \$ \$ \$ \$ 1,130 2,259 \$ 1,331 \$ 352 148,800 936,700 434,400 35 1,356 (225)\$ \$ 576 2032 \$ 1.107 \$ 36 \$ 1.374 \$ (226)\$ 1.149 \$ 2.291 \$ 1.351 \$ 583 \$ 357 152.100 959.800 440.500 2033 \$ 1,121 \$ 36 \$ 1,393 \$ (227 \$ 1,167 \$ 2.324 \$ 1,372 \$ 591 \$ 361 155,400 982.000 446,700 1,185 158.500 2034 \$ 1.135 \$ 37 \$ 1.412 \$ (228)\$ \$ 2.356 \$ 1.392 \$ 599 \$ 366 1.003.700 452.800 2035 \$ 1.149 \$ 37 \$ \$ (229)\$ 1.202 2.389 606 \$ 371 161.600 1.024.500 458.900 1.431 \$ \$ 1.412 \$ 1,163 (230) 2,421 1,431 614 375 164,500 1,044,800 465,100 2036 \$ \$ 38 \$ 1,450 \$ \$ 1,220 \$ \$ \$ \$ 1.584.300 8.662.500 30 Yr NPV at 3% \$ 14.628 \$ 1.344 \$ 18.772 \$ (5.236)\$ 13.535 \$ 29.507 \$ 17.040 \$ 7.988 \$ 4.479 6.511.100 7,502 30 Yr NPV at 7% \$ \$ 791 \$ 9,891 \$ (3, 198)\$ 6,693 \$ 14,986 \$ 8,635 \$ 4,102 \$ 2,248 768,300 3,900,200 3,593,900

 Table 8A.3-8

 Summary of Aggregate Costs, Costs by Pollutant, and Emissions Reductions Associated with the Case 2 Sensitivity (\$2002)

The calculations of cost per ton of each emission reduced under the Case 2 sensitivity divides the net present value of the annual costs assigned to each pollutant (Table 8A.3-8) by the net present value of the total annual reductions of each pollutant (Table 8A.3-8). The 30-year net present value of the costs associated with each pollutant, calculated with a three percent discount rate, are shown in Table 8A.3-8 as \$8.0 billion for NOx+NMHC, \$17.0 billion for PM, and \$4.5 billion for SOx, with the total cost of the program estimated at \$29.5 billion. The 30-year net present value, with a three percent discount rate, of emission reductions are estimated at 8.7 million tons of NOx+NMHC, 1.6 million tons of PM, and 6.5 million tons of SOx (see Table 8A.3-8). How these emissions reductions were developed is described in Section 8A.2 (see Table 8A.2-6).^J The results of the cost per ton calculations are shown in Table 8A.3-9.

30-year Net Present Values at a 3% and 7% Discount Rate (\$2002)									
Item	3% discount rate	7% discount rate	Source						
Cost per Ton NOx+NMHC	\$920	\$1,050	Calculated						
Cost per Ton PM	\$10,800	\$11,200	Calculated						
Cost per Ton SOx	\$690	\$630	Calculated						

Table 8A.3-9 Aggregate Cost per Ton for the Case 2 Sensitivity 0-year Net Present Values at a 3% and 7% Discount Rate (\$2002

We have also calculated the cost per ton of emissions reduced in the year 2030 using the annual costs and emission reductions in that year alone. This number, shown in Table 8A.3-10, approaches the long-term cost per ton of emissions reduced.

Table 8A.3-10 Long-Term Cost per Ton of the Case 2 Sensitivity Annual Values without Discounting (\$2002)

Pollutant	Long-Term Cost per Ton in 2030
NOx+NMHC	\$620
РМ	\$9,000
SOx	\$810

^J Note that the emissions reductions shown in Table 8A.3-8 are not identical to the reductions one would get using the inventories presented in Table 8A.2-6. The emissions inventories in Table 8A.2-6 are for land based nonroad engines only and do not include emissions associated with locomotive and marine engines. To make the comparison between the Case 2 \$/ton and the NRT4 full program \$/ton, the Case 2 locomotive and marine emissions reductions are included with the Case 2 nonroad land based emissions reductions. The Case 2 locomotive and marine emissions reductions would be identical to those under the NRT4 full program since nothing about the Case 2 sensitivity would impact emissions reductions from locomotive and marine engines. Therefore, the NRT4 full program locomotive and marine emissions reductions have been added to the Case 2 nonroad land based emissions reductions to arrive at the Case 2 emissions reductions shown in Table 8A.3-8.

8A.4 Summary of the Sensitivity Analyses Results

We present here a summary of the results of the Case 1 and Case 2 sensitivity analyses, and we compare these results to the NRT4 full engine and fuel program (i.e., the NRT4 Final Rule).

Table 8A.4-1 shows the emission reduction comparison between the NRT4 full program and the sensitivity cases for PM and NOx. As can be seen, the Case 1 sensitivity results in a decrease in both PM and NOx emissions reductions on the order of 35 to 40 percent. The Case 2 sensitivity results in an increase in PM reductions on the order of 10 percent and an increase in NOx reductions on the order of 20 percent.

 Table 8A.4-1

 Emissions Reduction* Comparison for Case 1 and Case 2 Sensitivity Analyses

 30 Year Net Present Values at a 3% Discount Rate

Baseline/Control Scenario	NOx+NMHC (tons)	Percent Relative to NRT4 FRM	PM (tons)	Percent Relative to NRT4 FRM
Nonroad Tier 4 Final Rule	7,077,900	-	1,430,500	-
Case 1 Sensitivity Analysis	4,421,600	-38%	919,400	-36%
Case 2 Sensitivity Analysis	8,662,500	22%	1,584,300	11%

* See Tables 8.6-1, 8A.3-5, and 8A.3-8, respectively.

Table 8A.4-2 summarizes the results of the two sensitivity cases with respect to costeffectiveness for NMHC+NOx, PM, and SOx, and compares these values to the final NRT4 program. As can be seen, the Case 1 sensitivity analysis results in an increase in the \$/ton estimates for all pollutants. However, in all cases, these estimates are still within the range of previous mobile source control programs for NMHC+NOx and PM, and for SOx on the same order as stationary control programs for acid rain (see Tables VI.D-3, -4, and -5 of the preamble for this final rule). For the Case 2 sensitivity analysis, Table 8A.4-2 shows that the costeffectiveness for NOx+NMHC and for PM are lower than for the final Tier 4 program, and for SOx the cost-effectiveness is the same as for the final Tier 4 program.

Table 8A.4-2

Comparison of Aggregate Cost per Ton Estimates: NRT4 Final Rule, Case 1 Sensitivity Analysis, and Case 2 Sensitivity Analysis

30-year Net Present Values at a 3 percent Discount Rate (\$2002)

Pollutant	Nonroad Tier 4 Final Rule	Case 1 Sensitivity Analysis	Case 2 Sensitivity Analysis
NOx+NMHC (\$/ton)	\$1,010	\$1,490	\$920
PM (\$/ton)	\$11,200	\$15,800	\$10,800
SOx (\$/ton)	\$690	\$870	\$690

Appendix 8B: Fuel Volumes used throughout Chapter 8

The volumes in this Appendix were developed from the information contained in Section 7.1 of Chapter 7 of the RIA. Demand volumes are estimated for each EPA use category, including nonroad, locomotive, marine, and highway diesel fuel, and heating oil, for 2014. The 2014 estimated volumes of pipeline downgrade and highway diesel fuel spillover are apportioned to various EPA use categories depending on the regulatory scenario. By default, this analysis estimates the volume of fuel which must be desulfurized for supplying the overall demand of each EPA use category. The regulatory scenarios modeled for their volumes for this Chapter include the Final Rule Program and several sensitivity cases which are summarized here. For each case, the table which summarizes the 2014 volumes is listed along with the case description.

Final Rule Program:

- Period from 2007 to 2010 NRLM must meet a 500 ppm sulfur cap standard. Small refiners are exempted and are assumed to produce high sulfur distillate and sell that fuel into the NRLM diesel fuel pool (Table 7.1.3-14).
- Period from 2010 to 2012 nonroad must meet a 15 ppm sulfur cap standard and locomotive and marine must meet a 500 ppm sulfur cap. Small refiners are exempted and can sell exempted fuel into the nonroad diesel fuel pool, except for most of PADD 1, providing that they produce 500 ppm fuel (Table 7.1.3-17).
- Period from 2012 to 2014 NRLM must meet a 15 ppm sulfur cap standard. Small refiners are exempted and can sell exempted fuel into the NRLM diesel fuel pool, except for most of PADD 1, providing that they produce 500 ppm fuel (Table 7.1.3-19).
- Period from 2014 and thereafter The small refiner provisions have expired (Table 7.1.3-20).

NRLM to 500 ppm only:

- Period from 2007 to 2010 Same as Final Rule Program above for the period 2007 to 2010 (Table 7.1.3-14).
- Period after 2010 NRLM fuel remains at 500 ppm (Table 7.1.4-1).

Final Rule Program, EIA nonroad volumes:

- Same as Final Rule Program except that the nonroad volumes were developed using EIA information instead of using NONROAD (Tables 7.1.4-10, 7.1.4-11, 7.1.4-12, and 7.1.4-13).

All the volume streams in each case were apportioned into specific families of similar fuels depending on the quality of the specific volume stream and whether it was regulated under the NRLM Program. These fuel families and the streams which comprise them are summarized in the following table.

	Fuel Family										
High Sulfur	Old 500 ppm	New 500 ppm	Old 15 ppm	Reprocessed Downgrade	New 15 ppm	Total Volume					
High Sulfur (3000 ppm) distillate fuel including NRLM and heating oil Small refiner fuel from 2007 to 2010	500 ppm diesel fuel meeting the Highway Diesel Fuel Program requirements	500 ppm diesel fuel meeting the Nonroad Diesel Fuel Program requirements Small refiner fuel from 2010 to 2014	15 ppm diesel fuel meeting the Highway Diesel Fuel Program requirements	Oversupply of downgrade into a market which must be reprocessed to 15 ppm	15 ppm diesel fuel meeting the Nonroad Diesel Fuel Program requirements	Total of these various volumes.					

Fuel Families and the Fuels They Represent*

* California gallons are not included. "Affected" 500 ppm gallons are labeled here as "New 500 ppm" and "Affected" 15 ppm gallons are the summation of the columns labeled "Reprocessed Downgrade" and "New 15 ppm."

The 2014 volumes are adjusted to estimate the volumes in each year from 2007 to 2040 using growth ratios compared to 2014 based on the growth rate factors in Tables 7.1.5-1 and 7.1.5-2.

Analyzing and categorizing the volumes in this fashion resulted in the development of the input volumes used in this chapter. For a more complete summary of how the volumes were calculated consult Section 7.1 of Chapter 7 of the RIA. The following tables summarize this information.

Year	High Sulfur	Old 500 ppm	New 500 ppm	Old 15 ppm	Reprocessed	New 15 ppm	Total Volume
	(million gallons)	(million gallons)	(million gallons)	(million gallons)	Downgrade	(million gallons)	(million gallons)
					(million gallons)		
2007	4,027	239	4,790	2,369	-	-	11,426
2008	584	179	8,406	2,526	-	-	11,695
2009	597	183	8,599	2,585	-	-	11,964
2010	255	673	4,014	2,643	-	6,189	12,233
2011	-	1,043	614	2,701	-	8,145	12,504
2012	-	1,066	528	2,760	-	8,420	12,774
2013	-	1,088	468	2,818	-	8,671	13,045
2014	-	463	199	2,941	68	9,645	13,316
2015	-	-	-	3,047	118	10,421	13,586
2016	-	-	-	3,107	121	10,626	13,854
2017	-	-	-	3,167	123	10,832	14,122
2018	-	-	-	3,227	125	11,037	14,390
2019	-	-	-	3,288	127	11,243	14,658
2020	-	-	-	3,352	130	11,448	14,926
2021	-	-	-	3,408	132	11,654	15,193
2022	-	-	-	3,468	134	11,859	15,461
2023	-	-	-	3,528	137	12,064	15,729
2024	-	-	-	3,588	139	12,270	15,997
2025	-	-	-	3,648	141	12,475	16,265
2026	-	-	-	3,708	144	12,679	16,531
2027	-	-	-	3,767	146	12,883	16,797
2028	-	-	-	3,827	148	13,088	17,063
2029	-	-	-	3,887	151	13,292	17,329
2030	-	-	-	3,946	153	13,496	17,595
2031	-	-	-	4,006	155	13,700	17,861
2032	-	-	-	4,066	158	13,904	18,127
2033	-	-	-	4,125	160	14,108	18,393
2034	-	-	-	4,185	162	14,312	18,659
2035	-	-	-	4,245	165	14,516	18,925
2036	-	-	-	4,304	167	14,720	19,191

Table 8B-1Nationwide Nonroad Volumes Under the NRT4 Final Rule Fuel Program

Year	High Sulfur (million gallons)	Old 500 ppm (million gallons)	New 500 ppm (million gallons)	Old 15 ppm (million gallons)	Reprocessed Downgrade (million gallons)	New 15 ppm (million gallons)	Total Volume (million gallons)
2007	968	45	1,141	539		-	2,694
2008	138	40	1,978	568	-	-	2,724
2009	140	40	2,005	576	-	-	2,761
2010	59	356	1,805	585	-	-	2,805
2011	-	591	1,671	596	_	-	2,858
2012	-	410	761	602	-	1,114	2,841
2013	-	278	99	607	-	1,925	2,909
2014	-	849	42	589	-	1,476	2,932
2015	-	1,266	-	577	-	1,154	2,956
2016	-	1,279	-	583	-	1,166	2,988
2017	-	1,291	-	589	-	1,177	3,015
2018	-	1,301	-	593	-	1,186	3,038
2019	-	1,313	-	599	-	1,197	3,067
2020	-	1,322	-	603	-	1,205	3,089
2021	-	1,329	-	606	-	1,212	3,104
2022	-	1,341	-	611	-	1,222	3,132
2023	-	1,353	-	617	-	1,233	3,160
2024	-	1,365	-	622	-	1,244	3,187
2025	-	1,378	-	628	-	1,256	3,218
2026	-	1,389	-	633	-	1,266	3,244
2027	-	1,400	-	638	-	1,276	3,270
2028	-	1,411	-	643	-	1,286	3,295
2029	-	1,422	-	648	-	1,296	3,321
2030	-	1,433	-	653	-	1,306	3,347
2031	-	1,444	-	658	-	1,316	3,373
2032	-	1,455	-	663	-	1,327	3,399
2033	-	1,466	-	668	-	1,337	3,425
2034	-	1,477	-	674	-	1,347	3,450
2035	-	1,488	-	679	-	1,357	3,476
2036	-	1,500	-	684	-	1,367	3,502

Table 8B-2Nationwide Locomotive Volumes Under the NRT4 Final Rule Fuel Program

Year	High Sulfur	Old 500 ppm	New 500 ppm	Old 15 ppm	Reprocessed	New 15 ppm	Total Volume
	(million gallons)	(million gallons)	(million gallons)	(million gallons)	Downgrade	(million gallons)	(million gallons)
	、 Ç ,	τ υ ,	· · · · ·	, ,	(million gallons)	, ,	, ,
2007	806	21	849	252	-	-	1,929
2008	190	23	1,476	266	-	-	1,955
2009	192	23	1,494	269	-	-	1,979
2010	81	269	1,380	273	-	0	2,003
2011	-	452	1,304	277	-	0	2,033
2012	-	292	636	280	-	851	2,059
2013	-	175	148	283	-	1,472	2,078
2014	-	222	62	281	-	1,605	2,103
2015	-	257	-	280	-	1,706	2,126
2016	-	259	-	283	-	1,722	2,146
2017	-	262	-	286	-	1,741	2,170
2018	-	266	-	290	-	1,768	2,203
2019	-	271	-	295	-	1,798	2,240
2020	-	202	-	299	-	1,818	2,266
2021	-	152	-	302	-	1,841	2,294
2022	-	154	-	307	-	1,871	2,331
2023	-	156	-	311	-	1,892	2,357
2024	-	158	-	315	-	1,917	2,389
2025	-	160	-	319	-	1,939	2,417
2026	-	162	-	323	-	1,964	2,448
2027	-	164	-	327	-	1,989	2,479
2028	-	166	-	331	-	2,014	2,510
2029	-	168	-	335	-	2,039	2,542
2030	-	170	-	339	-	2,065	2,573
2031	-	172	-	343	-	2,090	2,604
2032	-	175	-	347	-	2,115	2,635
2033	-	177	-	352	-	2,140	2,667
2034	-	179	-	356	-	2,165	2,698
2035	-	181	-	360	-	2,190	2,729
2036	-	183	-	364	-	2,215	2,760

Table 8B-3Nationwide Marine Volumes Under the NRT4 Final Rule Fuel Program

Year	High Sulfur (million gallons)	Old 500 ppm (million gallons)	New 500 ppm (million gallons)	Old 15 ppm (million gallons)	Reprocessed Downgrade (million gallons)	New 15 ppm (million gallons)	Total Volume (million gallons)
2007	4,027	239	4,790	2,369	-	-	11,426
2008	584	179	8,406	2,526	-	-	11,695
2009	597	183	8,599	2,585	-	-	11,964
2010	255	936	8,400	2,643	-	-	12,233
2011	-	1,503	8,300	2,701	-	-	12,504
2012	-	1,535	8,479	2,760	-	-	12,774
2013	-	1,568	8,659	2,818	-	-	13,045
2014	-	1,600	8,839	2,877	-	-	13,316
2015	-	1,633	9,018	2,935	-	-	13,586
2016	-	1,665	9,196	2,993	-	-	13,854
2017	-	1,697	9,374	3,051	-	-	14,122
2018	-	1,729	9,552	3,109	-	-	14,390
2019	-	1,762	9,730	3,166	-	-	14,658
2020	-	1,794	9,907	3,224	-	-	14,926
2021	-	1,826	10,085	3,282	-	-	15,193
2022	-	1,858	10,263	3,340	-	-	15,461
2023	-	1,890	10,441	3,398	-	-	15,729
2024	-	1,923	10,619	3,456	-	-	15,997
2025	-	1,955	10,797	3,514	-	-	16,265
2026	-	1,987	10,973	3,571	-	-	16,531
2027	-	2,019	11,150	3,629	-	-	16,797
2028	-	2,051	11,326	3,686	-	-	17,063
2029	-	2,083	11,503	3,744	-	-	17,329
2030	-	2,115	11,679	3,801	-	-	17,595
2031	-	2,147	11,856	3,859	-	-	17,861
2032	-	2,179	12,032	3,916	-	-	18,127
2033	-	2,210	12,209	3,973	-	-	18,393
2034	-	2,242	12,386	4,031	-	-	18,659
2035	-	2,274	12,562	4,088	-	-	18,925
2036	-	2,306	12,739	4,146	-	-	19,191

Table 8B-4Nationwide Nonroad Volumes Under the 500ppm NRLM Scenario

Year	High Sulfur (million gallons)	Old 500 ppm (million gallons)	New 500 ppm (million gallons)	Old 15 ppm (million gallons)	Reprocessed Downgrade (million gallons)	New 15 ppm (million gallons)	Total Volume (million gallons)
2007	968	45	1,141	539	-	-	2,694
2008	138	40	1,978	568	-	-	2,724
2009	140	40	2,005	576	-	-	2,761
2010	59	211	1,950	585	-	-	2,805
2011	-	339	1,923	596	-	-	2,858
2012	-	342	1,942	602	-	-	2,886
2013	-	345	1,958	607	-	-	2,909
2014	-	347	1,973	611	-	-	2,932
2015	-	350	1,990	616	-	-	2,956
2016	-	354	2,011	623	-	-	2,988
2017	-	357	2,029	629	-	-	3,015
2018	-	360	2,044	633	-	-	3,038
2019	-	364	2,064	640	-	-	3,067
2020	-	366	2,079	644	-	-	3,089
2021	-	368	2,089	647	-	-	3,104
2022	-	371	2,108	653	-	-	3,132
2023	-	374	2,127	659	-	-	3,160
2024	-	378	2,145	664	-	-	3,187
2025	-	381	2,166	671	-	-	3,218
2026	-	385	2,184	677	-	-	3,244
2027	-	388	2,202	682	-	-	3,270
2028	-	391	2,220	688	-	-	3,295
2029	-	394	2,239	694	-	-	3,321
2030	-	398	2,258	699	-	-	3,347
2031	-	401	2,277	705	-	-	3,373
2032	-	404	2,296	711	-	-	3,399
2033	-	408	2,315	717	-	-	3,425
2034	-	411	2,334	723	-	-	3,450
2035	-	415	2,354	729	-	-	3,476
2036	-	418	2,374	735	-	-	3,502

Table 8B-5

Nationwide Locomotive Volumes Under the 500ppm NRLM Scenario

Year	High Sulfur (million gallons)	Old 500 ppm (million gallons)	New 500 ppm (million gallons)	Old 15 ppm (million gallons)	Reprocessed Downgrade	New 15 ppm (million gallons)	Total Volume (million gallons)
					(million gallons)		
0007		01	0.40	050			1 000
2007 2008	806 190	21 23	849 1,476	252 266	-	-	1,929
2008	190	23	1,476	260	-	-	1,955 1,979
2009	81	142	1,494	209	-	-	2,003
2010	-	229	1,500	273			2,003
2011		223	1,546	280			2,059
2012		232	1,560	283			2,033
2010	-	237	1,579	286	-	-	2,103
2015	-	240	1,597	289	-	-	2,126
2016	-	242	1,612	292	_	-	2,146
2017	-	245	1,630	295	-	-	2,170
2018	-	249	1,654	300	-	-	2,203
2019	-	253	1,682	305	-	-	2,240
2020	-	256	1,702	309	-	-	2,266
2021	-	259	1,723	312	-	-	2,294
2022	-	263	1,751	317	-	-	2,331
2023	-	266	1,770	321	-	-	2,357
2024	-	270	1,794	325	-	-	2,389
2025	-	273	1,815	329	-	-	2,417
2026	-	276	1,838	333	-	-	2,448
2027	-	280	1,862	337	-	-	2,479
2028	-	283	1,885	342	-	-	2,510
2029	-	287	1,909	346	-	-	2,542
2030	-	290	1,932	350	-	-	2,573
2031	-	294	1,956	355	-	-	2,604
2032	-	297	1,979	359	-	-	2,635
2033	-	301	2,003	363	-	-	2,667
2034	-	305	2,026	367	-	-	2,698
2035	-	308	2,050	372	-	-	2,729
2036	-	312	2,073	376	-	-	2,760

Table 8B-6Nationwide Marine Volumes Under the 500ppm NRLM Scenario

Year	High Sulfur (million gallons)	Old 500 ppm (million gallons)	New 500 ppm (million gallons)	Old 15 ppm (million gallons)	Reprocessed Downgrade (million gallons)	y New 15 ppm (million gallons)	Total Volume (million gallons)
0007	0.000		0.074	4.050			0.070
2007	2,996	444	3,671	1,959	-	-	9,070
2008	592	153	6,373	2,067	-	-	9,186
2009	600	155	6,454	2,093	-	-	9,302
2010	253	66	3,086	2,141	-	3,873	9,419
2011	-	-	631	2,183	-	6,721	9,535
2012	-	358	531	2,188	-	6,574	9,651
2013	-	621	460	2,198	-	6,488	9,767
2014	-	262	194	2,275	-	7,153	9,884
2015	-	-	-	2,338	-	7,662	10,000
2016	-	-	-	2,366	-	7,751	10,116
2017	-	-	-	2,393	-	7,840	10,233
2018	-	-	-	2,420	-	7,929	10,349
2019	-	-	-	2,447	-	8,018	10,465
2020	-	-	-	2,474	-	8,107	10,581
2021	-	-	-	2,502	-	8,196	10,698
2022	-	-	-	2,529	-	8,285	10,814
2023	-	-	-	2,556	-	8,374	10,930
2024	-	-	-	2,583	-	8,464	11,047
2025	-	-	-	2,610	-	8,553	11,163
2026	-	-	-	2,638	-	8,642	11,279
2027	-	-	-	2,665	-	8,731	11,395
2028	-	-	-	2,692	-	8,820	11,512
2029	-	-	-	2,719	-	8,909	11,628
2030	-	-	-	2,746	-	8,998	11,744
2031	-	-	-	2,774	-	9,087	11,861
2032	-	-	-	2,801	-	9,176	11,977
2033	-	-	-	2,828	-	9,265	12,093
2034	-	-	-	2,855	-	9,354	12,210
2035	-	-	-	2,882	-	9,444	12,326
2036	-	-	-	2,910	-	9,533	12,442

Table 8B-7Nationwide Nonroad Volumes Under the Case 1 Sensitivity

Year	High Sulfur (million gallons)	Old 500 ppm (million gallons)	New 500 ppm (million gallons)	Old 15 ppm (million gallons)	Reprocessed Downgrade (million gallons)	New 15 ppm (million gallons)	Total Volume (million gallons)
2007	910	116	1,129	539			2,694
2007	910 162	37	1,129	568	-	-	2,094
2000	162	38	1,983	576		-	2,724
2000	70	426	1,383	569		-	2,805
2010	-	715	1,575	568	-	-	2,858
2012	-	410	732	590	-	1,155	2,886
2013	-	188	120	607	-	1,995	2,909
2014	-	455	50	584	-	1,842	2,932
2015	-	651	-	570	-	1,735	2,956
2016	-	658	-	576	-	1,754	2,988
2017	-	664	-	581	-	1,770	3,015
2018	-	669	-	586	-	1,783	3,038
2019	-	675	-	591	-	1,801	3,067
2020	-	680	-	595	-	1,813	3,089
2021	-	684	-	599	-	1,822	3,104
2022	-	690	-	604	-	1,838	3,132
2023	-	696	-	609	-	1,855	3,160
2024	-	702	-	614	-	1,871	3,187
2025	-	709	-	620	-	1,889	3,218
2026	-	714	-	625	-	1,904	3,244
2027	-	720	-	630	-	1,919	3,270
2028	-	726	-	635	-	1,934	3,295
2029	-	731	-	640	-	1,950	3,321
2030	-	737	-	645	-	1,965	3,347
2031	-	743	-	650	-	1,980	3,373
2032	-	748	-	655	-	1,995	3,399
2033	-	754	-	660	-	2,010	3,425
2034	-	760	-	665	-	2,025	3,450
2035	-	766	-	670	-	2,041	3,476
2036	-	771	-	675	-	2,056	3,502

Table 8B-8Nationwide Locomotive Volumes Under the Case 1 Sensitivity

Year	High Sulfur (million gallons)	Old 500 ppm (million gallons)	New 500 ppm (million gallons)	Old 15 ppm (million gallons)	Reprocessed Downgrade (million gallons)	New 15 ppm (million gallons)	Total Volume (million gallons)
2007	757	67	853	252	-	-	1,929
2008	186	22	1,482	266	-	-	1,955
2009	188	22	1,499	269	-	-	1,979
2010	79	326	1,328	269	-	-	2,003
2011	-	551	1,210	271	-	-	2,033
2012	-	309	511	278	-	961	2,059
2013	-	133	-	283	-	1,662	2,078
2014	-	136	-	281	-	1,685	2,103
2015	-	140	-	280	-	1,706	2,126
2016	-	141	-	283	-	1,722	2,146
2017	-	143	-	286	-	1,742	2,170
2018	-	145	-	290	-	1,768	2,203
2019	-	147	-	295	-	1,798	2,240
2020	-	149	-	299	-	1,819	2,266
2021	-	151	-	302	-	1,841	2,294
2022	-	153	-	307	-	1,871	2,331
2023	-	155	-	311	-	1,892	2,357
2024	-	157	-	315	-	1,917	2,389
2025	-	159	-	319	-	1,939	2,417
2026	-	161	-	323	-	1,964	2,448
2027	-	163	-	327	-	1,989	2,479
2028	-	165	-	331	-	2,015	2,510
2029	-	167	-	335	-	2,040	2,542
2030	-	169	-	339	-	2,065	2,573
2031	-	171	-	343	-	2,090	2,604
2032	-	173	-	347	-	2,115	2,635
2033	-	175	-	352	-	2,140	2,667
2034	-	177	-	356	-	2,165	2,698
2035	-	179	-	360	-	2,190	2,729
2036	-	181	-	364	-	2,215	2,760

Table 8B-9 Nationwide Marine Volumes Under the Case 1 Sensitivity

Chapter 8 References

1. "Guidelines for Preparing Economic Analyses," U.S. Environmental Protection Agency, EPA 240-R-00-003, September 2000.

2. Power Systems Research, OELink Sales Version, 2002.

3. Nonroad Engine Growth Estimate, Report No. NR-008b, Docket Item II-A-32.

4. "Engine Sales Used in Proposed Nonroad Tier 4 Cost Analysis," memorandum from Todd Sherwood to Public Docket No. A-2001-28, Docket Item II-B-37.

5. Dickson, Cheryl, "Heating Oils, 2001," TRW Petroleum Technologies, TRW-221 PPS, 01/4, July 2001.

6. Dickson, Cheryl, "Heating Oils, 2002," TRW Petroleum Technologies, TRW-226 PPS, 2002/4, September, 2002.

7. Batey, John E. and Roger McDonald, "Advantages of Low Sulfur Home Heating Oil - Interim Report of Complied Research, Studies, and Data Resources," National Oilheat Research Alliance and the Department of Energy, December 2002.