Abrahamson & Silva NGA Model

Sep 25, 2006

Recommendation

- Report not submitted on time
- Not sufficient documentation to use model in national maps
- Weights for A&S 97 should go to 3 other NGA models

Regression Approach

Random Effects

- Accounts for correlation between residuals of data from a single earthquake
 - e.g. an earthquake may produce systematically high or low ground motions
 - Well recorded earthquakes do not dominate the event scaling (e.g. mag, style-of-faulting, depth to top)
 - Well recorded earthquakes do dominate the distance, VS30, HW scaling

Data Set Approach

- Include ground motions from shallow crustal earthquakes in active regions around the world
 - R < 100 km outside of WUS
 - R< 200 km for WUS
 - 130 earthquakes
 - 2810 recordings
- Include aftershocks
 - 1258 out of 2810 are from Chi-Chi aftershocks

Size of Data Set

Changes to Previous Versions

- Simplified model
 - Removed aspect ratio
 - Removed source-site angle (for HW)
- Changes to functional form
 - Added Depth to top effects at all magnitudes
 - Changed to a cubic term in magnitude
 - Added SCEC 3-D basin effects
 - Added Q term for small magnitudes
 - Changed treatment of 4 chi-chi aftershocks
 - Added break in VS30 scaling

Chi-Chi Aftershocks

Magnitude Saturation (PGA)

Higher Order Mag Scaling

Higher Order Mag Scaling

Higher Order Mag Scaling Only fit to M>6.5 (T-5)

Depth to Top (PGA)

Style-of-Faulting (PGA)

Style-of-Faulting (PGA) no mag dependence

HW factor from A&S (1997)

HW Factor - Dip

HW Factor - Distance

HW Factor - Depth to Top

Break in VS30 scaling for large T

Non-Linear Site (PGA)

Non-Linear Site (T=0.2)

Non-Linear Site

3-D Basin Effects

- Considered several parameters:
 - Basin depth
 - Distance from edge
 - Basin edge locations
- Results parameterized in terms of <u>median</u> amplification as a function of the depth to a VS isosurface
 - Z1.0 = depth to VS=1.0 km/s
 - Z1.5 = depth to VS=1.5 km/s
 - Z2.5 = depth to VS=2.5 km/s
- Variability scale factors were not parameterized
- The Z1.0, Z1.5, and Z2.5 parameters were added to NGA data base where available
 - Not available for 80% of the data in NGA data set

3-D Basin Effects

- Used 3-D Basin results from SCEC simulations
- Issues of Implementation
 - -Z1.0
 - Similar to typical definitions of "engineering rock"
 - Can be reasonably estimated for projects
 - Z2.5
 - Better metric to use, but difficult to obtain for engineering projects

Scaling with Basin Depth T= 3 sec

Issues with Using 3-D Modeling Results

- Model is in terms of Z1.0
- Correlation of Z1.0 and Vs30
 - Some of the scaling with Z1.0 is already included in the empirical model Vs30 scaling
- Need to remove the Vs30 scaling effects
- Need to normalize to the median Z1.0 for a given Vs30

Correlation of Vs30 and Z1.0 (SCEC Model only)

Scaling with Basin Depth

- 3-D Basin Modeling Results (T=3 sec)
- 3-D Basin Model Corrected for Vs30 dependence of Z1.0

Correlation of Z1.0 and Vs30 (SCEC Model only)

Scaling with Z1.0, T=3

- 3-D Basin Modeling Results (T=3 sec)
- 3-D Basin Model Corrected for Vs30 dependence of Z1.0
- 3-D Basin Model Normalized to VS30=270
- 1-D Modeling for VS30=270 (scaled to 3-D results)

Scaling with Z1.0 Vs270 T=3

Strong Smoothing of Ficticous Depth

Depth to Top Factor

Style-of-Faulting Factor

HW Scaling (Surface, 45 dip, M>6.5)

HW Factor: 45 dip, Top=5

HW Factor: 45 dip, Top=0

Report Status

- Need to add:
 - Smooth cross-correlation of PGA and SA residuals
 - Plots of residuals
 - Comparison with A&S 97