Chiou and Youngs (2006) -The Next Generation of Sadigh et al. (1997)

An Empirical Ground Motion Model for Horizontal Spectral Accelerations for Earthquakes in Active Tectonic Regions

Part of the PEER-NGA Project

Brian Chiou and Robert Youngs

Philosophy

- To update and extend the Sadigh et al. (1997) ground motion model
 - Use expanded and vetted strong motion data base
 - Incorporate concepts/trends from ground motion modeling and seismological observation
 - Incorporate additional effects (e.g. hanging wall)
 - Define smooth functional forms for effects of magnitude, distance, hanging wall location, site conditions, etc.
 - Prevent model parameters from being controlled by a single earthquake

Data Selection

- Excluded earthquakes
 - Gorda plate earthquakes oceanic crust
 - Subduction zone earthquakes
 - Poorly known overseas earthquakes
 - Northwest China earthquakes
 - Earthquakes recorded by SMART1 array, offshore Taiwan
- Excluded records
 - In basements
 - In large structures
 - No site data
 - One horizontal component

Model Form

Reference site motion (Vs=1130m/sec)

Magnitude Scaling

Sadigh et al. (1997) form

 $\ln(y) \propto c_2 M + c_3(T) \times (8.5 - M)^{2.5}$

- Linear scaling for PGA
 (c₃=0)
- Curvature at a given magnitude is the same for all spectral frequencies

Magnitude Scaling

Sadigh et al. (1997) form : $\ln(y) \propto c_2 M + c_3 (T) \times (8.5 - M)^{2.5}$

 c_M is a function of response spectra period, T

Comparison of Magnitude Scaling Forms

- PGA data from the PEER-NGA database and from TriNet
 - $30 \le R_{RUP} \le 50$
 - $\ \ 300 \le V_{\rm S30} \le 400$
- Alternative forms of magnitude scaling provide comparable fits to data
- Updated form selected because it is more consistent with source models (e.g. Brune, 1970; Atkinson and Silva 1997, 2000)

Distance Scaling

- Variety of forms can be used to model effect of extended ruptures at small R_{RUP}
- Form used by Sadigh et al. (1997) leads to ~distance-independent magnitude scaling at large distances – selected for use

$$\ln(y) \propto \ln \left[R_{RUP} + C(m) \right]$$

Modification of "extended rupture term" C(m)

- Sadigh et al. (1997) uses bilinear form
 C(m)=exp(c₅+c₆M) with change in c₅ and c₆ at M 6.5
- Updated form $C(m)=c_5 \cosh[c_6(M-3)]$ results in smooth variation over full magnitude range with $C(m) \propto \exp(c_6 M)$ at large magnitudes

Style of Faulting

- Reverse and Reverse-oblique (rake 30 to 150)
 - Marginally significant (5 to 10% increase)
- Normal (rake -120 to -60)
 - Significantly lower than SS (20 to 30%) when normal-oblique is included in SS group
- Strike slip and Normal-oblique

Depth to Top of Rupture

- Significant effect for higher frequenies
- Magnitude dependence not significant
- Aftershocks have stronger trend than main shocks

Aftershock Recordings

- Included to help define soil model parameters
- Aftershocks have lower motion on average than main shocks
- Stronger dependence on depth
- Weaker dependence on style of faulting

Hanging Wall Effect

 $f_{HW} \propto [1 - R_{JB} / (R_{Cld} + 0.0001)]$

Surface Rupture

Buried Rupture (5 km)

Hanging Wall a Geometric Effect

$$f_{HW} = \tanh(0.5R_{RUP}) \times \cos^{2}(\delta) \times \frac{2}{\pi} \tan^{-1} \left(\frac{W\cos(\delta)}{2(Z_{TOR} + 1)}\right) \times \left[1 - \frac{R_{JB}}{R_{RUP} + 0.001}\right]$$

- RMS distance works well, but computationally expensive
- Decreasing effect with increasing dip
- Effect expected to decrease with decreasing magnitude (smaller extent of rupture)
- Effect expected to decrease with increasing depth of source
- Smooth variation instead of magnitude and depth "ramps"

Site Response Model

- At low amplitudes a linear function of $ln(V_{S30})$ based on empirical data
- Nonlinear effects based on empirical data guided by modeling results
- Depth to V_S ~ 1 km/s included after model development as a fit to residuals for sites with estimated depths
 - Strong trade off between V_{S30} and $Z_{1.0}$ scaling for periods > 1 second.

Site Response Model (cont'd)

$$\ln(AmpFactor) = a + b \ln(\frac{y_r + c}{c})$$

0.01 Sec; PEA 2004

0.01 Sec; Choi and Stewart, 2005

1 Sec; PEA 2004

Potential Bias at Large Distances

- Data truncated horizontally at a level Z_{trunc}
- Unknown number of recordings where value of pga < Z_{trunc}
- Published methods for ordinary regression (e.g. Toro, 1981)
- Extended method to random (mixed) effects regression

Truncated Regression for Selected Earthquakes with Extensive Data Sets

- Extended PEER-NGA pga data sets with TriNet data and other published pga values
- Unable to obtain extended data set value of γ from PEER-NGA data alone
- Therefore, limited data to ≤ 70 km and used 13 California earthquakes to define γ(m)

Model for γ

			PEER -NGA Data Set		Expanded Data Set		
EQID	Earthquake	M	-	Number of Recordings	-	Number of Recording s	Region
0127	Northridge	6.69	-0.0108	122	-0.0092	154	California
0129	Kobe	6.9	-0.0020	22	-0.0076	157	Japan
0137	Chi-Chi	7.62	-0.0096	305			Taiwan
0157	San Juan Bautis ta	5.17	-0.0392	2	-0.0188	23	California
0158	Hector Mines	7.13	-0.0056	82	-0.0088	163	California
0160	Yountville	5	-0.0088	24	-0.0162	76	California
0162	Mohawk Val, Portola	5.17	-0.0191	6	-0.0148	36	California
0163	Anza-02	4.92	-0.0164	72	-0.0178	193	California
0165	CA/Baja Border Area	5.31	-0.0433	9	-0.0145	142	California
0166	Gilroy	4.9	-0.0054	34	-0.0115	136	California
0167	Yorba Linda	4.265	-0.0851	12	-0.0102	207	California
0169	Denali	7.9	-0.0082	23			Alaska
0170	Big Bear City	4.92	-0.0004	35	-0.0101	262	California
0171	Chi-Chi, Taiwan -02	5.9	-0.0063	277			Taiwan
0172	Chi-Chi, Taiwan -03	6.2	-0.0151	225			Taiwan
0173	Chi-Chi, Taiwan -04	6.2	-0.0130	241			Taiwan
0174	Chi-Chi, Taiwan -05	6.2	-0.0130	310			Taiwan
0175	Chi-Chi, Taiwan -06	6.3	-0.0122	260			Taiwan
	Loma Linda	4.5			-0.0154	93	California
	Parkfield	6			-0.0111	308	California
	San Simeon	6.5			-0.0070	225	California

Extension to Long Periods

Chiou and Youngs (2006)

Inter-Event Residuals

24

PGA Intra-Event Residuals

1 Hz PSA Intra-Event Residuals

Chiou and Youngs (2006)

Comparison of Median and 84th% PGA

Period = 0.01 (sec); Vs30 = 500 (m/s); SA O97 Rock

Period = 0.01 (sec); Vs30 = 500 (m/s); SA O97 Rock

Comparison of Median and 84th% 1-Hz PSA

Period = 1 (sec); V s 30 = 500 (m/s); SA O97 Rock

Period = 1 (sec); V s 30 = 500 (m/s); SA O97 Rock

Chiou and Youngs (2006)

Aleatory Sigma

Chiou and Youngs (2006)

Sadigh et al. Needs to be Updated

Update the Magnitude Scaling

Update Ground Motions at Near-Source Distances

