Appendix B: Equations used to update municipal facility loadings

Variable Definition

 $Q_{mun,new}$ = updated municipal flow rate (MGD)

Q_{mun.old} = original municipal flow rate (MGD)

 $Q_{meat} = flow rate from the meat-processing facility (MGD)$

Q_o = flow rate to municipality from other (non-meat) sources (MGD)

C_{mun.new} = updated municipal concentration (mg/L)

C_{mun.old} = original municipal concentration (mg/L)

C_{meat} = concentration in the meat-processing facility's effluent (mg/L)

 C_0 = concentration in the flow from other (non-meat) sources (mg/L)

f = fraction of pollutant retained after treatment

Flow Balance

$$Q_{\text{mun,old}} = Q_{\text{mun,new}} + Q_{\text{meat}}$$

Therefore

$$Q_{mun,new} = Q_{mun,old} - Q_{meat}$$

Mass Balance

Mass in – Mass out – Mass depleted = 0 (Steady-state)

$$\begin{split} &\left(Q_{meat}C_{meat} + Q_{\circ}C_{\circ}\right) - Q_{mun,old}C_{mun,old} - (1-f)\left(Q_{meat}C_{meat} + Q_{\circ}C_{\circ}\right) = 0 \\ &\left(Q_{meat}C_{meat} + Q_{\circ}C_{\circ}\right) f - Q_{mun,old}C_{mun,old} = 0 \end{split}$$

$$Q_{\circ}C_{\circ} = \frac{Q_{mun,old}C_{mun,old}}{\epsilon} - Q_{meat}C_{meat}$$

$$\mathbf{C}_{\circ} = \left[\frac{\mathbf{Q}_{\text{mun,old}} \mathbf{C}_{\text{mun,old}}}{\mathbf{f}} - \mathbf{Q}_{\text{meat}} \mathbf{C}_{\text{meat}} \right] * \frac{1}{\mathbf{Q}_{\circ}}$$

$$\mathbf{C}_{\text{mun,new}} = \mathbf{f} \mathbf{C}_{\circ} = \frac{1}{\mathbf{Q}_{\circ}} * \left[\mathbf{Q}_{\text{mun,old}} \mathbf{C}_{\text{mun,old}} - \mathbf{f} \mathbf{Q}_{\text{meat}} \mathbf{C}_{\text{meat}} \right]$$

$$Q_{\circ} = Q_{mun,new}$$