[Federal Register: June 26, 2003 (Volume 68, Number 123)]
[Rules and Regulations]               
[Page 38115-38152]
From the Federal Register Online via GPO Access [wais.access.gpo.gov]
[DOCID:fr26jn03-20]                         


[[Page 38115]]

-----------------------------------------------------------------------

Part II





Department of Transportation





-----------------------------------------------------------------------



National Highway Traffic Safety Administration



-----------------------------------------------------------------------



49 CFR Part 571



Federal Motor Vehicle Safety Standards; Tires; Final Rule


[[Page 38116]]


-----------------------------------------------------------------------

DEPARTMENT OF TRANSPORTATION

National Highway Traffic Safety Administration

49 CFR Part 571

[Docket No. NHTSA-03-15400]
RIN 2127-AI54

 
Federal Motor Vehicle Safety Standards; Tires

AGENCY: National Highway Traffic Safety Administration (NHTSA), 
Department of Transportation.

ACTION: Final rule.

-----------------------------------------------------------------------

SUMMARY: The Transportation Recall Enhancement, Accountability, and 
Documentation Act of 2000 mandates that we conduct a rulemaking 
proceeding to revise and update our safety performance requirements for 
tires. In response, we are establishing new and more stringent tire 
performance requirements that will apply to all new tires for use on 
light vehicles, i.e., those vehicles with a gross vehicle weight rating 
of 10,000 pounds or less, except motorcycles and low speed vehicles. 
The final rule increases the stringency of the existing high speed and 
endurance tests, defers action on proposals to replace the existing 
strength test and the bead unseating resistance test with a road hazard 
impact test and a different bead unseating test, respectively, adds a 
low pressure performance test, and defers action on a proposal to add 
an aging test. Together with new safety information requirements that 
we recently established for those tires, the new performance 
requirements will improve tire safety.

DATES: This final rule is effective June 1, 2007. Voluntary compliance 
is permitted before that date. If you wish to submit a petition for 
reconsideration of this rule, your petition must be received by August 
11, 2003.

ADDRESSES: Petitions for reconsideration should refer to the docket 
number and be submitted to: Administrator, Room 5220, National Highway 
Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 
20590.

FOR FURTHER INFORMATION CONTACT: For technical and policy issues: Mr. 
George Soodoo or Mr. Joseph Scott, Office of Crash Avoidance Standards, 
National Highway Traffic Safety Administration, 400 Seventh Street, 
SW., Washington, DC 20590. Telephone: (202) 366-2720. Fax: (202) 366-
4329.
    For legal issues: Nancy Bell, Attorney Advisor, Office of the Chief 
Counsel, NCC-20, National Highway Traffic Safety Administration, 400 
Seventh Street, SW., Washington, DC 20590. Telephone: (202) 366-2992. 
Fax: (202) 366-3820.

SUPPLEMENTARY INFORMATION:

Table of Contents

I. Executive Summary
    A. Highlights of the Notice of Proposed Rulemaking
    B. Highlights of the Final Rule
    C. Adopted aspects of the NPRM
    D. Deferred aspects of the NPRM
II. Background
    A. The Transportation Recall Enhancement Accountability and 
Documentation Act
    B. Safety Problem
    1. Outdated Performance Requirements
    2. Safety Problems Associated with Tires
    C. Existing NHTSA Performance Requirements for Tires
III. Pre-TREAD Enactment Agency Response to Safety Problem
IV. Post-TREAD Enactment Agency Response to Safety Problem
    A. Tire Testing and Opening of Docket No. NHTSA-2000-8011
    B. March 5, 2002 Notice of Proposed Rulemaking (NPRM)
    C. Post-NPRM Technical Submissions to NHTSA Tire Upgrade Docket
    1. NHTSA Tire Testing at Standards Testing Labs (STL)
    2. Rubber Manufacturer's Association (RMA) Design of Experiment 
(DOE) and Confirmation Testing
    3. Ford Motor Company (Ford) Tire Aging Analysis
    4. Goodyear Endurance Testing
V. Summary of Public Comments on NPRM
    A. NHTSA's Proposed Test Procedures
    1. High Speed Test
    2. Endurance Test
    3. Low Inflation Pressure Performance
    a. Generally
    b. Low Inflation Endurance
    c. Low Inflation High Speed
    4. Road Hazard Impact
    5. Bead Unseating
    6. Aging Effects
    a. Generally
    b. Adhesion (Peel) Test
    c. Michelin's Long Term Durability
    d. Oven Aging
    B. Application of New Standard/Deletion of FMVSS No. 109
    C. Modification to FMVSS Nos. 110 and 120
    D. Modification to FMVSS Nos. 117 and 129
    E. De-rating of P-metric Tires/Tire Selection/Load Reserve
    F. Lead Time
    G. Shearography Analysis
    H. Revise UTQG
    I. Additional Questions
    1. Opportunity to Harmonize
    2. ``Real-world'' Testing Procedures
    3. Vehicle Model Year 1975
    4. Required Inflation Pressures
    J. Other
    1. Test Condition Tolerances
    2. Tire Pressure Load Reserve Limit
    K. Costs
    L. Benefits
VI. Agency Decision regarding Final Rule
    A. Summary of Final Rule and Rationale
    B. Summary of Key Differences between NPRM and Final Rule
    C. Performance Requirements
    1. High Speed Test
    a. Ambient Temperature
     b. Load
    c. Inflation Pressure
    d. Speed
    e. Duration
    2. Endurance Test
    a. Ambient Temperature
    b. Load
    c. Inflation Pressure
    d. Speed
    e. Duration
    3. Low Inflation Pressure Performance Test
    4. Road Hazard Impact
    5. Bead Unseating
    6. Aging
    7. Post-test Pressure Measurement
    D. Tire Selection Criteria/De-rating of P-metric Tires
    E. Applicability and Effective Dates
    F. Other Issues
    1. Modification to FMVSS Nos. 110 and 120
    2. Modification to FMVSS Nos. 117 and 129
    3. Shearography Analysis
    4. Revision of UTQG
    5. Analysis of Responses to Agency Questions in NPRM
    6. Other
VII. Benefits
VIII. Costs
    A. Original Equipment Tire and Vehicle Costs
    B. Total Annual Costs
    C. Testing Costs
IX. Effective Date
X. Rulemaking Analyses and Notices
    A. Executive Order 12866 and DOT Regulatory Policies and 
Procedures
    B. Regulatory Flexibility Act
    C. National Environmental Policy Act
    D. Executive Order 13132 (Federalism)
    E. Unfunded Mandates Act
    F. Civil Justice Reform
    G. National Technology Transfer and Advancement Act
    H. Paperwork Reduction Act
    I. Plain Language
XI. Regulatory Text

I. Executive Summary

A. Highlights of the Notice of Proposed Rulemaking

    Section 10 of the Transportation Recall Enhancement, 
Accountability, and Documentation (TREAD) Act mandates that the agency 
issue a final rule revising and updating its tire performance 
standards. In response, the agency examined the value of modifying each 
of the existing tests in its tire standards applicable to tires for 
light vehicles, i.e., those vehicles with a gross vehicle weight rating 
of 10,000 pounds or less, except motorcycles and low speed vehicles. In 
addition, NHTSA examined the value of adopting several new tests. In 
doing so, it placed particular emphasis on improving the

[[Page 38117]]

ability of tires to withstand the effects of factors mentioned during 
the consideration and enactment of the TREAD Act, such as tire heat 
build up, low inflation, and aging. The agency conducted extensive 
testing, data gathering and analyses as well as reviewed other existing 
international, industry and national standards and proposals, and 
submissions by the public.
    As a result of these efforts, the agency identified an array of 
amendments for revising and updating its tire standards and thereby 
improving tire performance. In the notice of proposed rulemaking (NPRM) 
that NHTSA published on March 5, 2002 (67 FR 10050, Docket No. NHTSA-
00-8011), the agency proposed to upgrade its existing requirements and 
test procedures addressing the following aspects of tire performance: 
Tire dimension, high speed, endurance, road hazard impact, and bead 
unseating. The agency proposed also to add new requirements that would 
require that underinflated tires and aged tires provide specified 
levels of performance.\1\ The agency recognized the potential 
significant cost of some of the proposed amendments, but decided that, 
in view of the broad mandate in the TREAD Act and the uncertainty 
associated with the analysis of benefits and costs, the most 
appropriate course of action was for the agency to seek public comment 
on the wide array of proposals and use the information in the responses 
to adjust and refine the amendments.
---------------------------------------------------------------------------

    \1\ See 67 FR 69600; November 18, 2002, for the recently adopted 
tire information requirements. For the convenience of the reader, we 
have placed in the docket for today's final rule a document that 
shows how the tire safety information and performance requirements 
appear together in Standard No. 139.
---------------------------------------------------------------------------

    The highlights of the proposal were as follows:
    (1) High speed and endurance tests--the current high speed and 
endurance tests in FMVSS No. 109, New Pneumatic Tires--Passenger Cars, 
49 CFR 571.109, would have been replaced with a more stringent 
combination of testing parameters (ambient temperature, load, inflation 
pressure, speed, and duration.) The proposed high speed test would have 
specified test speeds (140, 150 and 160 km/h (87, 93, and 99 mph)) that 
are substantially higher than those currently specified in FMVSS No. 
109 (120, 128, 136 km/h (75, 80, 85 mph)). The proposed endurance test 
would have specified a test speed 50 percent greater (120 km/h (75 
mph)) than that currently specified in FMVSS No. 109 (80 km/h (50 
mph)), as well as a duration that is 6 hours longer (40 hours total) 
than that currently specified in FMVSS No. 109 (34 hours total).\2\
---------------------------------------------------------------------------

    \2\ At the specified test speed (120 km/h), the proposed 
endurance test distance (4800 km) would have been almost double the 
distance accumulated than under the current endurance test (2720 km 
at 80 km/h).
---------------------------------------------------------------------------

    (2) Road hazard impact test and bead unseating test--these two 
tests would have been modeled on SAE Recommended Practice J1981, Road 
Hazard Impact Test for Wheel and Tire Assemblies (Passenger Car, Light 
Truck, and Multipurpose Vehicles), and the Toyota air loss test, 
respectively. These new tests would have replaced the strength and bead 
unseating resistance tests in the current FMVSS No. 109 with tests that 
were believed to be more real-world and more stringent.
    (3) Low inflation pressure performance--two alternative tests were 
proposed. Both tests would have utilized tires significantly under-
inflated, for instance, 140 kPa (20 psi) for P-metric tires (the low 
inflation pressure threshold requirement for warning lamp activation in 
the then proposed Tire Pressure Monitoring System (TPMS) standard, 
Docket No. NHTSA-00-8572 (66 FR 38982, July 26, 2001)), as the 
``inflation pressure'' testing parameter for standard load P-metric 
tires.
    (4) Aging effects--three alternative tests were proposed that would 
have evaluated a tire's long term durability through methods different 
than and/or beyond those required by both the current and the proposed 
endurance test parameters. The three tests would have used peel 
strength testing, long-term durability endurance requirements, and oven 
aging, respectively.
    (5) Tire Selection Criteria/De-Rating of P-metric Tires--the agency 
proposed retaining the de-rating percentage of 1.10 for P-metric tires 
used on non-passenger car vehicles and revising FMVSS No. 110 to 
specify that the determination of vehicle normal load (``reserve 
load'') on the tire be based on 85% of the load at vehicle placard 
pressure.
    Also, the agency discussed revising FMVSS No. 110, Tire selection 
and rims, for passenger cars, 49 CFR 571.110, and FMVSS No. 120, Tire 
selection and rims for motor vehicles other than passenger cars, 49 CFR 
571.120, to reflect the applicability of the proposed new light vehicle 
tire standard to vehicles up to 10,000 pounds GVWR. It also discussed 
revising FMVSS No. 117, Retreaded pneumatic tires, 49 CFR 571.117, and 
FMVSS No. 129, New non-pneumatic tires for passenger cars, 49 CFR 
571.129, to replace the performance tests that reference or mirror 
those in FMVSS No. 109 with those specified in the proposed new light 
vehicle tire standard.
    The agency proposed two alternative implementation schedules for 
tires: A two-year phase-in under which all applicable tires would have 
been required to comply with the final rule by September 1, 2004, and a 
three-year phase-in under which all applicable tires would have been 
required to comply with the final rule by September 1, 2005. For light 
vehicles, the agency proposed that all those manufactured on or after 
September 1, 2004 would have had to comply with the final rule.
    The aforementioned proposals are summarized more fully in section 
IV.B. of this document.

B. Highlights of the Final Rule

    In response to the NPRM, the agency received cost data from 
commenters and other information that assisted it in refining its 
assessment of benefits and costs and in choosing amendments to fashion 
a final rule that will offer the American public enhanced tire safety 
and be consistent with the principles of Executive Order 12866. The 
resulting final rule establishes new and more stringent tire 
performance requirements that apply to all new radial tires for use on 
passenger cars, multipurpose passenger vehicles, trucks, buses and 
trailers that have a gross vehicle weight rating (GVWR) of 4,536 kg 
(10,000 pounds) or less and that are manufactured after 1975, and to 
all new passenger cars, multipurpose passenger vehicles, trucks, buses 
and trailers that have a GVWR of 4,536 kg (10,000 pounds) or less. The 
requirements are fully summarized in section VI.A. of this document.
    The agency believes the final rule is a reasoned one that is based 
on the best currently available information and that will improve tire 
safety. NHTSA believes that this rule will be effective at ensuring 
that future tires will have their strength, endurance, and heat 
resistance evaluated in a way that will increase the required level of 
performance.\3\ As a result, these tires are expected to exhibit less 
variability in levels of performance and experience fewer blowouts and 
tire failures. Additionally, the reserve load requirements of FMVSS No. 
110, combined with the de-rating of P-metric tires when used on SUVs, 
vans, trailers, and pick-up trucks, will provide a

[[Page 38118]]

sufficient safety margin for tires used on light vehicles.
---------------------------------------------------------------------------

    \3\ The agency estimates that 5-11% of tires will have to be 
modified to meet this final rule.
---------------------------------------------------------------------------

    In response to comments from the tire and vehicle industries 
arguing that the compliance costs were underestimated in the NPRM and 
in recognition of the limited quantifiable safety benefits, NHTSA has 
reduced the stringency of some of its proposals and deferred others, to 
ensure that this rule's safety improvements will be reasonably related 
to the rule's costs.

C. Adopted Aspects of the NPRM

    High speed and endurance--The agency is upgrading the existing high 
speed and endurance tests, although to a more modest degree than we 
proposed. Both the high speed test and the endurance test contain 
testing parameters (ambient temperature, load, inflation pressure, 
speed, and duration) that make the tests more stringent than those 
tests currently found in our tire standards, as well as the tests 
suggested by industry. Most significantly, the high speed test 
specifies test speeds of 140, 150, and 160 km/h substantially higher 
than those specified in the passenger car tire standard. Likewise, the 
endurance test specifies a test speed 50% higher than that currently 
specified in the car tire standard. Under the new endurance test, a 
tire is assessed over 50% more distance than a tire must endure under 
the current endurance test.
    Low inflation pressure performance--The agency is adopting a low 
inflation pressure test that seeks to ensure a minimum level of 
performance safety in tires when they are underinflated to 140 kPa (20 
psi). That is the minimum level of inflation at which tire pressure 
monitoring system warnings will be required to be activated. This 
requirement mirrors conditions of long distance family travel and will 
assist in ensuring that tires will withstand conditions of severe 
underinflation during highway travel in fully loaded conditions.
    Applicability and LTVs--Given the increasing consumer preference 
for using light trucks for personal transportation purposes, NHTSA is, 
for the first time, requiring light trucks to have a specified tire 
reserve, the same as for passenger cars, under normal loading 
conditions. The agency is also extending the tire performance 
requirements for passenger car tires to LT tires (load range C, D, and 
E) used on light trucks.

D. Deferred Aspects of the NPRM

    Road hazard impact--Instead of replacing the current strength test 
with the proposed road hazard test, the agency is retaining the 
strength test for passenger car and LT tires. Post-NPRM agency testing 
data and public comments called into question whether the proposed road 
hazard impact test, which was modeled after a SAE recommended practice, 
would provide both a more stringent and more real-world test than the 
current test. The agency will address these uncertainties in the near 
future. After it conducts research on tire aging and resistance to bead 
unseating, it will conduct research on road hazard impact. Based on the 
test results, it will decide whether to initiate rulemaking to adopt a 
new or revised test.
    Resistance to bead unseating--Instead of replacing the current bead 
unseating test with a proposal based on a Toyota test, the agency is 
retaining the bead unseating test and extending it to LT tires. 
Industry previously recommended dispensing with a bead unseating test 
because radial tires are easily able to satisfy the current one. 
Results from the agency's 1997-1998 rollover testing provided a strong 
rationale for upgrading, rather than deleting, the bead unseating test. 
Post-NPRM agency testing data and public comments, however, called into 
question whether the Toyota test provides both a more stringent and 
more real-world test than the FMVSS No. 109 bead unseating test. The 
agency will conduct research on bead unseating after conducting its 
research on tire aging, and, based on the test results, decide whether 
to initiate rulemaking to adopt a new or revised test.
    Aging--At this time, the agency is not adopting a test to address 
the deterioration of tire performance caused by aging. We proposed 
three alternatives for an aging effects test that would expose tires to 
the type of failures experienced by consumers at 40,000 kilometers or 
beyond. Because we had little data and analysis regarding any of these 
tests and understood the tire industry to be regularly conducting aging 
testing, we requested comments on which alternative should be adopted. 
The tire industry did not, however, disclose any of its testing data or 
provide any analysis in its comments on the NPRM. However, some 
industry members have recently begun a dialogue and offered to share 
data with the agency.
    In an attempt to gain a thorough understanding of existing aging 
test mechanisms and methodologies, as well as data and analysis 
relating to that testing, the agency is commencing its own research on 
aging. The agency anticipates publishing a NPRM proposing an aging test 
in approximately two years after this final rule.
Benefits
    At the time of the NPRM, we were able to quantify only very slight 
safety benefits. Given the reductions in several of our proposals and 
the deferral of several of other proposals, the benefits of the final 
rule will be less than we then projected. We now estimate 1 to 4 lives 
saved and 23 to 102 injuries reduced. Nevertheless, the final rule will 
increase the required level of performance for all tires and will 
improve the strength, endurance, and heat resistance of the 5-11% of 
tires that will have to be redesigned or modified to achieve 
compliance.
Costs
    Although in issuing the proposal we were able to estimate costs for 
only two of the proposed tests, we estimated that those two tests alone 
would result in costs of almost $300 million per year. However, given 
the reductions in or deferrals of some of our proposals, we estimate 
that the final rule will, in its entirety, result in annual costs for 
new original equipment and replacement tires of $3.6 million to $31.6 
million. The net costs per equivalent life saved will be about $5 
million based on the mid-point of cost and discounted benefits 
estimates.
Effective Dates/Implementation
    The agency is providing a 4-year lead time for both tire and 
vehicle manufacturers. All covered tires and vehicles must comply with 
the amendments by June 1, 2007. In view of the comments by the tire and 
vehicle industry regarding the extent and significance of design and 
production changes that might have to be made as a result of changing 
requirements in an area that has been not substantively revised in 30 
years, NHTSA finds that an effective date of June 1, 2007 is more 
reasonable than the shorter lead time proposed in the NPRM and is in 
the public interest.

II. Background

A. The Transportation Recall Enhancement Accountability and 
Documentation Act

    Section 10, ``Endurance and Resistance Standards for Tires,'' of 
the TREAD Act, Pub. L. 106-414, mandates that the agency issue a final 
rule to revise and update its tire performance standards. However, the 
Act gives the agency substantial discretion regarding the substance of 
the final rule. The Act does not specify how the standards should be 
revised or updated. For

[[Page 38119]]

example, it does not specify which particular existing performance 
requirements and test procedures should be improved or how much they 
should be improved. Likewise, it does not specify which particular new 
requirements should be added or how stringent they should be.
    In response to section 10 of the TREAD Act, the agency 
comprehensively examined possible ways of revising and updating its 
tire standards. In doing so, it placed particular emphasis on improving 
the ability of tires to withstand the effects of factors mentioned 
during the consideration and enactment of the TREAD Act such as tire 
heat build up, low inflation, and aging. The agency examined the value 
of modifying the existing tests in its tire standards. In addition, it 
examined the value of adopting several new tests.

B. Safety Problem

1. Outdated Performance Requirements
    Prior to the enactment of the TREAD Act, the Firestone tire recalls 
in 2000 focused public attention on the agency's passenger car tire 
standard, FMVSS No. 109. The standard had not been substantively 
revised since first issued over 30 years ago in 1967. At that time, 
nearly all (more than 99 percent) of passenger car tires in the U.S. 
were of bias, or bias belt construction. Accordingly, the requirements 
and test procedures in FMVSS No. 109 were developed primarily to 
address bias tires. Today, bias tires have been almost completely 
replaced by radial tires on passenger cars and other light vehicles. 
The use of radial tires has grown to the extent that they represent 
more than 95 percent of passenger tires in both the U.S. and Europe and 
are used on most other new light vehicles sold in the U.S.
    NHTSA does not require that light vehicles be equipped with radial 
tires, but regulates radial tire performance through FMVSS Nos. 109 and 
119. Radial tires are less susceptible than bias ply tires to most 
types of failures.\4\ Also, the switch to radial tire designs resulted 
in significant improvements in tire performance compared with bias ply 
tires. Given the superior performance of radial tires, it is easier for 
them than for bias tires to comply with the requirements of FMVSS No. 
109.\5\
---------------------------------------------------------------------------

    \4\ A radial passenger car tire carcass is typically made up of 
one or two plies of cord material that run from bead to bead at an 
angle of approximately 90 degrees to the centerline of the tire. As 
a result, the cords do not crisscross. Because the cords do not 
crisscross and because the opposite ends of each cord are anchored 
to the beads at points that are directly opposite to each other, the 
radial tire sidewall is more flexible than that of a bias tire and 
the treadface is less flexible. The radial tire is reinforced and 
stabilized by a belt that runs circumferentially around the tire 
under the tread. This construction allows the sidewalls to act 
independently of the belt and tread area when forces are applied to 
the tire. This ``independent'' action is what allows the sidewalls 
to readily absorb road irregularities without overstressing the 
cords. Impact breaks caused by cord rupture do not occur in radial-
ply passenger car tires. This ``independent'' action also allows two 
important things to happen during cornering: (1) The tread of a 
radial tire remains fully in contact with the road over the entire 
tread width, and (2) the ply cords and sidewall are able to absorb 
the cornering forces without exerting the twisting force on the 
beads that are exerted by bias constructions.
    \5\ A bias passenger car tire carcass is typically made up of 
two or four plies of cord material that run from bead to bead at an 
angle of approximately 35 degrees to the centerline of the tire. 
Alternating plies are applied at alternating angles during tire 
manufacture so that the cord paths of alternating plies crisscross. 
This type of construction provides a very strong, durable carcass 
for the tire. However, it has drawbacks. Because the ply cords 
crisscross and all the cords are anchored to the beads, the sidewall 
is stiff and treadface is flexible. This type of construction 
prevents different parts of the tire from acting independently of 
one another when forces are applied to the tire. As a result, a bias 
construction is susceptible to impact breaks because it does not 
easily absorb road irregularities.
---------------------------------------------------------------------------

    While the durability and performance of tires have improved, the 
conditions under which tires are operated have become more rigorous. 
Higher speeds, greater loads, extended lifetimes of tires, longer 
duration of travel \6\ and shifting demographics of vehicles sales \7\ 
have all contributed to much greater stresses and strains being placed 
upon today's radial tires than those endured by earlier generation 
radial tires.
---------------------------------------------------------------------------

    \6\ Passenger cars average 12,258 miles per year during the 
first 6 years after purchase, while light trucks average 12,683 
miles per year during the same time period. NPTS data also indicates 
that minivans make the most person-trips per day, followed by SUVs, 
passenger cars, and finally pickups. SUVs are estimated to make, on 
average, 4.6% more person-trips per day than passenger cars. Also, 
the 1995 Nationwide Personal Transportation Survey (NPTS) data set 
suggests that the average light duty truck (LDT) (pickup trucks, 
SUVs, and minivans) is used over longer distances and with more 
people aboard than passenger cars. Additionally, SUVs are popular 
for long distance weekend travel.
    \7\ Americans have shifted toward a significantly higher use of 
minivans, pickup trucks, and SUVs for personal travel. (Journal of 
Transportation and Statistics, December 2000). Sales of light trucks 
have risen steadily for over the past 20 years and now account for 
almost half of the U.S. light vehicle market--more than twice their 
market share as recently as 1983. (Industries in Transition, 1/01/
00; Journal of Transportation and Statistics, December 2000.) Sales 
growth of heavier light trucks, those that have GVWRs above 6,000 
pounds, increased at a much faster rate than their lighter 
counterparts, with larger SUVs (6,000-10,000 pounds GVWR) showing an 
average increase of 38 percent annually between 1990 and 1998.
    Approximately 90 percent of these light trucks use passenger car 
(P-metric) tires. The other 10 percent use light truck (LT) tires 
load range C, D, or E tires, which are typically used on heavier 
light trucks with a gross vehicle weight rating (GVWR) between 6,000 
and 10,000 pounds. Continued growth in the sales and production of 
light truck vehicles also drove the number of original equipment 
light truck (LT) tires to a record high of approximately 8.4 million 
units or a 25.2 percent increase over 1998's figures. (RMA 2000 
Yearbook)
---------------------------------------------------------------------------

    The characteristics of a radial tire construction in conjunction 
with present usage and purchasing patterns render the existing required 
minimum performance levels in the high-speed test, endurance test, 
strength test \8\, and bead-unseating test ineffective in 
differentiating among today's radial tires with respect to these 
aspects of performance.
---------------------------------------------------------------------------

    \8\ The FMVSS No. 109 plunger energy or strength test was 
designed to evaluate the strength of the reinforcing materials in 
bias ply tires, typically rayon, nylon or polyester, and it 
continues to serve a purpose for these tires. However, a radial tire 
is not susceptible to the kind of failure for which this test was 
designed to prevent. The flexible sidewalls of radial tires easily 
absorb the shock of road irregularities.
    Because of the belt package, radial tires far exceed the 
strength requirements of the test and many times the plunger bottoms 
out on the rim instead of breaking the reinforcing materials in the 
radial tire. During the years 1996 through 1998 RMA members reported 
conducting nearly 19,000 plunger energy (strength) tests on radial 
tires. There were no reported failures.
---------------------------------------------------------------------------

2. Safety Problems Associated With Tires
    Essentially, the size of the tire problem has remained the same 
over the last eight years. With the increasing sales of light trucks, 
and the fact that light trucks have more tire problems than passenger 
cars, the problem has shifted more toward light trucks and away from 
passenger cars. As discussed in the NPRM, several crash files contain 
information on ``general'' tire related problems that precipitate 
crashes. The more recent of these files are the National Automotive 
Sampling System--Crashworthiness Data System (NASS-CDS) \9\ and the 
Fatality Analysis Reporting System (FARS).\10\
---------------------------------------------------------------------------

    \9\ For the NASS-CDS system, trained investigators collect data 
on a sample of tow-away crashes around the country. These data can 
be ``weighted up'' to national estimates. A NASS-CDS General Vehicle 
Form contains the following information: a critical pre-crash event, 
such as vehicle loss of control due to a blowout or flat tire. This 
category includes only part of the tire-related problems that cause 
crashes. This coding would only be used when the tire went flat or 
there was a blowout that caused a loss of control of the vehicle, 
resulting in a crash.
    \10\ In FARS, tire problems are noted after the crash, if they 
are noted at all. The FARS file does not indicate whether the tire 
problem caused the crash, influenced the severity of the crash, or 
just occurred during the crash. For example, some crashes may have 
been caused by a tire blowout, while in others the vehicle may have 
slid sideways and struck a curb, causing a flat tire that may or may 
not have influenced whether the vehicle experienced rollover. Thus, 
while an indication of a tire problem in the FARS file give some 
indication as to the potential magnitude of the tire problem in 
fatal crashes, it can neither be considered the lowest possible 
number because the tire might not have caused the crash, nor the 
highest number of cases because not all crashes with tire problems 
might have been coded by the police.

---------------------------------------------------------------------------

[[Page 38120]]

    NASS-CDS data for 1995 through 1998 \11\ indicate that there are an 
estimated 23,464 tow-away crashes per year coded by the NASS 
investigators (relying on the police report of the crash) as having 
been caused by blowouts or flat tires. Based on that estimate, about 
one-half of one percent of all crashes are caused by these tire 
problems. The rate of blowout-caused crashes for light trucks (0.99 
percent) is more than three times the rate of those crashes for 
passenger cars (0.31 percent). Blowouts cause a much higher proportion 
of rollover crashes (4.81) than non-rollover crashes (0.28), and more 
than three times the rate in light trucks (6.88 percent) than in 
passenger cars (1.87 percent).
---------------------------------------------------------------------------

    \11\ Based on the consistency in the overall numbers of tire 
problems in FARS during the past eight years, the agency has not 
deemed it necessary to update the injury numbers in the more 
intricate analysis of NASS-CDS data. We believe that there would be 
almost no change in the target population if a few more recent 
years, e.g., 1999-2001, were included in the NASS-CDS analysis.
---------------------------------------------------------------------------

    FARS data for 1999 through 2001 show that 1.10 percent of all light 
vehicles in fatal crashes were coded by investigators as having had 
tire problems. Light trucks had slightly higher rates of tire problems 
(1.34 percent) than passenger cars (0.92 percent). The annual average 
number of vehicles with tire problems in FARS was 528 (255 passenger 
cars and 273 light trucks).
    A further examination of the FARS data indicates that heat is a 
factor in tire problems. An examination of two surrogates for heat, the 
region of the U.S. in which the crash occurred, and the season in which 
the crash occurred, indicates that the highest rates of tire problems 
occurred in light trucks in southern states in the summertime, followed 
by light trucks in northern states in the summertime, and then by 
passenger cars in southern states in the summertime. The lowest rates 
occurred in winter and fall. Based on these data, tires on light trucks 
appear to be more affected by higher ambient temperatures than tires on 
passenger cars.
    Examining tire problems in the NASS-CDS from 1992 to 1999 by types 
of light trucks and vehicle size indicates that LT tires used on light 
trucks exhibited more problems than P-metric tires. LT tires are used 
on vehicle classes identified for this analysis as Van Large B and 
Pickup Large B groups of vehicles. These groups of vehicles typically 
consist of the \3/4\-ton and 1-ton vans and pick-ups. P-metric tires 
are used on most of the other light trucks. The data indicate that the 
average percentage of light trucks in the NASS-CDS having a LT tire 
problem is 0.84, while the average percent of light trucks having a P-
metric tire problem is 0.47 percent. These larger pickups and vans, 
however, carry heavier loads and may be more frequently overloaded than 
lighter trucks. In addition, these heavier vehicles are often used at 
construction sites and may be more apt to encounter nail punctures and 
experience flat tires. Thus, there may be usage issues that increase 
the percentage of tire problems for these larger trucks, rather than 
exclusively a qualitative difference between P-metric and LT tires.

C. Existing NHTSA Performance Requirements for Tires

    The following discussion summarizes existing NHTSA requirements 
relating to tires.
    FMVSS No. 109, New pneumatic tires, 49 CFR 571.109, specifies the 
requirements for all tires manufactured for use on passenger cars 
manufactured after 1948. This standard, which was issued in 1967 under 
the National Traffic and Motor Vehicle Safety Act (Safety Act), 
specifies dimensions for tires used on passenger cars and requires that 
the tires meet specified strength, resistance to bead unseating, 
endurance, and high speed requirements, and be labeled with certain 
safety information. FMVSS No. 109 applies to passenger car (P-metric) 
tires produced for use on passenger cars, multipurpose passenger 
vehicles (MPV), and light trucks (sport utility vehicles (SUV), vans, 
minivans, and pickup trucks). The standard was adopted from the Society 
of Automotive Engineers (SAE) recommended practice J918c, Passenger Car 
Tire Performance Requirements and Test Procedures, which was first 
issued by the SAE in June 1965.\12\ The current FMVSS No. 109 includes 
four performance requirements for tires:
---------------------------------------------------------------------------

    \12\ SAE is an organization that develops voluntary standards 
for aerospace, automotive and other industries. Many of SAE's 
recommended practices are developed using technical information 
supplied by vehicle manufacturers and automotive test laboratories.
---------------------------------------------------------------------------

    [sbull] A strength test, which evaluates the strength of the 
reinforcing materials in the tire;
    [sbull] A resistance-to-bead unseating test, which evaluates how 
well the tire bead is seated on the rim (regulating the tire-rim 
interface guards against sudden loss of tire air pressure when a tire 
is subjected to lateral forces such as during severe turning 
maneuvers);
    [sbull] An endurance test, which evaluates resistance to heat 
buildup when the tire is run at or near its rated load nonstop for a 
total of 34 hours; and
    [sbull] A high-speed test, which evaluates resistance to heat 
buildup when the tire is run at 88 percent of its maximum load at 
speeds of 75 mph, 80 mph, and 85 mph for 30 minutes at each speed.
    For the purposes of testing tires to determine their compliance 
with these requirements, the standard specifies values for several 
factors, such as tire inflation pressure, the load \13\ on the tire, 
and the rim on which a tire is mounted. The standard specifies 
permissible inflation pressures (or wheel sizes, in the case of bead 
unseating test) to facilitate compliance testing. The standard requires 
that each passenger car tire have a maximum permissible inflation 
pressure labeled on its sidewall (S4.3). Section 4.2.1(b) lists the 
permissible maximum pressures: 32, 36, 40, or 60 pounds per square inch 
(psi) or 240, 280, 290, 300, 330, 340, 350, or 390 kiloPascals (kPa). A 
manufacturer's selection of a maximum pressure has the effect of 
determining the pressures at which its tire is tested. For each 
permissible maximum pressure, Table II of the standard specifies 
pressures at which the standard's tests must be conducted. The intent 
of this provision is to limit the number of possible maximum inflation 
pressures and thereby reduce the likelihood of having tires of the same 
size on the same vehicle with one maximum load value, but with 
different maximum permissible inflation pressures.
---------------------------------------------------------------------------

    \13\ Load percentages stated throughout this document, unless 
otherwise specified, are based on the sidewall maximum rated load.
---------------------------------------------------------------------------

    Closely related to FMVSS No. 109 is FMVSS No. 110, Tire selection 
and rims, 49 CFR 571.110. FMVSS No. 110 requires that each passenger 
car be equipped with tires that comply with FMVSS No. 109, that tires 
on the cars be capable of carrying the maximum loaded vehicle weight, 
that the rims on the car be appropriate for use with the tires, and 
that certain information about the car and its tires appear on a 
placard in the passenger car. FMVSS No. 110 also specifies rim 
dimension requirements and further specifies that, in the event of a 
sudden loss of inflation pressure at a speed of 97 km/h (60 mph), rims 
must retain a deflated tire until the vehicle can be stopped with a 
controlled braking application. FMVSS No. 110 initially became 
effective in April 1968.
    FMVSS No. 117, Retreaded pneumatic tires, 49 CFR 571.117, 
establishes performance, labeling, and

[[Page 38121]]

certification requirements for retreaded pneumatic passenger car tires. 
Among other things, the standard requires retreaded passenger car tires 
to comply with the tubeless tire resistance to bead unseating and the 
tire strength requirements of FMVSS No. 109. FMVSS No. 117 also 
specifies requirements for casings to be used for retreading, and 
certification and labeling requirements.
    FMVSS No. 119, New pneumatic tires for vehicles other than 
passenger cars, 49 CFR 571.119, specifies performance and labeling 
requirements for new pneumatic tires designed for highway use on 
multipurpose passenger vehicles, trucks, buses, trailers and 
motorcycles manufactured after 1948, and requires treadwear indicators 
in tires, and rim matching information concerning those tires. Under 
this standard, each tire must meet requirements that are qualitatively 
similar to those in FMVSS No. 109 for passenger car tires. The high 
speed performance test in this standard only applies to motorcycle 
tires and to non-speed-restricted tires of 14.5-inch nominal rim 
diameter or less marked load range A, B, C, or D. In addition, FMVSS 
No. 119 does not contain a resistance-to-bead unseating test.
    A tire under FMVSS No. 119 is generally required to meet the 
performance requirements when mounted on any rim listed as suitable for 
its size designation in the publications, current at the time of the 
tire's manufacture, of the tire and rim associations that are listed in 
the standard. Further, the tire is required to meet the dimensional 
requirements when mounted on any such rim of the width listed in the 
load-inflation table s of this standard. In addition to the permanent 
marking for any non-matching listed rims, each tire manufacturer is 
required to attach to the tire, for the information of distributors, 
dealers and users, a label listing the designations of rims appropriate 
for use with the tire.
    FMVSS No. 120, Tire Selection and rims for motor vehicles other 
than passenger cars, 49 CFR 571.120, requires that vehicles other than 
passenger cars equipped with pneumatic tires be equipped with rims that 
are listed by the tire manufacturer as suitable for use with those 
tires and that rims be labeled with certain information. It also 
requires that these vehicles shall be equipped with tires and rims that 
are adequate to support the vehicle's certified gross weight.
    Tire selection under FMVSS No. 120 consists of two elements. With 
one exception, each vehicle must be equipped with tires that comply 
with FMVSS No. 119 and the load rating of those tires on each axle of 
the vehicle must together at least equal the gross axle weight rating 
(GAWR) for that axle. If the certification label lists more than one 
GAWR-tire combination for the axle, the sum of the tire's maximum load 
ratings must meet or exceed the GAWR that corresponds to the tire's 
size designation. If more than one combination is listed, but the size 
designation of the actual tires on the vehicle is not among those 
listed, then the sum of the load ratings must simply meet or exceed the 
lowest GAWR that does appear.
    FMVSS No. 120 also contains a requirement related to the use of 
passenger car tires on vehicles other than passenger cars. The 
requirement states that when a tire that is subject to FMVSS No. 109 is 
installed on a multipurpose passenger vehicle, truck, bus, or trailer, 
the tire's load rating must be reduced by a factor of 1.10 by dividing 
by 1.10 before determining whether the tires on an axle are adequate 
for the GAWR. This 10 percent de-rating of P-metric tires provides a 
greater load reserve when these tires are installed on vehicles other 
than passenger cars. The reduction in the load rating is intended to 
provide a safety margin for the generally harsher treatment, such as 
heavier loading and possible off-road use, that passenger car tires 
receive when installed on a MPV, truck, bus or trailer, instead of on a 
passenger car.
    FMVSS No. 129, New non-pneumatic tires for passenger cars, 49 CFR 
571.129, includes definitions relevant to non-pneumatic tires and 
specifies performance requirements, testing procedures, and labeling 
requirements for these tires. To regulate performance, the standard 
contains performance requirements and tests related to physical 
dimensions, lateral strength, strength (in vertical loading), tire 
endurance, and high-speed performance. The performance requirements and 
tests in FMVSS No. 129 were based upon those contained in FMVSS No. 
109.

III. Pre-TREAD Act Enactment Agency Response to Safety Problem

    Prior to this rulemaking, NHTSA embarked on a program of global 
harmonization for light vehicle tire standards under the auspices of 
the United Nations/Economic Commission for Europe's (UN/ECE) World 
Forum for Harmonization of Vehicle Regulations (WP.29).\14\ NHTSA, 
within the WP.29's Working Party on Brakes and Running Gear (GRRF),\15\ 
had been working cooperatively with other countries to develop a global 
tire standard that could better assess the safety performance of modern 
tires.
---------------------------------------------------------------------------

    \14\ Formerly, ``Working Party on the Construction of Vehicles 
(WP.29).'' The Forum's Web site is http://www.unece.org/trans/main/welcwp29.htm
.
    \15\ The GRRF is a Working Party within WP.29 that is 
responsible for developing draft global technical regulations on 
brakes, tires, wheels, and other chassis components of motor 
vehicles.
---------------------------------------------------------------------------

    Beginning in July 1999, the GRRF had been considering a draft 
global technical regulation (GTR) based on the Global Tire Standard 
2000 for New Pneumatic Car Tires (GTS-2000),\16\ \17\ an industry 
developed standard. Prior to the enactment of the TREAD Act, tentative 
consensus within an ad hoc tire harmonization working group of the GRRF 
concerning the draft GTR had been reached on the following issues: (1) 
to adopt the ECE R30 high speed test methodology (see Note) in place of 
the FMVSS No. 109 high speed test, (2) to keep the current FMVSS No. 
109 resistance-to-bead unseating test until NHTSA develops an 
alternative that is more appropriate for radial tires, and (3) to 
develop an optional requirement for testing wet grip.
---------------------------------------------------------------------------

    \16\ \17\ GTS-2000 would replace the current FMVSS 
No. 109 high-speed test with the high-speed test required by ECE--
R30 (the European tire regulation for tires used on light passenger 
vehicles), including temporary spares. It would also limit the 
application of the other three tests currently required by FMVSS No. 
109, namely the strength test, the bead unseating test, and the 
endurance test, to bias tires and low speed rated radial tires 
because industry believes that these three tests have relevance to 
bias and bias-belted tires, but little, if any, relevance to radial 
tires, with the single exception of the endurance test for low speed 
(160 km/h/99 mph, or less) radial tires.

    Note: The ECE Regulation 30 includes a single performance 
requirement, the high-speed test, which is conducted at a speed 
close to and up to the rated speed of the tire. The methodology used 
in ECE R30 and suggested by the tire industry in GTS-2000 for tire 
harmonization determines the test speed based on the tire's speed 
symbol rated speed. The following chart illustrates the rated speed 
in km/h for each speed symbol.

------------------------------------------------------------------------
                                                          Rated speed--
                     Speed symbol                             km/h
------------------------------------------------------------------------
F.....................................................                80
G.....................................................                90
J.....................................................               100
K.....................................................               110
L.....................................................               120
M.....................................................               130
N.....................................................               140
P.....................................................               150
Q.....................................................               160
R.....................................................               170
S.....................................................               180
T.....................................................               190

[[Page 38122]]


U.....................................................               200
H.....................................................               210
V.....................................................               240
W.....................................................               270
Y.....................................................               300
ZR....................................................    300
------------------------------------------------------------------------

    These speeds range from a minimum of 140 km/h (88 mph) to 300 
km/h (188 mph) for W, Y categories. The total test time is 50 
minutes. The inflation pressures for the ECE R30 high-speed test are 
typically much higher than those recommended by vehicle 
manufacturers for vehicle operation.

    Other issues that had also been under discussion in the ad hoc 
group prior to the TREAD Act included: (a) the U.S.'s suggestion to 
lower the inflation pressures for and increase the duration of the high 
speed test (current ECE R30 test), (b) the U.S.'s suggestion to agree 
on the need for tire labeling requirements that are unique to the U.S., 
such as maximum inflation pressure, and UTQG consumer information, (c) 
the U.S.'s suggestion to identify requirements that should be included 
as optional requirements, (d) assigning to the UN the responsibility 
for tire plant code registration for a global standard, and (e) the 
U.S.'s suggestion to increase the ambient temperature for the high 
speed test.
    In a February 2001 submission to the docket (Docket No. NHTSA-2000-
8011), the Chairman of the GRRF Tire Harmonization Working Group had 
recommended on behalf of the GRRF that NHTSA adopt a draft text that 
reflects the current state of deliberations for developing a harmonized 
tire standard. At its 126th session in March 2002, WP.29 decided that 
there was little prospect of achieving global agreement at this stage 
and suspended further work indefinitely. The group, as its final task, 
submitted comments on the NPRM in this rulemaking. The U.S. 
representative to the GRRF recused himself from these deliberations.

IV. Post-TREAD Act Enactment Agency Response to Safety Problem

A. Tire Testing and Opening of Docket No. 2000-8011

    Shortly after the enactment of the TREAD Act, the agency had 
initiated tire testing at Standards Testing Labs (STL) in November 2000 
to evaluate the high-speed performance, endurance performance, and low 
inflation pressure performance of a limited number of current 
production tires. The agency had developed a test matrix which focused 
on the five main parameters currently used in tire testing under FMVSS 
Nos. 109 and 119: load, inflation pressure, speed, duration, and 
ambient temperature. Copies of the test matrix and testing results for 
P-metric tires and for LT tires have been available in the docket (see 
the Tire Test Matrix in NHTSA Docket No. 2000-8011-1).
    In summary, the results of the high speed and endurance tests had 
indicated that the agency could develop and propose test requirements 
that were realistic in terms of the test parameters, yet more stringent 
than the current FMVSS No. 109, FMVSS No. 119 requirements, European 
Regulation ECE R 30, GTS 2000, and RMA 2000. The proposed test 
requirements had differentiated tires with better high speed and 
endurance performance from those with lesser performance. The low 
pressure validation tests had indicated that tires that were able to 
successfully complete the endurance testing could also complete an 
additional 90-minute test at a low inflation pressure, 140 kPa for P-
metric tires, thus providing an adequate safeguard for consumers to 
take corrective action when the low pressure warning lamp proposed 
under the tire pressure monitoring system rulemaking is activated at a 
``significantly'' under-inflated level.
    In September 2000, NHTSA had opened a docket, NHTSA-2000-8011, 
titled ``Tire Testing--Federal Motor Vehicle Safety Standard (FMVSS No. 
109).'' The purpose of this docket has been to collect tire test data 
and receive feedback on its high speed and endurance performance 
testing matrices. At issuance of the NPRM, comments and recommendations 
from 7 entities had been received in the docket. Additionally, Toyota 
Motor Company (Toyota) had submitted a copy of its air loss test 
procedure to the docket. Substantive comments and recommendations in 
response to NHTSA's testing matrices were discussed in the NPRM.

B. March 5, 2002, Notice of Proposed Rulemaking (NPRM)

    As a result of the aforementioned testing and data collection 
efforts, the agency identified an array of amendments for revising and 
updating its tire standards and thereby improving tire performance in a 
NPRM published on March 5, 2002. Some of these amendments would have 
upgraded existing tests, while the others would have added new ones.
    In the NPRM, the agency proposed to include the new tire 
performance requirements in Standard No. 139, a new tire standard 
established in a November 18, 2002 final rule on Tire Safety 
Information (Docket No. NHTSA-02-13678, 67 FR 69600, November 18, 
2002). The standard applies to light vehicle tires. As used in the tire 
safety information final rule, ``light vehicles'' are vehicles (except 
motorcycles) with a gross vehicle weight rating (GVWR) of 10,000 pounds 
or less.
    Under the NPRM, the new standard would have contained requirements 
and test procedures addressing the following aspects of tire 
performance: Tire dimension, high speed, endurance, road hazard impact, 
bead unseating, low inflation pressure performance, and aging 
effects.\18\
---------------------------------------------------------------------------

    \18\ For the convenience of the reader, we have placed in the 
docket for today's final rule a document that shows how the recently 
promulgated tire safety information requirements (see Footnote 
 1) and performance requirements appear together in FMVSS 
No. 139.
---------------------------------------------------------------------------

    The proposed high speed and endurance tests would have replaced the 
current high speed and endurance tests in FMVSS No. 109, New Pneumatic 
Tires--Passenger Cars, 49 CFR 571.109, with a more stringent 
combination of testing parameters (ambient temperature, load, inflation 
pressure, speed, and duration.) Most significantly, the proposed high 
speed test would have specified test speeds (140, 150 and 160 km/h (87, 
93, and 99 mph)) that are substantially higher than those currently 
specified in FMVSS No. 109 (120, 128, 136 km/h (75, 80, 85 mph)). 
Likewise, the proposed endurance test would have specified a test speed 
50 percent faster (120 km/h (75 mph)) than that currently specified in 
FMVSS No. 109 (80km/h (50 mph)), as well as a duration 6 hours longer 
(40 hours total) than that currently specified in FMVSS No. 109 (34 
hours total). At the specified test speed (120 km/h), the proposed 
endurance test distance (4800 km) would have been almost double the 
distance accumulated than under the current endurance test (2720 km at 
80 km/h). These new testing parameters were based on NHTSA's activities 
undertaken in response to the TREAD Act, including extensive agency 
testing, data gathering and analyses as well as agency review of other 
existing international, industry and National standards and proposals, 
and submissions by the public.
    The proposed road hazard impact test and the bead unseating test 
were modeled on SAE Recommended Practice J1981, Road Hazard Impact Test 
for Wheel and Tire Assemblies (Passenger Car, Light Truck, and 
Multipurpose Vehicles), and the Toyota air loss test, respectively. 
These new tests would have replaced the strength and bead unseating 
resistance tests in the current FMVSS No. 109 with tests

[[Page 38123]]

that were believed to be more real-world and stringent.
    In addition to the tests cited above, the proposed standard would 
have contained tests for two new aspects of performance: Low inflation 
pressure performance and aging effects. By seeking to establish tests 
for these aspects of performance, the agency was attempting to address 
concerns raised by members of Congress in hearings preceding the 
enactment of the TREAD Act that NHTSA's current test requirements do 
not evaluate how well tires perform either when significantly 
underinflated or after being in use for several years and being 
subjected to environmental variables, such as heat. In particular, 
underinflation and heat were factors highlighted as contributing to 
failure of the Firestone ATX and Wilderness tires in the TREAD 
hearings, and in the agency's Firestone investigation (NHTSA Office of 
Defects Investigation (ODI) investigation number EA00-023).
    To test low inflation pressure performance, the agency proposed two 
alternative tests based on agency testing and data analyses. Both tests 
would have evaluated tires when they are significantly under-inflated. 
For instance, 140 kPa (20 psi) for P-metric tires (the low inflation 
pressure threshold requirement for warning lamp activation in the 
proposed Tire Pressure Monitoring System (TPMS) standard, Docket No. 
NHTSA-00-8572 (66 FR 38982, July 26, 2001) would have been used as the 
``inflation pressure'' testing parameter for standard load P-metric 
tires. To test for resistance to aging effects, the agency proposed 
three alternative tests that would have evaluated a tire's long term 
durability through methods different than and/or beyond those required 
by both the current and the proposed endurance test parameters. The 
three tests would have used peel strength testing, long-term durability 
endurance requirements, and oven aging, respectively. The agency 
solicited comments on which of the two proposed tests for addressing 
low inflation pressure performance, and which of the three tests 
proposed for addressing aging effects, should have been chosen for the 
new standard.
    In addition to proposing test procedures for the new standard, the 
agency also discussed in this document its ongoing and future research 
plans on tire safety, and sought comments on the future use of 
shearography analysis (a method of analysis using laser technology) for 
evaluating the condition of tires subjected to the proposed testing 
procedures and the plans for revising the Uniform Tire Quality Grading 
Temperature Grading Requirement testing speeds so that they would have 
been consistent with the test speeds in the proposed high speed tests.
    With regard to tire selection criteria and the de-rating of P-
metric tires, the agency proposed retaining the de-rating percentage of 
1.10 for P-metric tires used on non-passenger car vehicles and revising 
FMVSS No. 110 to require that the determination of vehicle normal load 
(``reserve load'') on the tire be based on 85% of the load at vehicle 
placard pressure.
    Finally, the agency discussed revising FMVSS Nos. 110, Tire 
selection and rims, for passenger cars, 49 CFR 571.110, and 120, Tire 
selection and rims for motor vehicles other than passenger cars, 49 CFR 
571.120, to reflect the applicability of the proposed light vehicle 
tire standard to vehicles up to 10,000 pounds GVWR, and revising FMVSS 
Nos. 117, Retreaded pneumatic tires, 49 CFR 571.117, and 129, New non-
pneumatic tires for passenger cars, 49 CFR 571.129, to replace the 
performance tests which reference or mirror those in FMVSS No. 109 with 
those specified in the proposed new light vehicle tire standard.
    Emphasizing that the agency was mindful of the principles for 
regulatory decisionmaking set forth in Executive Order 12866, 
Regulatory Planning and Review, and wished to adopt only those 
amendments that contribute to improved safety, NHTSA carefully examined 
the benefits and costs of these amendments. The agency noted that its 
efforts to do so, however, were limited by two factors: (1) The limited 
time allowed by the schedule specified in the TREAD Act for completing 
this rulemaking, and (2) the difficulty inherent in crash avoidance 
rulemakings, stemming from the multiplicity of the factors contributing 
to the occurrence of any crash and the difficulty of ascertaining the 
relative contribution of each factor, in linking specific improvements 
in safety requirements with specific reductions in crashes and 
resulting deaths and injuries.
    The agency, based on the proposed high speed and endurance test, 
estimated that the benefits of this would have been 27 lives saved and 
667 injuries reduced and emphasized that not all benefits could have 
been quantified, e.g., benefits from the proposed aging test, the 
proposed low inflation pressure performance tests, the proposed road 
hazard and bead unseating tests, and aspects of the proposal that 
address the overloading of vehicles.
    The agency estimated that about one-third (32.8 percent) of all 
tires would have needed improvements to pass the high speed and 
endurance tests and that the overall annual cost of these tests for new 
original equipment (64 million tires) and replacement tires (223 
million tires) would have been estimated at $282 million for a total of 
287 million tires sold annually and the net costs per equivalent life 
saved would have been about $7.2 million. The agency noted that it 
anticipated receiving cost data and other information that would enable 
it to refine its assessment of benefits and costs.
    Expressing concern about the overall costs of the rulemaking and 
the net costs per equivalent life saved, the agency sought comments on 
the proposed new standard, including its applicability and test 
procedures, modifications to related existing standards, and lead time 
provided for manufacturers to achieve compliance.

C. Post-NPRM Technical Submissions to NHTSA Tire Upgrade Docket

1. NHTSA Testing at Standards Testing Labs (STL)
    The agency conducted tire testing at Standards Testing Labs (STL) 
to evaluate the performance of tires tested to the high speed and 
endurance parameters proposed in the NPRM. The agency tested 20 (15 P-
metric and 5 LT) current production tires.
    For high speed testing, at an ambient temperature of 38[deg] C, all 
20 tires tested for a duration of 30 minutes at 140, 150, and 160 km/h 
with the proposed inflation pressures completed the test without 
failure. At an ambient temperature of 40[deg] C with the other 
parameters being the same, all 15 P-metric tires completed the test 
without failure. For LT tires, 1 of 5 tires tested failed the high-
speed test. Testing to these same conditions during Winter 2002 with 40 
P-metric and 20 LT tires resulted in failures in 2 P-metric tires and 0 
LT tires.
    Endurance testing was conducted with the same parameters proposed 
in the NPRM--load combinations of 90/100/110 percent load, test speeds 
of 120 km/h, duration of 40 hours, ambient temperature of 40 C, and the 
inflation pressure of 180 kPa for P-metric tires and 75 percent of 
maximum inflation pressure for LT tires. Four of 15 tires failed to 
complete the test, representing a 27 percent failure rate. The same 15 
tire brands were tested at the same parameters except the ambient 
temperature was reduced to 38[deg] C and the loads were reduced to 85/
90/100 percent. Under these conditions, 1 of

[[Page 38124]]

the 15 tires failed to complete the test, representing a failure rate 
of 7 percent. The one failure was a ``Q'' speed-rated snow tire that 
completed the 40-hour duration but failed the post-inspection because 
of chunking.
    For the 5 LT tires tested, 3 of the 5 completed the endurance tests 
at the proposed parameters, representing a 40 percent failure rate. 
When the load and ambient temperature were reduced to 85/90/100 percent 
and 38[deg] C, respectively, all 5 LT tires completed the test without 
any failures.
    The agency also conducted low pressure testing at Smithers 
Scientific to evaluate Alternative 2 of the proposed low pressure test 
on the performance of 13 tires (10 P-metric and 3 LT).\19\ The proposed 
40-hour endurance test was performed on the tires before they were run 
to the low pressure test. The low pressure test parameters included an 
inflation pressure of 140 kPa, a speed of 140, 150, 160 km/h, a 
duration of 90 minutes (30 minutes at each test speed), a 67 percent 
load. The same tests were performed using 3 LT tires, but at inflation 
values of 260/340/410 kPa for load ranges C/D/E, respectively. These 
inflation pressure values represent the lowest inflation pressure 
provided by tire industry standardizing bodies for a tire load limit.
---------------------------------------------------------------------------

    \19\ The agency did not re-test any tires to Alternative 1 of 
the low pressure endurance performance test since earlier testing 
(in Spring 2001) of 24 tires that completed a more stringent 
endurance test (50 hours and loads of 100/110/115 percent indicated 
no failures.
---------------------------------------------------------------------------

    One of the P-metric tires failed to complete the endurance test 
and, therefore, was not tested to the low pressure test. The 12 
remaining tires tested completed the 90-minute low inflation test 
without failure.
2. Rubber Manufacturer's Association (RMA) Design of Experiment (DOE) 
and Confirmation Testing
    Members of the RMA developed a response surface model Design of 
Experiment (DOE) to assess tire temperatures versus test conditions 
(inflation pressure, load, and speed), surface type (standard test 
wheel of 1.7-m diameter versus a flat surface), and ambient 
temperature. An additional follow-up confirmation round of testing, 
which contained a broader range of tire types and sizes, was also 
conducted by RMA.\20\
---------------------------------------------------------------------------

    \20\ An additional follow-up confirmation round of testing, 
containing a broader range of tire types and sizes, was conducted to 
validate the results of the DOE. RMA ran a matrix of passenger and 
light truck tires on high speed (increasing speed in 10 km/h steps 
to failure) and endurance (increasing load in 10% steps to failure). 
Seven high-volume, representative tire sizes of various brands were 
included in the test protocol (4 passenger and 3 light truck). Each 
tire size was tested for high speed and endurance; a total of 145 
tires were tested. Passenger tire sizes tested included: P235/75R15 
for economy all-season; P215/70R15 for standard load ``broad-line''; 
P265/75R16 for all-terrain; and, P215/70R15 for snow. The light 
truck sizes tested included: LT245/75R16 LRE for all-terrain/all-
traction; LT235/85R16 LRE for all-season; and, 31 x 10.5 R15 LRC for 
mud.
---------------------------------------------------------------------------

    RMA tested P-metric and LT tires to a matrix of high speed and 
endurance tests. Seven (4 P-metric and 3 LT) tire sizes of various 
brands were included in the test protocol. P-metric tires included 
P235/75R15 for all season, P215/70R15 for standard load ``broad line,'' 
P265/75R16 for all terrain, and P215/70R15 for snow. For LT tires, the 
sizes were LT245/75R16 LRE for all-terrain/all-traction, LT 235/85R16 
LRE for all season, and 31 x 10.5 R 15 LRC for mud. A total of 145 
tires were tested.
    The parameters RMA used for its high speed testing for P-metric 
tires were identical to the agency's, except for the ambient 
temperature. For LT tires, RMA's test parameters were 10 km/h lower 
than the agency's proposal for speed (130, 140, 150 km/h), and higher 
for inflation pressures at 330 and 520 kPa for load ranges C and E 
tires, respectively. All 42 P-metric tires tested to RMA's proposal 
completed the 160 km/h step without any failures. Of the 32 LT tires 
tested, 1 tire failed to complete the 150-km/h step, representing a 3 
percent failure rate, and 2 LT tires failed to complete the 160 km/h 
speed step, a 6 percent failure rate.
    For its endurance test parameters for P-metric tires, RMA utilized 
an ambient temperature at 38[deg] C, a load at 85/90/100 percent of the 
maximum load rating, the same test speed proposed in the NPRM (120 km/
h) and duration at 34 hours. For LT tires, RMA's testing included the 
same parameters as those for P-metric tires except it utilized a lower 
test speed of 110 km/h and higher inflation pressures at 285 and 445 
kPa for load ranges C and E tires, respectively. For the 30 P-metric 
tires tested to RMA's endurance test, 2 failed to complete the 100 
percent load step (5 percent failure rate). For LT tires, 2 of 32 tires 
tested failed to complete the 100 percent load step (6 percent failure 
rate).
    The outline of RMA's DOE text matrix, including specific test 
conditions applied by tire type, as well as a full set of DOE tables, 
charts, graphs, and data are included as DOE Attachment II to RMA's 
comments (Docket No. 2000-8011-64).
    According to RMA, tires included in the test matrix were selected 
to cover the appropriate range of technical parameters and to ensure 
representative high volume in the marketplace. The three ``popular'' 
tire sizes chosen by RMA were: (1) P205/65R15, (2) P235/75R15, and (3) 
LT245/75R16 LRC/LRE. Most of the tires tested by RMA, particularly 
those used for the confirmation testing, were at the lower end of the 
speed rating scale, e.g. ``Q'' through ``S'' and included snow tires, 
which represent a small percent of sales of replacement tires in the 
U.S. A brief summary of RMA's DOE conclusions and recommendations are 
briefly discussed below. RMA's recommendations and comments on the NPRM 
proposals are summarized in the following section of this document.
    In summary, the RMA concluded from the DOE and confirmation test 
results that:
    (1) Speed is the most dominant test parameter. Larger temperature 
increases are observed when speed is increased compared to changing 
inflation pressure or load, particularly on a test wheel. According to 
the DOE, at 80 km/h the average tire temperature is 2[deg] C higher on 
a 1.7 m test wheel than a flat surface, at 160 km/h the curved surface 
is 25[deg] C higher.
    (2) Passenger car and light truck tires require different test 
conditions on a test wheel, particularly for speed, to achieve 
comparable levels of severity. The effect of this curved surface of the 
1.7 m test wheel is to increase the tire deflection compared to a flat 
surface. In addition, the combination of the curvature of the tire and 
reverse curvature of the test wheel results in the footprint of the 
tire being altered. The footprint shape is altered in a non-
representative manner when compared to a flat surface. This altered 
deflection and footprint area result in substantially higher stresses. 
This is demonstrated by the higher tire temperatures on a curved versus 
flat surface.
    (3) The effect of the test wheel curvature increases substantially 
with speed. Standing waves, which lead to early tire failure, occur at 
speeds 10 to 20 km/h lower on a curved surface compared to flat. To 
have a realistic test that can be related to real-world conditions, it 
is important to properly adjust test conditions on a curved surface to 
as closely as possible match those of a flat surface.
3. Ford Motor Company (Ford) Tire Aging Analysis
    In June 2002, Ford presented its analysis on the effectiveness of 
the aging protocols proposed by NHTSA for FMVSS No. 139. Ford's 
presentation was comprised of evaluated results obtained from tire 
investigations and data analysis from experiments based on

[[Page 38125]]

the parameters discussed in the Notice. Based on the results from these 
experiments, Ford recommended aging mounted tires with a 50/50 blend of 
oxygen/nitrogen in an oven for two weeks followed by a peel test to be 
performed on the tire. They also suggested that it would be more 
appropriate to test the endurance, high speed, or low pressure 
performance of a tire aged in this manner.
    Ford's observations and conclusions are summarized below:
    Results Obtained From Tire Investigations: (1) There is a very 
strong correlation between cross-link density and peel strength for all 
of the manufacturing facilities, (2) peel strength decreases 
exponentially as, over time, cross-link density increases (as cross-
link density increases, the elongation at break decreases), (3) since 
there is a relationship between cross-link density and peel strength, 
and also a relationship between peel strength and age of the tire, a 
relationship between cross-link density and age of the tire should also 
exist, (4) the evidence that cross-link density exponentially increases 
over time suggests that skim and wedge rubber is aging oxidatively, and 
(5) the aging mechanism of spare tires is the same as road tires, 
oxidative.
    Results From NHTSA ODI Report on Firestone Wilderness AT Tires: (1) 
The overwhelming majority of tires analyzed aged oxidatively in the 
field and oxidative aging is the predominant mechanism in the reduction 
of peel strength over time.
    Adhesion (Peel) Test: (1) Although peel testing is an important 
characteristic of tires, the data for Alternative 1 do not support the 
use of endurance testing as an appropriate aging condition for the tire 
because the test procedure does not influence the peel strength to any 
significant degree, i.e., after 24 hours of testing, only a 10% decline 
in peel strength is affected, while after 50 hours, a 16.8% decrease is 
measured, (2) the cross-link density of the skim rubber becomes lower 
as a result of the conditions at which the endurance test is run and 
this indicates that anaerobic aging due to severe heat and stress is 
degrading the rubber properties, (3) field aged tires increase in 
cross-link density with time, not decrease, (4) the wedge properties of 
the endurance tested tires also show anaerobic aging and this data 
shows that significant anaerobic aging occurs during endurance testing 
of this tire, (5) the field data obtained by both NHTSA and Ford 
suggest aerobic/oxidative aging.
    Michelin's Long-Term Durability Endurance Test: (1) The test is not 
an appropriate universal aging test because it does not properly age 
the wedge region of larger tires or tires with a heavier tread mass (in 
the late 1970s and early 1980s when this test was first developed, 
tread patterns were more all season than all terrain and the average 
tire size was smaller), (2) the dynamic aspect of the test is too 
benign for the nearly 10.5 days of test wheel time required (for 
passenger car tires, running the tire slightly overloaded (11%) and 
significantly overinflated (17%--significant because inflation pressure 
changes have a more pronounced effect than load changes in test wheel 
tests) at 97 km/h essentially prolongs the test so that oxidative aging 
can occur but fails to test the belt package in any meaningful way once 
it is aged), (3) the test is not without merit; the 50/50 oxygen/
nitrogen blend does accelerate the oxidative aging mechanism of skim 
rubber.
    Oven Aging: (1) Oven aging tires, either un-mounted or mounted with 
air, has very little effect on the chemical and physical properties of 
the belt package rubber; only when mounted with the 50/50 blend do 
properties significantly change, (2) it is possible, by using the 50/50 
oxygen/nitrogen blend, to artificially age tire rubber to the chemical 
equivalent of 3-4 years in age and, from a chemical aging standpoint, 
properties of the skim rubber can be aged just as effectively in an 
oven using the 50/50 oxygen/nitrogen blend as on the test wheel, (3) 
for oven aging, the wedge rubber ages similar to field-aged tires; 
contrasting with tires run to the ``Michelin'' test, which showed 
severe reversion in the wedge rubber, (4) tires oven aged with the 50/
50 oxygen/nitrogen blend are in a condition similar to an older full 
size spare and, therefore, it may be more appropriate to test the 
endurance, high speed, or low pressure performance of a tire aged in 
this manner.
    Ford also submitted aging testing results, as well as data 
regarding the high speed, endurance and low-pressure test. Ford's data 
have been granted confidential status. Therefore, it is not available 
for review in the docket. Their recommendations from their high-speed, 
endurance and low-pressure testing are summarized in the comment 
summary section of this document.
4. Goodyear Endurance Testing
    In a August 2002 presentation to NHTSA and submission to the 
docket, Goodyear provided the following comments on NHTSA's proposed 
endurance test based on additional testing conducted by Goodyear: (1) 
Heat induced damage mode (tread chunking) exhibited in proposed FMVSS 
No. 139 endurance testing is not representative of real world failures 
in the field, (2) tires with proven safe field performance will not 
pass the proposed FMVSS No. 139 due to tread chunking caused by 
excessive heat build-up due to high speed on curved surface and high 
load conditions, and (3) tire design changes/compromises to reduce heat 
induced tread chunking will negatively impact other safety performance 
characteristics (e.g., wet traction, wet handling, dry traction).
    Based on the aforementioned observations, Goodyear concluded that 
(1) FMVSS No. 139 on a 1.7m curved surface causes shorter footprint 
length, high footprint pressures and elevated strain energy resulting 
in higher tire running temperatures, (2) 65 mph with a 10% load 
reduction on a 1.7m test wheel yields tire temperatures equivalent to 
FMVSS No. 139 conditions on a flat surface, (3) a tire that did not 
pass the FMVSS No. 139 test on a 1.7m test wheel due to tread chunking 
passed when the test was duplicated on a flat surface.
    Goodyear stated that it agrees with the agency the test speed needs 
to be 75 mph on a flat surface but suggests the following revision to 
the proposal to correlate the speed to an equivalent speed and load on 
a 1.7m curved surface: (1) Reduce the load by 10% to 100% at the final 
load step to effect a 8[deg] F (4.4[deg] C) reduction in the shoulder 
surface temperature, and (2) reduce the speed 10 mph, to 65 mph, to 
effect an 9[deg] F (5[deg] C) reduction in shoulder surface 
temperature. According to Goodyear, the reduced load and speed 
parameters would reduce heat induced chunking.

V. Summary of Public Comments on NPRM

    NHTSA received over 5,000 comments on the March 2002 NPRM. The 
comments were submitted by: vehicle and tire manufacturers and 
associations, consumer advocacy organizations and individual members of 
the public. Substantive comments are summarized below.

A. NHTSA's Proposed Test Procedures

1. High Speed Test
    RMA agreed with NHTSA's proposed conditions for passenger tires but 
believed that adjustments in speed and inflation pressure are necessary 
for light truck tires to achieve a similar degree of severity as 
proposed for passenger tires.
    ITRA supported the proposal made by the RMA and stated that NHTSA's 
proposed high speed tests results generally show heat precipitated 
tread

[[Page 38126]]

chunking as opposed to tread separation.
    GRRF, JATMA, and ETRTO urged the Agency to adopt the high speed 
test program as specified in the draft Global Technical Regulation 
(GTR) submitted to the Agency by the ad-hoc group of WP29/GRRF.
    Ford agreed with the agency's position that the current high speed 
test procedure should be upgraded.
    Advocates supported the agency's selection of test speed 
increments, ambient temperature, inflation pressure, load, and duration 
with regard to NHTSA's proposed single minimum requirement to be met by 
all tires.
    CU recommended all tires be speed rated and then tested according 
to the RMA 2000 procedure because the RMA 2000 procedure follows GTS 
2000 closely and would provide greater promise for reaching global 
harmonization than the proposed FMVSS No. 139 test. CU, however, 
believed that ambient temperature testing conditions, as specified by 
RMA 2000, should be raised to 40[deg] C to equal typical daytime 
temperatures in the southern regions of the U.S. during the summer.
    RMA, ETRTO, GRRF, and JATMA stated that the temperature increase 
from 38[deg] C to 40[deg] C will create considerable complexity to the 
industry since most other tests are run at 38[deg] C and suggest 
retaining 38[deg] C as the ambient temperature for all tests. PC 
supported the agency's modification of the temperature parameters in 
order to better simulate real world conditions.
    Ford recommended that the test be conducted at the maximum rated 
load (105% of the maximum rated load) for the tire and not the 85% 
condition so that tires would be tested at loads consistent with the 
critical stress conditions for the tire. GRRF stated that the load 
percentage used for testing should reflect the vehicle normal load 
condition but also take into account the effect of the curvature of the 
test drum. ITRA/TANA commended NHTSA for reducing the load in the 
parameters of the high speed test from 88% to 85%. CU supported the 
change in load if the proposed high speed methodology is adopted and 
stated that it will be beneficial for LT tires to be testing with same 
load conditions so that light trucks would also have the same reserve 
load under normal loading conditions.
    GRRF stated that testing on a drum at the lower inflation pressures 
specified in the NPRM will result in an increase in stress in areas of 
the tire not usually subject to such high stress levels and may result 
in some tires having to be ``stiffened'' by having a greater amount of 
material in these areas simply to pass the test. RMA stated that the 
proposal results in more overload (or over-deflection) in light truck 
tires compared to passenger tires and suggested the following test 
pressures: LT load range C: 330 kPa; LT load range D: 425 kPa; LT load 
range E: 520 kPa. Ford suggested testing at various inflation pressures 
to reflect a wider range of conditions to which tires may be exposed: 
P-metric 35, 32, 29 psi (241, 220, 200 kPa), Extra Load P-metric 42, 
38, 34 psi (290, 262, 234 kPa), LT load range C 50, 46, 42 psi (345, 
317, 290 kPa), LT load range D 65, 60, 55 psi (448, 414, 379 kPa), LT 
load Range E 80, 73, 66 psi (552, 503, 455 kPa). Public Citizen 
supported the proposed inflation pressures for the high-speed test.
    GRRF, Ford, RMA, PC, and Advocates believed the test should be 
replaced with a procedure based on the rated speed capability of the 
tire. They felt that the road safety interests of the consumer would be 
better met by using speed values during the high speed test that take 
into account the speed capability of the tire and the designed maximum 
speed of the vehicle to which it may be fitted. In lieu of a speed-
rating regime, RMA suggested speed steps of 130/140/150 km/h for light 
truck tires stating the change in predicted running temperature from a 
flat surface to a 1.7-m test wheel is different for passenger and light 
truck tires and, therefore, a reduction of 10 km/h in the test speeds 
for light truck tires to compensate for this effect and maintain a 
change in severity from flat to test wheel similar to passenger tires 
is needed.
    GRRF stated that a test duration step of 10 minutes has been found 
to be acceptable in achieving temperature equilibrium and that the 
intermediate speed step duration is less relevant than the duration at 
the chosen final speed. CU agreed with NHTSA that the ten-minute speed 
steps used in RMA 2000 are too short to evaluate high-speed capability.
2. Endurance Test
    ETRTO and GRRF stated that failure mode reached during the test 
might not reflect real world tire failure mode because of the 
deflection of the tire on the test wheel.
    RMA and ITRA/TANA suggested an alternative test protocol that: (1) 
Reduces load from 110 to 100%; (2) reduces duration from 40 to 34 hours 
in 4/6/24-hour steps; (3) adjusts light truck tire inflation pressure 
from 75% of maximum to 81.8% of maximum to reflect a proportional load 
capacity as shown in the TRA light truck load tables; (4) adjusts light 
truck tire speed from 120 km/h to 110 km/h to maintain comparable 
severity from flat to test wheel similar to passenger tires; and, (5) 
reduces ambient temperature from 40[deg] C to 38[deg] C. RMA stated 
that for light truck tires, this alternative test proposal adjusts the 
test conditions to be more equivalent to the tire temperatures that 
would be produced on a flat surface for the specified test conditions.
    GRRF suggested that consideration should be given to combining the 
proposed endurance and aging tests in order to eliminate unnecessary 
testing.
    CU and Advocates supported the proposed parameters.
    GRRF, RMA, and JATMA stated that the test ambient temperature 
should be 38 +/- 3[deg] C so the existing equipments can be used 
without any change. Advocates agreed with the agency that 40[deg] C is 
a more realistic selection based on the ambient operating temperatures 
in the southern part of the U.S. and Public Citizen supported the 
agency's modification of the temperature parameters in order to better 
simulate real world conditions.
    RMA suggested testing at 85/90/100 percent of maximum load for P-
metric and light truck tires and argue that the tires in the proposed 
test are significantly over-deflected (40 to 36%) during the last load/
time step of 22 hours. Advocates stated that given the excessive 
loading of larger light trucks, those usually having GVWR greater than 
6,000 pounds, it supports the more demanding alternative discussed by 
NHTSA. PC stated that NHTSA should adopt load specifications of 100, 
110 and 115 percent to adequately provide for the loading conditions of 
these heavier commercial vehicles over 6,000 GVWR.
    RMA suggested an adjustment in inflation pressure for LT tires from 
75% to 81.8%, following the respective load/pressure formulas for 
passenger and light truck tires as defined by the TRA. According to 
RMA, this reflects a load capacity difference between passenger and 
light truck tires at the same percent pressure. ITRA/TANA stated that 
LT tires with heavier casing construction should be tested at pressures 
not less than 80 percent of their maximum inflation pressure because 
their designs generate a much higher temperature than P-metric tires 
when conducted on a curved test wheel in a lab instead of a flat road 
surface. Advocates supported the inflation parameters.
    RMA believed that the increase in speed is the most significant 
change to the endurance test and states that the speed increase from 80 
to 120 km/h

[[Page 38127]]

produces an average increase of 30[deg] C in tire temperatures for P-
metric tires over FMVSS No. 109 and an average increase of 40[deg] C 
for LT tires. RMA suggested a reduction of 10 km/h for the LT tire test 
speed in order to maintain the same relative severity from flat to test 
wheel as that which occurs with passenger tires. Ford stated that 
increasing the test speed from 50 mph (80 km/h) to 75 mph (120 km/h) 
causes reversion in the tire and is not representative of real world 
tire performance.
    Ford suggested that the agency adopt the current endurance test 
protocols as defined in FMVSS No. 109 for a period of 48 hours at the 
end of the current protocol and that FMVSS No. 119 be modified to 
include an additional test step at 130% rated load. Ford stated that 
their data indicate that tires with marginal sidewall designs will have 
difficulty passing this added test step. Advocates and PC supported the 
40 hours duration as being a sufficiently stringent test.
3. Low Inflation Pressure Performance
a. Generally
    GRRF, ETRTO, the Alliance, and JATMA asserted that the proposed 
endurance and high-speed tests obviate the need for a low inflation 
pressure test.
    GRRF, JATMA, ETRTO, and ITRA/TANA opposed to the establishment of 
140 kPa as an acceptable level of inflation pressure at which to carry 
out a low inflation pressure test. GRRF stated that the use of 
inflation pressures as low as 140 kPa (20 psi) for the proposed low 
pressure test, taking into account the drum and the duration of the 
test, will result in testing at abuse levels well outside any that 
could be reasonably expected to be taken into account in tire design 
and are outside operating recommendations given by the tire industry.
    RMA stated that the low-pressure test should be run at 90% of the 
tire's maximum load capacity rather than 100% so that 20 psi is not 42% 
below the required test load but at 30%, the maximum allowed under the 
TPMS final rule.
    The Alliance and Ford stated the low-pressure testing protocols, 
proposed in the notice, are not representative of real world aging 
conditions because the 40-hour endurance test preceding the low-
pressure tests causes the belt region to age anaerobically. Results 
from these tests showed a tremendous heat build up in the tire which 
leads to tread chunking, a benign failure mode rarely if ever seen 
outside of a racetrack. They stated that it would be better to run a 
low-pressure test on a tire that had gone through an aging procedure 
that correlates to actual field aging of tires.
    CU stated that the NPRM does not provide enough information to 
determine when exactly the tire would be run to the low-pressure 
conditions following successful completion of the endurance test. They 
recommended that the tire be allowed to cool down for a minimum of 
three hours at the ambient test condition before starting the low-
pressure test.
b. Low Inflation Endurance
    RMA, ITRA and TANA favored Option 1 stating that the Option 2 
conditions are so severe that the tires experience thermal runaway 
(i.e., the temperature did not stabilize within 30 minutes) during the 
required steps. RMA recommended a modified Option 1 test with adjusted 
test conditions which they state more accurately reflect performance on 
the flat surface and to more closely reflect the conditions that should 
exist when the TPMS warning is given: (1) Lowers LT tire speed from 120 
to 110 km/h to maintain consistency with the RMA proposed endurance 
test conditions; (2) reduces the test load from 100 to 90% of the 
tire's maximum load capacity to reasonably simulate the effect of a 30% 
decrease in inflation pressure when the test pressure is specified at 
the minimum pressure listed in the NPRM at paragraph S6.4.1.1.1; and, 
(3) extends the time from 15 minutes to one hour for post-test 
measurement of inflation pressure.
    CU favored an endurance type TPMS low pressure test over the high 
speed version proposed because they believe it is more representative 
of conditions consumers are likely to encounter. However, CU believed 
that testing the tires for 90 minutes at 75 mph represents too short a 
distance (just 112.5 miles) and is well below the typical fuel range of 
most vehicles. CU recommends that the test duration be at least four 
hours at 75 mph, simulating a distance of 300 miles and is more 
representative of the fuel range of a typical vehicle.
    Advocates regarded this alternative as undemanding and insufficient 
for determining the underinflation tolerance of current light vehicle 
tires. Public Citizens believed that the stringency of the test is 
highly questionable considering that all of the tires tested passed the 
test.
c. Low Inflation High Speed
    GRRF noted surprise that a test load of only 67% is quoted because 
it seems impractical for a consumer to reduce the vehicle load 
following a TPMS warning indication.
    JATMA stated that this test is unjustified to demand tire 
performance of this type because consumers would not continue driving 
at above 140 km/h for over one hour with a tire pressure warning.
    Ford supported the low-pressure high-speed test if the tires are 
aged in an oven with a 50/50 blend of oxygen and nitrogen and an 
allowance is made for a 2-hour break-in period at 180 kPa and 120 km/h 
at 85% load, similar to the FMVSS No. 109 high-speed test. Ford stated 
that the aging process and test protocol more closely approximates a 
full size spare that is put into service after 3-4 years: oxidatively 
aged and potentially under-inflated. The break-in period would give the 
aged tire an opportunity to be worked before being deflated and run to 
the low pressure test procedure and does not cause reversion in wedge 
rubber of the tire.
    Advocates and PC supported the parameters of this test. However, 
Advocates regarded a 67 percent load as completely unrealistic and 
recommends that the agency consider raising the loading percentage for 
the low pressure/high speed test from 67 percent to 100 or 110 percent.
4. Road Hazard Impact
    RMA stated the current FMVSS No. 109 plunger test should remain 
only for bias ply tires because radial tires are not susceptible to the 
type of failure that the current plunger tests was designed to prevent.
    RMA, GM, the Alliance, ETRTO, and GRRF stated that the SAE J1981 
test was developed as a wheel damage test, to test a wheels ability to 
withstand potholes and other anomalies, and has very limited use or 
experience within the industry as a tire test and significant work will 
be required to develop it into a tire test. RMA, ITRA/TANA, JATMA, GM, 
Alliance, and Advocates stated that a road hazard test, if NHTSA feels 
it is necessary, should be deferred for further study and research and 
to not be included in the proposed FMVSS No. 139.
    Ford, the Alliance, and CU recommended that the agency retain the 
current test and Ford and CU suggest that the agency augment the 
stringency of the test. Ford stated that it currently uses twice the 
value specified in FMVSS No. 109 as a corporate specification for their 
tire suppliers and this level provides a reasonable indication that 
radial tires will exhibit good resistance to rock inducted tread 
damage.

[[Page 38128]]

    Advocates, PC, and CU stated that NHTSA needs to explore other 
methods using more sophisticated means of evaluation, e.g., 
shearography, for damage. GM noted that any anomaly from the pendulum 
impacts in its testing was undetectable by visual inspection.
5. Bead Unseating
    RMA and GRRF believed that a bead-unseating test is unnecessary for 
radial tires. RMA, and ITRA/TANA suggested that if a bead unseating 
test must be maintained, then the current test be retained rather than 
adopting a completely new test. However, they believed that it does 
need to be modified to take into account the aspect ratio of tires. 
ITRA and TANA asked that retread tires be exempt from the proposed 
tests because the bead of the tire is part of the original casing and 
is not altered in the retreading process, and, as such, there would be 
redundancy in testing the original casings.
    GRRF, Toyota, the Alliance, CU, and Ford stated that the 
introduction of this revised test without further validation would seem 
to be premature at this stage. They asserted concerns regarding the 
lack of a fully defined procedure, the specification of the test 
equipment, the costs of equipment, and the availability of suitable 
equipment on the open market. Several commenters, including Toyota, 
Ford, and the Alliance, asserted that there are significant differences 
between the agency's proposal and Toyota's test and/or certain 
specifications that need refinement, such as the load values, 
specifications for the test wheel/rim, inflation pressures, test device 
methods, and lateral force.
    PC and Advocates supported the agency's proposal for the air loss 
bench test method because the test is independent of vehicle type but 
do not support the 200 millimeters per second as being satisfactory 
because they say it reveals nothing about how a tire would perform in a 
skid when the vehicle encounters either a pothole or a raised fixed 
object on the roadside applying an extremely rapid lateral, peak load 
to the tire. Advocates, however, questioned whether the test advances 
tire safety if all current production tires would pass the test.
6. Aging Effects
a. Generally
    RMA and ITRA/TANA stated that none of the options in the NPRM are 
accepted industry tests with a proven relationship to actual tire 
performance. RMA and GRRF added that any aging test would be redundant 
in light of the revised high-speed and endurance tests plus a new low-
pressure test.
    The Alliance and ETRTO stated that the three test options proposed 
artificially decay of the materials in the tire structure, but those 
decays do not reflect what occurs in ``real life'' over a long period 
of service.
    Ford stated that the predominant factor for tire aging in normal 
service is aerobic/oxidative aging, which may be accelerated by heat 
and cites to the NHTSA Office of Defects Investigation (ODI) 
Engineering Analysis Report on Firestone tires in support of this 
statement. Ford and the Alliance stated that the proposed tests do not 
appear to age the tire aerobically/oxidatively. Ford recommended aging 
mounted tires with a 50/50 blend of oxygen/nitrogen in an oven 70[deg] 
C for 2 weeks. After this oven aging, they recommend a peel test be 
performed on the tire and suggest that it may be more appropriate to 
test the endurance, high speed, or low-pressure performance of a tire 
aged in this manner.
    ITRA/TANA argued that retreads should be exempt from this test.
    PC and Advocates asserted that shearographic analysis is critical 
in accurately determining aging test compliance.
    Consumers Union believed further investigation of a more suitable 
procedure is needed.
b. Adhesion (Peel) Test
    RMA stated that the proposed adhesion peel force test is the least 
appropriate option due to the following reasons: (1) ASTM-D413 is a 
peel adhesion test used in the industry to monitor trends and detect 
large shifts in historic levels and, under the best scenario for 
minimizing variability, has a 16.8% inherent variability, (2) the test 
is evaluating only a component of the tire, not the tire's overall 
performance, (3) peel force does not correlate with field performance, 
or, at a minimum, a recognized industry test wheel test--the peel 
adhesion test is not a separation-initiating test, it relates only to 
propagation (4) there is a lack of mechanical and chemical interaction 
as would occur in actual field.
    GRRF and JATMA opposed this test stating that the proposals do not 
specify which of the several interfaces of the belt construction are to 
be tested.
    ETRTO stated that the ASTM method is known by the industry to 
evaluate the vulcanized cord ply, not cut specimens from the tire.
    CU believed that the peel test is not sufficiently repeatable or 
precise and urged NHTSA to conduct more research to develop a practical 
and efficient method of testing the effects of tire aging.
c. Michelin's Long Term Durability
    RMA, JATMA, GRRF, and CU did not support this test because of its 
length and inherent cost.
    ETRTO and JATMA stated that the use of pure oxygen for inflating 
tires, presents a danger of explosion and requires special safety 
procedures to be implemented in the laboratories.
    JATMA stated that the test ambient temperature should be 38 +/- 
3[deg] C so existing equipments can be used without any change. JATMA 
also states that the NHTSA test criterion that no reduction of 
inflation pressure from initial test pressure is not possible because 
O2 is consumed during the test.
    PC supported this test as a starting point for the proposed aging 
test.
d. Oven Aging
    ETRTO asserted that this test will cause an extended vulcanization 
of all rubber components inside a tire and does not represent ``real 
world'' service conditions where the area subjected to heating and to 
repeated stresses is that inside the edges of the tread area.
    RMA, ITRA/TANA, and GRRF believed this test is a more valid measure 
of tire performance than Option 1 and significantly less onerous than 
Option 2. RMA recommended the following modifications if the agency 
chooses to pursue this test: (1) lower the aging temperature from 75 to 
70[deg] C. 70[deg] C is an industry standard for aging of rubber 
compounds and used by some companies for aging of tires prior to test, 
and (2) adopt the ambient temperature, inflation pressures, and speed 
from the RMA recommended endurance tests with steps of: (a) 4 hours at 
85% load, (b) 6 hours at 90% load, (c) 14 hours at 100% load.
    JATMA stated that a 15-day test is not suitable for mass production 
management. JATMA further states that the test ambient temperature 
should be 38 +/- 3[deg] C so the existing equipments can be used 
without any change.
    CU stated that this procedure does not resemble what consumers 
experience in the real world with tire aging. In real world conditions, 
tires do not heat up evenly, and it is often the hot spots and dynamic 
flexing that define the weak link in tire design.

B. Application of New Standard/Deletion of FMVSS No. 109

    RMA and TRA recommended that the proposed FMVSS No. 139 apply to 
new pneumatic radial tires on powered

[[Page 38129]]

motor vehicles (other than motorcycles) that have a gross vehicle 
weight rating (GVWR) of 10,000 pounds or less and that were 
manufactured after 1975 and that tires designed for severe snow 
conditions, speed restricted tires, various trailer tires for special 
use, temporary service spare tires, and all bias tires should be 
excluded from FMVSS No. 139 and continue to be certified under existing 
FMVSS Nos. 109 and 119. RMA suggests that, under FMVSS No. 139, a 
passenger tire should be defined as one intended for normal highway 
service and its size designation typically shown as ``P'' metric or 
``Hard'' metric and a light truck tire should be defined as one 
intended for normal highway service and its size designation includes 
``LT'' and is load range ``C'', ``D'', or ``E''. JATMA requests that 
performance requirements for deep tread depth snow tires be stipulated 
apart from FMVSS No. 139 because of their special usage and design 
characteristics, e.g., deep grooved tread.
    JATMA and GRRF stated that the tire size designation, in addition 
to the load range, should be clearly stipulated for LT tires. GRRF 
stated that depending on tire size, some high load capacity LT tires 
correspond to a gross vehicle mass greater than 10,000 lbs.
    SEMA, ITRA/TANA, Denman and Specialty Tires requested that limited-
production specialty radial and bias-ply tires remain subject to the 
current testing procedures of FMVSS Nos. 109 and 119 because (1) tires 
manufactured in limited production do not present a general safety 
issue; (2) limited production specialty bias-ply tires cannot meet the 
standard of proposed FMVSS No. 139 and will be unfairly outlawed; (3) 
the potential cost for small businesses to otherwise comply with these 
rules would not be justified; and (4) NHTSA testing procedures and 
requirements result from the testing and analysis of solely radial 
tires.

C. Modification of Application of FMVSS Nos. 110 and 120

    AIAM believed that NHTSA inadvertently proposed a prohibition on 
the use of Load Range E tires on vehicles exceeding 10,000 lbs. GVWR 
by, in S5.1.1 of FMVSS 120, requiring each vehicle to be equipped with 
tires complying with FMVSS No. 119. AIAM recommends that NHTSA revise 
S5.1.1 of FMVSS 120 to permit the installation of tires meeting the 
requirements set forth in FMVSS No. 139 and the rims listed in 
accordance with FMVSS No. 139 on vehicles exceeding 10,000 lbs. GVWR, 
as long as the tire load rating is not exceeded.

D. Modification to FMVSS Nos. 117 and 129

    ITRA/TANA recommended that retreaded tires not be subjected to the 
proposed road hazard and bead unseating tests because the retread 
process does not affect the structure of an original casing and it is 
redundant to test a casing twice.
    GRRF stated that principle of requiring retread tires to meet the 
same performance requirements as new tires is followed in the United 
Nations ECE Regulations 108 and 109 for car and truck retread tires, 
respectively.

E. De-Rating of P-metric Tires/Tire Selection/Load Reserve

    RMA and GRRF supported NHTSA's retention of the 1.10 load service 
factor used to reduce the load rating of passenger car tires when 
installed on an MPV, truck, bus, or trailer, as specified in Part 
571.110 Paragraph S4.2.2.2 of the proposed rule. RMA believed that this 
reduction in load rating is necessary for the reasons stated by NHTSA 
and is also appropriate to reduce the load rating for passenger car 
tires used on light trucks, vans, SUVs, and trailers for the following 
reasons: (1) higher stress on the tire due to the higher center of 
gravity of these vehicles; (2) more severe service conditions as 
compared to passenger cars; (3) greater potential for overload due to 
open cargo areas and increased likelihood for towing; and (4) more tire 
related problems on light trucks, SUVs, and vans.
    RMA and GRRF stated that selection based on vehicle normal load not 
exceeding 88% of the tire maximum load would reduce the potential for 
overloading of tires.
    GM recommended that the tire selection criteria not be linked to 
the load used in the high-speed test.\21\
---------------------------------------------------------------------------

    \21\ The 88% used for the load in the high speed test is 
currently linked to the reserve load determination in FMVSS No. 110. 
In 1982, the agency stated in a rulemaking (47 FR 36180) that the 
88% load on the test road wheel is equivalent to 100% load on a flat 
surface.
---------------------------------------------------------------------------

    The Alliance, AIAM, Subaru, Honda, and GM strongly recommended that 
the tire selection criteria in the proposed standard be modified as 
follows: (1) De-rating of the tire load capacity by dividing by 1.10 be 
applied only when comparing the GAWR with the vehicle maximum load and 
not on the vehicle normal load on tire for passenger car tires used on 
MPVs and light trucks; and (2) for vehicle normal load on a tire, even 
when passenger car tires are used on MPVs and light trucks, use 88% of 
the maximum load rating of the tire as marked on the sidewall. These 
vehicle manufacturers asserted that a lack of attention to the 
influence on vehicle design could lead to potentially serious 
unintended consequences (e.g., increasing tire size beyond the need to 
provide adequate load capacity could raise the center of gravity of the 
vehicle, which may adversely affect it handling and stability and 
increase the likelihood of rollovers in some situations).
    Ford agreed with the agency that tire robustness could be increased 
through additional load margin in the application or rating of tires. 
Ford recommended that the agency require tires to be tested at 105% of 
their rated load for all vehicle applications 10,000 lbs. GVWR and 
below. They believed that this additional 5% reserve capability at the 
maximum rated load condition would provide increased robustness for 
tire application on all vehicles, not only in OE applications.
    PC and Advocates commended the agency for requiring LT tires to 
provide for a reserve load. However, they believe that a 15 percent 
load specification does not adequately account for the typical loading 
conditions for the range of these vehicles. PC recommends that the 
agency require between an 18 and 20 percent reserve load for vehicles 
that exceed the 6000 lbs. GVWR. Advocates urged the agency to consider 
a reserve figure of 18 percent for all light trucks or, in the 
alternative, a reserve figure of 18 percent for those from 6,001 to 
10,000 pounds GVWR.

F. Lead Time

    RMA, ETRTO, JATMA, and GRRF stated that it would not be possible to 
comply with effective dates of September 1, 2003, for passenger car 
tires, and September 1, 2004, for light truck tires. RMA added that if 
their recommended changes are accepted, the number of modifications 
will not be as great and compliance could be accomplished on a more 
expedited basis, possibly within five (5) years from the date of the 
final rule.
    JATMA stated that a 5-year lead time is required in case of tires 
supplied to original equipment manufacturers to evaluate and achieve 
the target performance for driving stability, riding comfort, and noise 
etc. Also, they stated that facilities need to be increased, test 
procedure needs to be formed, and employees need to be trained.
    The Alliance, GM, Ford, DC, and Mitsubishi recommended that the new 
tire performance requirements and the amended vehicle requirements of 
FMVSS NO. 110 become optional as soon as the final rule is published, 
and become mandatory on September 1, 2007. They requested the longer 
lead

[[Page 38130]]

time because of the number of tires that will have to be changed in 
terms of materials/compounds or construction, and the time required to 
make these changes will have indirect effects on the vehicles which 
will require revalidation for braking, dynamics, fuel consumption, 
ride, handling, and noise/vibration, including legal noise 
requirements. Additionally, the Alliance stated that a tire designed to 
the new requirements cannot be mass-produced until it has been matched 
to a given vehicle, and the vehicle has been validated for braking, 
vehicle dynamics, fuel economy, ride, handling, etc. Therefore, the 
tire and vehicle effective dates must be the same.
    DC stated that it cannot begin to conduct necessary vehicle 
development and tuning programs until an adequate supply of tires 
meeting any new regulations become readily available from the tire 
manufacturers (in quantities, styles, and sizes sufficient for vehicle 
development). They strongly urged that there must be at least a two 
year lag time between the sufficient availability of development tires 
meeting any new requirements and the vehicle level phase-in or 
effective date scheduled.
    Advocates urged NHTSA to consider a one-year compliance delay from 
the date of a final rule effective on September 1, 2002, and believes 
that LT tires need to be improved just as quickly, if not more quickly, 
than P-metric tires and a delay in compliance for LT tires is not in 
the best interest of vehicle and traffic safety.

G. Shearography Analysis

    JATMA stated that shearography is suitable for evaluation of new 
compound and new tire structure of developing products, but is too 
expensive and not suitable for a test to assure the quality of mass 
production goods.
    The Alliance, Ford, ETRTO, GRRF, and ITRA/TANA stated that all 
shearography analysis techniques rely on a subjective assessment by a 
skilled operator and the present state of technology is such that they 
may not be acceptable as a regulatory control requirement.
    PC supported the use of shearography analysis in conjunction with 
visual inspection. Additionally, Public Citizen recommended that the 
agency devise a list of all the possible indications of tire failure.

H. Revise UTQG

    ETRTO, GRRF, and CU suggested that test requirements for 
Temperature in UTQG are useless once the correct service description 
including the Speed Symbol is required for the tires, which are then 
tested according to the corresponding high-speed test schedules in UN/
ECE Regulations 30 and 54.
    RMA urged NHTSA not to revise the existing UTQGS scope and testing 
conditions at this time.

I. Additional Questions

1. Opportunity To Harmonize
    The Alliance, ETRTO, RMA, the Center for Regulatory Effectiveness 
(CRE), and GRRF stated that the adoption of a UN/ECE Regulation 30 type 
test, such as the GTS-2000 or proposed GTR, would help to ensure that 
safety standards are consistent worldwide and that the burden on 
industry through having to meet several differing standards of various 
countries is removed. CRE also suggested that NHTSA is obligated to 
consider the following voluntary consensus standards--ISO 10191, SAE 
J1561, and SAE J1633/ISO 10454 under the National Technology Transfer 
and Advancement Act. RMA argued that this action would assist the 
breaking down of barriers to trade and improve the acceptability of 
USA-produced tires in a global market.
    RMA asserted that NHTSA's proposal might constitute a technical 
barrier to trade in violation of the WTO Agreement on Technical 
Barriers to Trade.
    The Alliance stated that, even if the agency considers the current 
harmonization proposal unacceptable, the agency should commit to 
developing a harmonized proposal.
    Advocates stated that NHTSA could use the data and testing 
protocols of the optional test for wet grip of tires discussed in the 
actions of the World Forum for Harmonization of Vehicle Regulations 
(WP.29) Working Party On Brakes and Running Gear (GRRF) as a departure 
point for determining how best to establish tire adhesion requirements 
to be included in the proposed new Standard No. 139.
2. ``Real-World'' Testing Procedures
    ETRTO stated that ``real-world'' testing procedure need to be 
pursued by defining accelerated test conditions that reflect the 
effective failure mode of the tires in service.
    GRRF supported the approach of using controllable, laboratory based 
tests wherever possible and provided that they reproduce in-service 
conditions.
    Ford stated that vehicular testing is not practicable due to 
variation in vehicle size and loading and the wide range of wheel/tire 
combinations and that the tire standard should continue to be an 
equipment standard and that tires should continue to be certified by 
tire manufacturers.
3. Vehicle Model Year 1975
    GRRF supported the cut-off date of 1975 and suggests that 
consideration is given to the retention of FMVSS No. 109 for tires for 
earlier vehicles.
4. Required Inflation Pressures
    GRRF and ETRTO suggested that all U.S. tires should be marked with 
inflation pressures expressed in kPa, as per the internationally 
recognized standard units.
    RMA stated that inflations pressures of 32, 36, 40 and 60 psi 
should be retained in the existing FMVSS No. 109 standard, but should 
not be included in the new FMVSS No. 139.
    The Alliance and Ford believed the four pressures should be 
retained for tire rating and testing.
    The Alliance requested that NHTSA remove the current and proposed 
requirement to round the psi equivalent of kPa to the next highest 
whole number, and to round the pound equivalent of kilogram to the 
closest whole number.

J. Other

1. Test Condition Tolerances
    RMA suggested that NHTSA adopt the tolerances listed in ASTM-F-551 
Standard Practice for Using a 67.23-in. (1.707-m) Diameter Laboratory 
Test Wheel in Tire Testing.
2. Tire Pressure Load Reserve Limit
    RMA suggested that NHTSA should adopt a specific tire pressure 
reserve limit and comments that they will be petitioning the agency for 
such a ruling in the near future.

K. Costs \22\
---------------------------------------------------------------------------

    \22\ Comments on costs are discussed in greater detail in the 
FRE.
---------------------------------------------------------------------------

    RMA and ETRTO stated that the agency's estimate that the proposed 
standards will impose costs of $282 million on the tire industry is 
grossly inaccurate. RMA estimated that the first year costs would 
exceed $1.5 billion with a continuing annual cost to comply in excess 
of $400 million depending on the options chosen for the final rule.
    ITRA stated that the agency's estimates also do not include small 
manufacturers and foreign manufacturers that import tires to the U.S, 
and retreaders, and that the proposed regulation could result in the 
downfall of the retread industry.

[[Page 38131]]

    RMA, SEMA, ITRA/TANA, Denman, Hoosier, and Specialty tires stated 
that no cost/benefit analysis has been undertaken for limited 
production bias-ply and radial specialty aftermarket tires and the new 
testing requirements associated with NHTSA's proposed FMVSS No. 139 
will jeopardize the specialty aftermarket tire industry unless special 
dispensation is made for these manufacturers. SEMA stated that at least 
three separate specialty tire manufacturers, Denman, Specialty Tires, 
and Hoosier are small businesses employing less than 1,000 people.
    GM and the Alliance stated that NHTSA has not considered the 
potential influence of changes to the tire on the performance of the 
vehicle and that vehicle modifications of significant magnitude would 
cost the industry substantial amounts in investment and unit costs per 
vehicle.

L. Benefits \23\
---------------------------------------------------------------------------

    \23\ Comments on benefits are discussed in greater detail in the 
FRE.
---------------------------------------------------------------------------

    GRRF asserted that the analysis of benefits appears to be 
incorrectly based on the assumption that the problems recently 
experienced have been caused primarily by incorrect design rather than 
by difficulties in manufacture, improper application, general poor 
maintenance or abuse during service.
    The Alliance stated that the basis for the estimated benefits is 
unsubstantiated because of the lack of specific information on the 
causes of tire failures and because of the agency's inability to 
estimate what proportion of tires would need improvement and by what 
amount.
    Advocates argued that there is little doubt that a reduction in 
tire failure rates would result in fewer blowouts and, therefore, fewer 
rollover crashes. They also asserted that tire failures and their role 
in crashes are severely underreported and, therefore, that the benefits 
are much greater than the agency is able to quantify. Advocates agreed 
with the agency that the benefits of stronger standards ensuring 
greater speed and heat tolerance for both P-metric and LT tires are 
intuitively apparent even though it is typically more difficult to 
quantify benefits for crash avoidance rulemaking proposals than for 
crashworthiness proposals.
    PC argued that the resulting societal costs (e.g., loss of 
workplace productivity, fatalities, medical costs, property damage 
costs and costs of travel delay on congested roadways) of motor vehicle 
crashes must be considered when estimating the benefits of a proposed 
regulation and that reducing the variability of tires could yield 
benefits from the proposed tests.

VI. Agency Decision Regarding Final Rule

A. Summary of Final Rule and Rationale

    The agency is establishing a single standard for light vehicle 
tires, FMVSS No. 139, New Pneumatic Radial Tires for Light Vehicles. 
Under this standard, light vehicle tires are required to meet a high-
speed test, an endurance test, a low inflation pressure performance 
test, a resistance-to-bead unseating test, and a road hazard impact/
strength test. The standard applies to tires for passenger cars, 
multipurpose passenger vehicles, trucks, buses and trailers with a 
gross vehicle weight rating (GVWR) of 4,536 kilograms (10,000 pounds) 
or less, manufactured after 1975.\24\ The following chart compares the 
types of test requirements that currently exist, those that have been 
suggested by third parties, and those are being established by this 
agency:
---------------------------------------------------------------------------

    \24\ This final rule is applicable to LT tires up to load range 
E. This load range is typically used on large SUVs, vans, and 
trucks.

                       Table 1.--Comparison of Types of Tire Performance Requirements in Various Existing and Draft Tire Standards
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                 FMVSS 119      GRRF draft                                               FMVSS No. 139
                    Tests                        FMVSS 109   [dagger][dagger]       GTR        GTS-2000      RMA 2000       ECE R30       (As adopted)
--------------------------------------------------------------------------------------------------------------------------------------------------------
High Speed...................................            X   ................    X[hairsp]             X             X             X                  X
                                                                                  [dagger]
Endurance....................................            X                 X   X[hairsp] *   X[hairsp] **            X   ............                 X
Low pressure performance.....................  ............  ................  ............  ............  ............  ............                 X
Strength; or Road Hazard Impact..............            X                 X   ............  ............  ............  ............                 X
Bead Unseating...............................            X   ................    X[hairsp]   ............  ............  ............                 X
                                                                                       ***
Accelerated Aging............................  ............  ................  ............  ............  ............  ............  .................
--------------------------------------------------------------------------------------------------------------------------------------------------------
* Endurance test for radial tires rated ``Q'' and below. Identical testing parameters as FMVSS No. 109 Endurance Test.
** Endurance test for radial tires rated ``Q'' and below.
*** Identical testing parameters as FMVSS No. 109 bead unseating test.
[dagger] Testing parameters had not been agreed upon by the ad hoc working group.
[dagger][dagger] For LT tires only.

    Both the high speed test and the endurance test specify testing 
parameters (ambient temperature, load, inflation pressure, speed, and 
duration) that make the tests more stringent than those tests currently 
found in FMVSS Nos. 109 and 119, as well as the tests suggested by 
industry. Most significantly, the proposed high speed test specifies 
test speeds (140, 150 and 160 km/h (87, 93, and 99 mph)) substantially 
higher than those specified in FMVSS No. 109 (120, 128, 136 km/h (75, 
80, 85 mph)). Likewise, the endurance test specifies a test speed 50% 
higher (120 km/h (75 mph)) than that currently specified in FMVSS No. 
109 (80km/h (50 mph)), as well as a duration 2 hours longer (24 hours) 
in the final load step than that proposed in the NPRM (22 hours). At 
the specified test speed (120 km/h), the endurance test mileage (2,550 
miles) is 50% longer than the mileage that a tire endures under the 
current endurance test (1,700 miles).
    The final rule also adopts a low inflation pressure performance 
test that seeks to ensure a minimum level of performance safety in 
tires when they are underinflated to 140 kPa (20 psi).
    Instead of replacing the current strength test in FMVSS No. 109, 
the agency is retaining that test for passenger cars and retaining the 
strength test in FMVSS No. 119 for LT tires. Agency testing data and 
public comments called into question whether the test proposed in the 
NPRM, a road hazard impact test that is modeled after a SAE recommended 
practice, is both more stringent than the FMVSS No. 109 ``plunger 
test'' and correlates well with actual field performance. The FMVSS

[[Page 38132]]

Nos. 109 and 119 strength tests will remain until the agency completes 
its research on road hazard impact and decides whether to initiate 
rulemaking to adopt a new or revised test.
    The final rule also retains the current FMVSS No. 109 bead 
unseating test and extends it to LT tires. Industry has previously 
recommended to the agency that the current bead unseating test be 
deleted from the standard because radial tires are easily able to 
satisfy the test. Results from the agency's 1997-1998 and 2001 rollover 
testing, however, provided a strong rationale for upgrading, rather 
than deleting, the bead unseating requirement in FMVSS No. 109. The 
agency proposed a new bead unseating test that is based on a test 
currently used by Toyota, which uses test forces more stringent than 
those in current FMVSS No. 109 and appeared more applicable to radial 
tires. Agency testing data and comments, however, called into question 
whether the Toyota test provides both a more stringent and more real 
world test than the FMVSS No. 109 bead unseating test. The FMVSS No. 
109 bead unseating test will remain in the standard until the agency 
completes its research on bead unseating and decides whether to 
initiate rulemaking to adopt a new or revised test.
    At this time, the agency is not adopting a test to address the 
deterioration of tire performance caused by aging. The proposal set 
forth three alternatives for an aging effects test: the adhesion (peel) 
test, Michelin's long-term durability endurance test, and oven aging. 
All seek to expose tires to conditions that cause the type of failures 
experienced by consumers at 40,000 kilometers or beyond. Because the 
agency had little data and analysis on either of these tests and 
understood the tire industry to conduct testing related to the effects 
of aging on a regular basis, it requested comments on which test would 
be appropriate for inclusion in the new standard. The tire industry did 
not, however, include this testing data and analysis in its comments on 
the NPRM. Further, the agency was unable, in the time period allotted 
by the TREAD Act, to perform comprehensive testing and analysis of the 
proposed aging tests and any other alternative tests and parameters. 
Recently, however, some industry members have begun a dialogue and 
offered to share data with the agency.
    The agency is commencing its own research on tire aging, building 
on information and data provided by Ford. The agency anticipates 
publishing a NPRM proposing an aging test, to be included in FMVSS No. 
139, in approximately two years.
    The final rule also revises FMVSS No. 110 to define Vehicle Normal 
Load as ``no greater than 94% of tire load rating at vehicle placard 
pressure.'' FMVSS Nos. 110 and 120 are revised to reflect the 
applicability of the new standard.
    Lastly, the final rule establishes June 1, 2007 as the effective 
date for all requirements contained herein, for all covered tires and 
vehicles.
    As documented here and in the FRE, the upgraded requirements in the 
standard specify more stringent and real world, yet practicable, tests 
that will provide a higher level of operation safety and performance 
for tires on today's light vehicles.

B. Summary of Key Differences Between NPRM and Final Rule

    The major changes to the standard (or deviations from the proposal) 
are as follows:
    (1) Endurance test. The agency is reducing the duration of the 
endurance test from 40 hours to 34 hours, but extending the final load 
step from 22 to 24 hours. The agency is also reducing the load 
percentages from 90/100/110% to 85/90/100%.
    (2) Low pressure performance test. The agency is adopting the first 
alternative (endurance) of the low pressure performance tests.
    (3) Bead unseating test. The agency is retaining the FMVSS No. 109 
bead unseating test for P-metric tires and extending that test to LT 
tires.
    (4) Strength test. The agency is retaining the FMVSS No. 109 
strength test for P-metric tires and the FMVSS No. 119 strength test 
for LT tires.
    (5) Aging effects performance test. The agency is deferring 
adoption of an aging effects performance test until it completes its 
research and issues a new proposal.
    (6) Bias ply tires. The agency is excluding bias ply tires from 
FMVSS No. 139. Bias ply tires will remain subject to FMVSS No. 109.
    (7) Vehicle normal load. The vehicle normal load is defined as ``no 
greater than 94% of tire load rating at vehicle placard pressure.''
    (8) Ambient temperature. The agency is reducing the ambient 
temperature in the high speed, endurance, and low pressure performance 
tests from 40[deg] C to 38[deg] C.
    (9) Effective dates/implementation. The agency is providing a 4-
year lead time for both tire and vehicle requirements. All covered 
tires and vehicles must comply with the final rule by June 1, 2007.

C. Performance Requirements

1. High Speed Test
    The agency is adopting a high speed test for FMVSS No. 139 to be 
conducted using the following five parameters:
    (1) Ambient Temperature: 38[deg] C.
    (2) Load: 85 percent.
    (3) Inflation Pressure: 220 kPa (32 psi) for standard load p-
metric; 260 kPa (38 psi) for extra load p-metric; 320 kPa (46 psi), 410 
kPa (60 psi), 500 kPa (73 psi) for LT load ranges C, D, E, 
respectively.
    (4) Speed: 140, 150, 160 km/h
    (5) Duration: 90 minutes total--30 minutes for each speed.
    A tire is deemed to comply with the requirements if, at the end of 
the high speed test, there is no visual evidence of tread, sidewall, 
ply, cord, inner liner, or bead separation, chunking, broken cords, 
cracking, or open splices, and the tire pressure is not less than the 
initial test pressure. FMVSS No. 109 currently requires a ``visual 
evidence'' requirement. ``Visual evidence'' means visible to the 
unaided eye.
    The agency is adopting a high-speed test with three pre-selected 
speeds. This testing methodology is different from that in two 
alternatives that the agency initially considered: (1) GTS-2000, and 
(2) a high speed test using identical parameters to those proposed 
above, except that the test speeds are based on the rated speed of the 
tire (initial test speed (ITS),\25\ ITS + 10, ITS + 20, ITS + 30) for 
durations of 20 minutes at each speed step with a 10-minute warm-up 
from 0 km/h--ITS.
---------------------------------------------------------------------------

    \25\ The initial test speed (ITS) in GTS-2000 is the rated speed 
of the tire minus 40 km/h. The test is conducted at the following 
speed steps: ITS, ITS+10 km/h, ITS+20 km/h, and ITS+30 km/h. The 
final speed step, ITS+30 km/h, is 10 km/h below the rated speed of 
the tire. The ITS in the second alternative is the rated speed of 
the tire minus 30 km/h. The test is conducted at the following speed 
steps: ITS, ITS+10 km/h, ITS+20 km/h, and ITS+30 km/h, with the 
final speed step being identical to the rate speed of the tire. 
Therefore, under both alternatives, each tire with a different speed 
rating is tested at different speeds during the high speed test.
---------------------------------------------------------------------------

    The methodology suggested by the tire industry in GTS-2000 for tire 
harmonization and the second alternative determines the test speed 
based on the tire's rated speed.
    Historically, the agency has established the same minimum 
performance requirements for similar items of motor vehicle equipment. 
We see no compelling reason for a departure in this case. Our normal 
practice assures the public of minimum safe performance, regardless of 
the type of tire purchased.
    The agency's test, based on pre-selected test speeds and 
independent of

[[Page 38133]]

the rated speed of the tire, establishes the same minimum requirement 
for all tires, regardless of the designed level of performance. We 
believe that such a methodology is equitable for all tire manufacturers 
and does not impose higher safety requirements on a tire with a higher 
level of performance.
    The following table provides a comparison of the high speed 
parameters used in FMVSS No. 109, GTS-2000, and FMVSS No. 139.\26\
---------------------------------------------------------------------------

    \26\ FMVSS No. 119 does not currently include a high speed test 
for LT tires with a rim diameter above 14.5 inches.

                                                          Table 2.--High Speed Test Comparison
--------------------------------------------------------------------------------------------------------------------------------------------------------
         Test parameters                  FMVSS No. 109                   GTS-2000             FMVSS No. 139 (As proposed)   FMVSS No. 139 (As adopted)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Ambient ([deg]C)................  38..........................  25..........................  40..........................  38
Load (%)........................  88..........................  80..........................  85..........................  85
Inflation Pressure (kPa):
    Standard load P-metric......  220.........................  ............................  220.........................  220
    Extra load P-metric.........  260.........................  ............................  260.........................  260
    LT load range C/D/E.........  ............................  ............................  320/410/500.................  320/410/500
Speed Rating (Std/Extra):
    L,M,N.......................  ............................  240/280.....................  ............................  ............................
    P,Q,R,S.....................  ............................  260/300.....................  220.........................  220
    T,U,H.......................  ............................  280/320.....................  220.........................  220
    V...........................  ............................  300/340.....................  220.........................  220
    W,Y.........................  ............................  320/360.....................  220.........................  220
    ZR..........................  ............................  320.........................  220.........................  220
Test speed* (km/h)..............  75, 80, 85 mph..............  ITS, +10, +20, +30..........  140, 150, 160...............  140, 150, 160
Duration (mins).................  90 (30, 30, 30).............  50 (10, 10, 10, 20).........  90 (30, 30, 30).............  90 (30, 30, 30)
--------------------------------------------------------------------------------------------------------------------------------------------------------
*ITS is defined as the tire's rated speed minus 40 km/h.

a. Ambient Temperature
    RMA, ETRTO, GRRF, and JATMA argued that the proposed temperature 
increase from 38[deg] C to 40[deg] C would create considerable 
complexity for the industry since most other testing is conducted at 
38[deg] C and suggested retaining 38[deg] C as the ambient temperature 
for all tests. Consumer group commenters supported the agency's 
modification of the temperature parameter, stating that it better 
simulates real world conditions.
    The agency has decided to adopt an ambient temperature of 38[deg] C 
for the final rule instead of the ambient temperature of 40[deg] C 
proposed by the agency. The agency was persuaded by the RMA DOE test 
data, which indicate that a 2[deg] C increase in temperature to 40[deg] 
C results in only a 2[deg] C increase in tire (measured at the belt 
edge) temperature measured during the test. Therefore, the increase in 
test stringency based on the proposed 40[deg] C, as compared with 
38[deg] C, is negligible. The agency also acknowledges that the 2[deg] 
C increase would add significant costs to tire testing because of the 
need for recalibration of temperature in testing labs for testing to 
this particular standard. As noted by commenters, all other foreign and 
voluntary standards organization standards utilize an ambient 
temperature of 38[deg] C. The agency concurs with commenters that the 
little, if any, increase in stringency a 2[deg] C does not justify the 
anticipated costs resulting from the proposed 2[deg] C increase.
b. Load
    Few commenters commented on this parameter. Ford recommended a high 
speed test load of 105%. GRRF stated that the load percentage used for 
testing should take into account the curvature of the test drum.
    The load specified for the high-speed test is 85% of sidewall 
maximum load rating. Although this figure represents a slight decrease 
from the specification in FMVSS No. 109, test data from the agency's 
testing and from RMA's testing indicate that tire failure is more 
sensitive to speed and inflation pressure than to loading variations in 
the 80 to 90 percent range. A speed increase from 75, 80 and 85 mph to 
speeds of 160 km/h (99 mph) and higher more than offsets the small 
decrease in test load specification and results in a more stringent 
test. In Phase I of the agency's testing, 5 of 9 P-metric tires failed 
at 90 percent load and 2 of 9 failed at 80 percent load. Phase II of 
the testing included testing of 8 P-metric, 5 samples each, at 80 and 
85 percent loads, and with all other test parameters remaining constant 
(inflation pressure--220 kPa, 20-minute steps, speeds ITS to ITS + 30 
km/h). These tests demonstrated that fewer tire failures occurred at 
85% load than at 80% load.\27\ At 85% load, 5 of 8 tire brands had no 
tire failures in their 5 samples and the other three brands had at 
least one failure in the five samples. One brand experienced failures 
in all 5 samples tested to the high speed test. Four brands of LT tires 
were also tested and all samples for each of the brands completed the 
high speed test at 85% load without any failures. This testing 
indicates that small increases in tire load have less of an impact on 
the interval between beginning the test and tire failure as compared 
with changes in inflation pressure and test speed.
---------------------------------------------------------------------------

    \27\ A small number of tires were tested. However, this small 
sample included many brands and included high performers and low 
performers. This contributed to the variation of outcome.
---------------------------------------------------------------------------

    In addition, the requirement for a tire reserve under normal 
loading conditions currently applies only to passenger cars. This final 
rule requires light trucks for the first time to have a specified tire 
reserve under normal loading conditions. Light trucks will have to 
provide the same 6 percent reserve or vehicle normal load on the tire 
required for passenger cars which is defined as ``no greater than 94% 
of tire load rating at vehicle placard pressure.''
    Ford's recommendation to increase the load percentage to 105 
percent of the maximum rated load for the tire is too stringent for the 
loading condition. Ford did not provide any data or test results to 
support its recommendation.
c. Inflation Pressure
    RMA suggested that the agency base the test inflation pressure on 
the rated speed of the tire. Tires rated P, Q, R, and S would be tested 
at 260 kPa; tires rated T, U, H would be tested at 280 kPa; tires rated 
V would be tested at 300 kPa; and tires rated W, Y, and Z would be 
tested

[[Page 38134]]

at 320 kPa. RMA also suggested that the proposed inflation pressures 
result in more overload (or over-deflection) in light truck tires 
compared to passenger tires and suggests the following test pressures: 
LT load range C: 330 kPa; LT load range D: 425 kPa; and, LT load range 
E: 520 kPa.
    These inflation values, however, are too high for testing because 
they do not reflect values that are similar to the cold inflation 
pressures recommended by vehicle manufacturers and are not 
representative of inflation pressures obtained from vehicles measured 
during the consumer tire pressure surveys.
    The agency establishes a test inflation pressure of 220 kPa (32 
psi) for all unrated and speed rated P-metric tires and 260 kPa for 
extra load tires. The agency establishes the following inflation 
pressures for LT tires based upon their higher maximum inflation 
pressures: 320 kPa for load range C, 410 kPa for load range D, and 500 
kPa for load range E tires.
    The adopted inflation pressures are based on surveys showing that 
tires are typically operated at some level of underinflation.\28\ Given 
the tire pressure survey data, the agency selected the proposed test 
pressures based on the level of underinflation experienced during 
normal vehicle operation. The 220 kPa value represents an under-
inflation of 20 kPa (3 psi) or 8 percent from the 240 kPa maximum 
inflation pressure, and 260 kPa represents an under-inflation of 20 kPa 
(3 psi) or 7 percent from the 280 kPa maximum inflation pressure.
---------------------------------------------------------------------------

    \28\ A tire pressure survey conducted by Viergutz, et al., on 
8,900 tires in 1978 reported that almost 80 percent of all tires 
were under-inflated with approximately 50 percent under-inflated by 
4 psi (28 kPa) or more below the recommended pressure. The average 
amount of under-inflation recorded in this survey was approximately 
3.2 psi (22kPa) below the recommended amount. More recently, data 
from the 2001 NASS Tire Pressure Study, conducted on over 11,000 
vehicles, indicate that about 60 percent of P-metric tires used on 
passenger cars were under-inflated with about 40 percent being 
under-inflated by 3 psi or more below the recommended inflation 
pressure. For P-metric tires used on light trucks, about 70 percent 
were under-inflated, with about 50 percent under-inflated by 3 psi 
or more below the recommended inflation pressure.
---------------------------------------------------------------------------

    The agency believes that RMA's inflation pressure values are too 
high for high speed testing because (1) they do not reflect values that 
are similar to the cold inflation pressures recommended by vehicle 
manufacturers, and (2) they do not correspond well with the real-world 
inflation pressures recently obtained from the vehicles measured during 
a recent NHTSA sponsored consumer tire pressure survey.\29\
---------------------------------------------------------------------------

    \29\ In Spring 2001, the National Center for Statistics and 
Analysis (NCSA) conducted the 2001 National Automotive Sampling 
System (NASS) Tire Pressure Special Study (NASS Study) in response 
to the TREAD Act. The Preliminary Analysis of Findings, 2001 NASS 
Tire Pressure Special Study, dated May 4, 2001, has been placed in 
Docket No. NHTSA-00-8572. Data obtained as part of this study 
indicate that about 36 percent of passenger cars and 40 percent of 
light trucks had at least one tire that was at least 20 percent 
below the vehicle manufacturer's recommended cold inflation 
pressure. About 26 percent of passenger cars and 29 percent of light 
trucks had at least one tire that was least 25 percent below the 
vehicle manufacturer's recommended cold inflation pressure.
---------------------------------------------------------------------------

    Although 220 kPa is the same test pressure specified in FMVSS No. 
109, this test pressure, in conjunction with the higher test speeds, 
represents a more stringent test than that contained in FMVSS No. 109. 
Further, agency test results indicate that 220 kPa is a test inflation 
pressure that is appropriate for the high speed test given the 
parameters of speed, load and test duration.
d. Speed
    The majority of commenters who commented on the high speed test 
recommended that the agency adopt speeds for this test based on the 
rated speed of the tire. Commenters suggested this approach, arguing 
that consumers rely upon speed ratings to select an appropriate tire 
for their vehicles. Also, some commenters noted that calculating the 
test speed based on the speed rating of the tire is an approach 
identical to that used in the European tire regulation, ECE R30, GTS-
2000, and in the Society of Engineers (SAE) Recommended Practice J1561, 
Laboratory Speed Test Procedure for Passenger Car Tires. Some 
commenters stated that speed steps based on speed ratings provide a 
more stringent test and greater promise for achieving future 
international harmonization. The Alliance commented that the agency 
should consider the high speed test in GTS-2000 for harmonization 
reasons and also because there is no evidence of a safety problem with 
tires complying with ECE R 30, which is the European high speed test 
procedure upon which GTS-2000 is modeled. RMA suggested that if the 
agency did not base test speeds on speed ratings, then it should reduce 
the test speeds for LT tires to 130, 140, and 150 km/h to approximate 
the same level of stringency for LT tires tested on a test wheel 
(temperature increase) experienced by P-metric tires tested on a test 
wheel. GM suggested that we consider establishing 120 mph as a fixed 
test speed value since many of their light trucks are equipped with LT 
tires speed rated Q and R 160 km/h (99 mph) and 170 km/h (106 mph), 
respectively.
    NHTSA has decided to adopt the proposed speeds of 140, 150, 160 km/
h (87, 93, 99 mph) for P-metric and LT tires. These speeds represent a 
substantial increase in the level of stringency from the test speeds 
currently used in FMVSS No. 109 and 119 for which tires are tested at 
75, 80, and 85 mph for 30 minutes at each speed. This approach more 
closely mirrors the upper limit of real world operational speeds in the 
United States beyond which drivers have few opportunities to operate 
their vehicles. These speeds will also eliminate from production any 
current tires whose performance just achieved the lowest rung of 
Temperature resistance rating in our Uniform Tire Quality Grading 
standards (UTQG), ``C'' rated tires. Tires with a UTQG temperature 
grade ``C'' are less resistant to heat buildup as compared to tires 
rated ``A'' or ``B.''
    Drivers in the U.S. do not typically operate their vehicles at 
speeds above 100 mph. Maximum speed limits on U.S. highways range from 
55 to 75 mph. Some vehicle manufacturers, e.g., GM and Ford, 
electronically restrict most of their vehicles top speeds at 
approximately 106 mph. NHTSA also believes that an upper test speed 
threshold of 160 km/h (99 mph) ensures a minimum level of safe 
operation that is 25-30 mph beyond typical speed limits on interstate 
highways in the U.S.
    Under the UTQG test procedure, a tire is rated ``C'' if it fails to 
complete the test at 100 mph for 30 minutes. The test is initiated at 
75 mph for 30 minutes and then successively increased in 5 mph 
increments for 30 minutes each until the tire has run at 115 mph for 30 
minutes. Therefore, tires with a temperature grading of C may be able 
to complete 30 minutes at speeds of 75, 80, 85, 90, and 95 mph (120, 
128, 136, 144, and 152 km/h), but not complete the 100-mph (160 km/h) 
step. By establishing the final step of the high speed test at 160 km/h 
(99 mph), the agency expects that a larger number of tires with a 
temperature grade of ``C'' may fail the minimum performance test in the 
tire standard.
    This decision does not prohibit tire manufacturers from continuing 
the practice of using speed ratings as a basis for establishing maximum 
design speed characteristics for tire performance. As discussed in the 
Tire Safety Information final rule, the agency neither requires nor 
prohibits that tires be labeled with a speed rating. Additionally, we 
do not prohibit vehicle manufacturers from specifying that consumers 
purchase replacement tires labeled with the same speed rating as the OE 
tire.
    The agency has decided not to reduce the test speed for LT tires. 
The agency is not aware of any data, nor has it been

[[Page 38135]]

provided with any, that suggest that light trucks equipped with LT 
tires are operated at lower speeds than light trucks equipped with P-
metric tires. In fact, tire industry data indicate that light truck 
owners choose LT tires as replacement tires more often than the 
installation rate for LT tires by the OE vehicle manufacturer. (Modern 
Tire Dealer (http://www.mt.dealer.com), RMA Factbook 2002)
    The agency is also adopting a 2-hour break-in period for the test. 
Current FMVSS No. 109 requirements include a 2-hour break-in. The NPRM 
proposed a 15-minute break-in for the test, essentially because RMA had 
indicated in connection with GTS-2000 that a break-in period was 
unnecessary. Since that time, RMA has reversed its position on this 
issue based on its high speed testing. Additionally, the agency, based 
on its own testing and experience with the 2-hour break-in period 
believes that this length of break-in enhances test repeatability by 
making the surface of the tire consistent, e.g., removing tire 
``whiskers'' from the tire tread surface.
e. Duration
    RMA's suggested 10-minute durations at each speed step (10-minute 
speed build-up from 0 km/h to ITS, then three 10-minute speed steps and 
one 20-minute speed step).
    Agency testing indicates that 10 minutes is too short a period to 
provide a proper evaluation of high-speed performance. Very few 
failures occurred in the agency's testing using the 10-minute duration 
for speed steps. Additionally, RMA indicated in its DOE that the tire 
temperature generally stabilized within 15 minutes for any given set of 
test conditions. RMA's suggestion also reduced the duration in FMVSS 
No. 109 by almost 50 percent.
    NHTSA adopts a 30-minute test duration for each of the 3 speed 
steps, 140, 150, and 160 km/h. The total test time equals 90 minutes. 
The 30-minute duration allows the tire to attain and stabilize its 
operating temperature at each speed step so that the tire's performance 
can be evaluated during a steady rate of speed for a duration longer 
than 10 minutes.
2. Endurance Test
    The agency is adopting an endurance test for FMVSS No. 139 to be 
conducted using the following five parameters:
    (1) Ambient Temperature: 38[deg] C.
    (2) Load: 85/90/100 percent.
    (3) Inflation Pressure: 180 kPa (26 psi) for standard load P-
metric; 220 kPa (32 psi) for extra load P-metric; 260 kPa (38 psi), 340 
kPa (49 psi), 410 kPa (59 psi) for LT load ranges C, D, E, 
respectively.
    (4) Speed: 120 km/h.
    (5) Duration: 34 hours total--4 hours at 85 percent load, 6 hours 
at 90 percent load, and 24 hours at 100 percent load.
    A tire complies with the proposed requirements if, at the end of 
the high speed test, there is no visual evidence of tread, sidewall, 
ply, cord, or bead separation, chunking, broken cords, cracking, or 
open splices, and the tire pressure is not less than the initial test 
pressure.
    This combination of these parameters for P-metric tires is believed 
to correlate well with actual field performance and represents an 
increase in stringency over FMVSS No. 109's endurance test with a 50 
percent increase in speed.
    Two alternatives to the proposed test parameters were considered by 
the agency, that submitted by RMA and that submitted by Goodyear. The 
RMA alternative includes no change in the load combination of 85/90/100 
percent and duration from the current standard, FMVSS No. 109, retains 
the 120 km/h from the agency proposal for P-metric tires but a lower 
speed (110 km/h) for LT tires, and recommends increasing the inflation 
pressure for LT tires. The Goodyear alternative is similar to RMA's 
except that they suggest a test speed of 104 km/h and do not adjust 
down the inflation pressures for LT tires. Both of these tests, 
especially the Goodyear test, demonstrate a lower failure rate than the 
agency's tests.
    The agency adopts an endurance test that has parameters different 
from those proposed in the NPRM. The load decrease of 10% from the 
proposed loading level represents an offset of the effects of the test 
wheel. Further, the agency notes that the increase in duration of the 
final load step from 22 hours in the proposal to 24 hours combined with 
the adopted test speed of 120 km/h represents an increase in the total 
test distance from 2720 km (1700 miles) to 4080 km (2550 miles).
    The following table provides a comparison of the endurance test 
parameters used in FMVSS No. 109, FMVSS No. 119, RMA recommendation, 
and FMVSS No. 139.

                                                                               Table 3--Endurance Test Comparison
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                            FMVSS No. 139  As
         Test parameters                  FMVSS 109                 FMVSS 119                     RMA                      Goodyear              Proposed  FMVSS 139             adopted
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Ambient ([deg]C)................  38......................  38......................  38.........................  38......................  40........................  38
Load (%):
    P-metric....................  85/90/100...............  ........................  85/90/100..................  85/90/100...............  90/100/110................  85/90/100
    LT-load C/D.................  ........................  75/97/114...............  85/90/100..................  85/90/100...............  90/100/110................  85/90/100
    LT-load E...................  ........................  70/88/106...............  85/90/100..................  85/90/100...............  90/100/110................  85/90/100
Inflation Pressure (kPa):
    Standard load P-metric......  180.....................  ........................  180........................  180.....................  180.......................  180
    Extra load P-metric.........  220.....................  ........................  220........................  220.....................  220.......................  220
    LT-load C/D.................  ........................  max infl................  285/370....................  260/340.................  260/340...................  260/340
    LT-load E...................  ........................  max infl................  450........................  410.....................  410.......................  410
Speed (km/h)....................  80......................  80......................  120 (75 mph) (110 km/h for   104 (65 mph)............  120 (75 mph)..............  120 (75 mph)
                                                                                       LTs).
Duration (hrs)..................  34 (4/6/24).............  34 (4/6/24).............  34 (4/6/24)................  40 (8/10/22)............  40 (8/10/22)..............  34 (4/6/24)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

a. Ambient Temperature
    The agency has decided to lower the ambient temperature to 38[deg] 
C from the 40[deg] C proposed in the NPRM for the same reasons cited in 
the high speed test discussion.
b. Load
    In its comments to the NPRM, RMA recommended an endurance test 
using lower loads, 85/90/100 percent of maximum load rating for 34 
hours for both P-metric and LT tires due to high percentages of 
failures due to chunking.
    Goodyear commented that (1) heat induced damage mode (Tread 
Chunking) exhibited in proposed FMVSS No. 139 endurance testing is not

[[Page 38136]]

representative of real world failures in the field, (2) tires with 
proven safe field performance will not pass the proposed FMVSS No. 139 
due to tread chunking caused by excessive heat build-up due to high 
speed on curved surface and high load conditions, and (3) tire design 
changes/compromises to reduce heat-induced tread chunking will 
negatively impact other safety performance characteristics (e.g., wet 
traction, wet handling, dry traction).
    Public Citizen urged the agency to adopt a higher load of 100/110/
115 percent to provide for loading conditions of heavier commercial 
vehicles.
    After studying the effects of the test parameters on the failure 
rates for the proposed endurance test, the agency has decided to lower 
the load percentages to 85/90/100 percent of the maximum load rating. 
The 5% decrease in load in the first test step and, more importantly, 
the 10% decrease in the second and third test steps are adopted to 
offset the effect of the temperature increase that occurs on the curved 
surface of the test wheel.
c. Inflation Pressure
    For LT tires, RMA recommended higher inflation pressures claiming 
that higher inflation pressures help offset the increased deflection 
and higher temperatures experienced by LT tires on the test wheel which 
makes the stringency of the test for LT tires more significant than 
that experienced by P-metric tires. RMA's data, however, indicates that 
LT tires also experience higher temperatures than P-metric tires when 
tested on a flat surface.\30\
---------------------------------------------------------------------------

    \30\ Based on RMA's DOE, the temperature differential between P-
metric tires and LT tires on a road test wheel is 28[deg] C, 
compared to 21[deg] C on a flat surface.
---------------------------------------------------------------------------

    The inflation pressures contained in this final rule remain 
unchanged from those proposed in the NPRM. Since LT tires experience 
higher temperatures than P-metric tires under real world conditions, 
the agency sees no need to adjust the test stringency in attempt to 
make equivalent the thermal levels experienced by LT tires and P-metric 
tires on the test wheel.
    The inflation pressure of 180 kPa represents a 25 percent under-
inflation for 240 kPa maximum inflation pressure tires and is the same 
inflation pressure currently required for the endurance test in FMVSS 
No. 109. Tires tested to more severe levels of underinflation, e.g., 
160 kPa, failed much sooner into the endurance test than those tested 
at 180 kPa.
d. Speed
    For LT tires, RMA recommended a lower test speed of 110 km/h 
claiming that a lower test speed makes the stringency of the test for 
LT tires equivalent to that for P-metric tires. Goodyear recommended 
104 km/h for all tires stating that the combined load and speed of the 
test produces excessive temperature conditions on a test wheel.
    The speed contained in this final rule remains unchanged from that 
proposed in the NPRM. The test is conducted at 120 km/h (75 mph). The 
current endurance test in FMVSS No. 109 is conducted at 80 km/h (50 
mph). An 80 km/h test speed may have been an appropriate test speed in 
1968 when initially proposed for bias ply tires. However, today, it is 
too low a speed for evaluating the endurance of today's tires given 
current vehicle performance capabilities and speed limits.\31\ In 
addition, speed limits on interstate highways across the U.S. are now 
as high as 75 mph.
---------------------------------------------------------------------------

    \31\ According to Automotive News (5/14/01), ``since 1981, 
average horsepower has risen 79 percent and vehicle weight has grown 
21 percent.'' The power to weight ratio has increased over the past 
10 years based on data on selected mid-priced Ford, Chevrolet, 
Pontiac, Toyota, and Honda vehicles ranged from about 70 to 90 
horsepower (HP) per ton. (Ward's Automotive Yearbooks, 1990 and 
2000). In 1995, the federally-mandated 55 mph speed limit was 
repealed. Since that time, numerous States have increased speed 
limits up to 75 mph.
---------------------------------------------------------------------------

    The agency considered RMA's recommendation for a lower test speed 
for LT tires. RMA's DOE showed higher tire temperatures for LT tires 
compared with P-metric tires, both on the flat surface and on the 
curved test wheel. We acknowledge that LT tires run hotter than P-
metric tires but see no need to try to make the stringency levels 
equivalent in laboratory testing if they do not run at equivalent 
levels on the road. In the real world, P-metric tires and LT tires are 
often operated on light vehicles in the same manner, e.g., same speeds, 
same attention, or lack thereof, to proper inflation levels. 
Additionally, the agency adjusted the parameters for load, duration, 
and temperature to achieve a more realistic and practicable test. Given 
that vehicles equipped with LT tires are operated at similar speeds as 
vehicles equipped with P-metric tires, the agency does not accept this 
suggestion.
e. Duration
    The duration specified for the endurance test has been lowered to 
34 hours from the 40 hours proposed in the NPRM.
    The agency's confirmation testing to the endurance parameters 
proposed in the NPRM indicated that the failure rate was 27 percent for 
P-metric tires and 40 percent for LT tires. A majority of these 
failures occurred between the 35th and 40th hours of the 40-hour test. 
The failure mode for these tires was chunking of the tire tread. 
Chunking is the breaking away of pieces of the tread or sidewall. 
Chunking may be an early indicator of other potential tire problems, 
but the agency, at present, does not have data indicating the frequency 
with which chunking occurs in service or the rate at which other tire 
problems are precipitated by chunking.
    The agency anticipates that with the duration reduced to 34 hours, 
a lower percentage of tires will fail the test because of chunking. In 
anticipation of concerns that the lowered duration reduces the 
stringency of the test, the agency notes that for the 34-hour duration, 
the maximum test load is achieved after 10 hours from initiation of the 
test, while for the 40-hour duration that was proposed in the NPRM, the 
maximum test load is only achieved after 18 hours. Additionally, the 
final load step is 2 hours longer (24 hours) than the one proposed in 
the NPRM (22 hours). For these reasons, the agency considers the 34-
hour test as possibly more stringent than the proposed 40-hour test.
    Ford recommended extending the duration of the test by adding an 
additional 48-hour test step at a load equaling 130 percent of the 
maximum load rating of the tire. Ford did not provide any data or test 
results to support this recommendation.
3. Low Inflation Pressure Performance Test
    The TREAD Act requires that light vehicles be equipped with a tire 
pressure monitoring system, effective November 1, 2003, to indicate to 
the driver when any of the tires on his vehicle is significantly 
underinflated. NHTSA established 20 psi (140 kPa) as a low pressure 
threshold at or above which the low pressure lamp must be activated in 
its recent final rule on TPMS. (67 FR 38704, June 5, 2002)
    NHTSA includes in the new light vehicle tire standard a low 
inflation pressure test, the Alternative 1, Low Pressure--TPMS test, to 
ensure a minimum level of endurance and/or high speed performance/
safety when operated at a significant level of under-inflation. The 
parameters for this test, which the tire must complete without failure, 
are as follows:
    (1) Load: 100 percent
    (2) Inflation pressure: 140 kPa (20 psi) for P-metric
    (3) Test speed: 120 km/h (75 mph)

[[Page 38137]]

    (4) Duration: 90 minutes at the end of the 34-hour endurance test
    (5) Ambient temperature: 38[deg] C
    A tire complies with the requirements if, at the end of the test, 
there is no visual evidence of tread, sidewall, ply, cord, inner liner, 
or bead separation, chunking, broken cords, cracking, or open splices, 
and the tire pressure is not less than the initial test pressure.
    The following table provides a comparison of the low inflation 
pressure performance parameters proposed in the NPRM and those 
established in FMVSS No. 139.

                                                          Table 4.--Low Inflation Pressure Test
--------------------------------------------------------------------------------------------------------------------------------------------------------
         Test parameters                   Proposed  Alternative 1                 Proposed  Alternative 2                FMVSS No. 139  As adoped
--------------------------------------------------------------------------------------------------------------------------------------------------------
Ambient ([deg]C).................  40....................................  40....................................  38
Load (%).........................  100% of maximum load rating on tire...  67% of maximum load rating on tire....  100% of maximum load rating on tire
Inflation Pressure (kPa):
    Standard load P-metric.......  140...................................  140...................................  140
    Extra load P-metric..........  160...................................  160...................................  160
    LT-load C....................  200...................................  200...................................  200
    LT-load D....................  260...................................  260...................................  260
    LT-load E....................  320...................................  320...................................  320
Speed (km/h).....................  120...................................  140/150/160...........................  120
Duration (mins)..................  90 (30/30/30).........................  90 (30/30/30).........................  90 (30/30/30)
--------------------------------------------------------------------------------------------------------------------------------------------------------

    RMA expressed support for Alternative 1, substituting a lower test 
speed, 110km/h, for LT tires instead of the proposed 120 km/h. RMA also 
stated that thermal runaway occurred on all the tires that it tested to 
the Alternative 2 test parameters. Both the Alliance and Ford suggested 
that the test be run on tires after they had been subjected to an aging 
test. Consumers Union recommended that the test duration of Alternative 
1 be increased to 4 hours to better simulate the distance traveled (300 
miles) on a tank of fuel.
    The adopted test, Alternative 1, establishes a linkage between the 
proposed requirements of the tire pressure monitoring system standard 
and the endurance test for the tire standard upgrade requirements. It 
is predicated upon the notion that a low pressure test is most 
appropriate on tires that have completed the endurance test because a 
significantly underinflated condition for a tire is more likely to 
occur in a tire after several weeks of natural air pressure loss or due 
to a slow leak.
    Besides nearly unanimous support from commenters, the agency 
believes that the parameters of this test more closely represent real 
world conditions. For instance, it is more likely that vehicles, 
particularly passenger vehicles, will travel at speeds closer to 120 
km/h (75 mph) than 160 km/h (90 mph) and will be loaded closer to a 
100% condition than a 67% condition. In essence, this alternative 
closely mirrors conditions of long distance family travel and would 
assist in ensuring that tires will withstand conditions of sudden or 
severe underinflation during highway travel in highly loaded 
conditions. Additionally, the agency believes that this test provides 
an extra safeguard to ensure that tires that were able to successfully 
complete the endurance testing can also complete an additional 90-
minute test at low inflation pressures.
4. Road Hazard Impact
    For a road hazard impact performance requirement, the agency had 
proposed the adoption of the current SAE Recommended Practice J1981, 
Road Hazard Impact Test for Wheel and Tire Assemblies (Passenger Car, 
Light Truck, and Multipurpose Vehicles). This test had been developed 
by SAE to provide a uniform test procedure for evaluating the road 
hazard impact on wheel and tire assemblies.\32\ Results from agency 
testing of 60 tires according to this procedure demonstrated no 
failures. Further, post-test inspection using visual methods, 
shearography, and x-ray revealed no evidence of damage to any of the 
tires.
---------------------------------------------------------------------------

    \32\ The test machine specified in this recommended practice 
positions the tire so that the striker impacts it across the width 
of the tire tread with a free falling 54 kg pendulum striker. The 
impact force must be applied at five equally spaced points around 
the circumference of the tire.
---------------------------------------------------------------------------

    In response to our proposal, commenters unanimously suggested that 
the proposed SAE procedure was not properly defined to test for tire-
to-hazard impact worthiness. RMA argued that the test was originally 
developed as a wheel damage test and has very limited value as a tire 
test. Also, they argued that it was originally adopted to evaluate bias 
ply tires and is unnecessary for testing radial tires. The Alliance 
suggested that the current plunger test be retained until the agency 
develops a test that correlates with actual field performance. Ford 
also recommended that the current plunger test be retained but also 
revised to contain a higher load value and a revised test rim capable 
of accommodating the higher load without exhibiting ``bottoming out.'' 
Ford stated that it uses a force value twice as high as that specified 
in FMVSS No. 109 and its tires have experienced failures when tested to 
this specification. Commenters also questioned the practicability of 
the proposed test given the expected cost of new equipment to perform 
the test and the perceived lack of benefits exhibited by the absence of 
failures in NHTSA's research.
    The agency's research on this test consisted of sixty tires tested 
in the agency's Phase 1A laboratory tire strength tests. All were P205/
R15 size, with aspect ratios of 55, 65, or 75. Each tire was initially 
strength tested using one of the four following procedures: (1) SAE 
J1981 Road Hazard Impact test, with wedge-shaped striker, (2) SAE J1981 
Road Hazard Impact test, with plunger shaped striker, (3) current FMVSS 
No. 109 tire strength test, and (4) modified FMVSS No. 109 tire 
strength test. All tires were submitted for post-test damage evaluation 
using visual inspection, x-ray, and shearography. Twenty of these tires 
were then subjected to the current FMVSS No. 109 high speed performance 
test, and then resubmitted for damage evaluation.
    Only one of the 60 tires experienced air loss or damage detectable 
by the three evaluation methods. This tire experienced tread break and 
rapid air loss during a modified FMVSS No. 109 tire strength test. 
Tests on four of the 20 tires subjected to the SAE J1981 Road Hazard 
Impact tests, with wedge-shaped striker, resulted in damage to the rim, 
even though no air loss or tire damage

[[Page 38138]]

was detected. A report that more fully discusses this data and analysis 
is contained in the Docket (NHTSA-02-8011-20).
    The agency has decided to adopt for the new standard the current 
requirement for the plunger test in FMVSS No. 109 for P-metric tires 
and the current requirement for the strength test in FMVSS No. 119 for 
LT tires. Based on the agency's testing and the comments received in 
response to the proposal, the agency concludes that the SAE road hazard 
impact test is not suitable to evaluate the capability of a tire to 
resist damage from impacts with road hazards.
    While the agency is not establishing a new or revised test at this 
juncture, information and data provided to the agency by Ford indicates 
that certain test forces and other specifications can be specified that 
would possibly evaluate tire-to-hazard impact worthiness performance. 
After completing the research on tire aging discussed below and then 
the research on bead unseating discussed below, the agency will conduct 
research to refine the current test and/or to identify and refine an 
alternative test that better simulates road hazard impact. When this 
research is complete, the agency will decide whether to initiate 
rulemaking on a new or revised test procedure for tire strength.
5. Bead Unseating
    In response to our proposal, commenters consistently suggested that 
the proposed procedure required further research and specification to 
appropriately evaluate the ability of a tire bead to remain on the rim 
during varied maneuvers. For instance, the Alliance suggested that a 
test-wheel specification be developed because bead unseating is 
partially a function of the specific test wheel on which the tire is 
mounted. Similarly, Ford recommended that the agency include a 
specification for the test rim to accompany the test since the force 
required to unseat a tire bead is dependent on rim design. TUV Germany 
suggested that the agency utilize a dynamic (e.g., rotating wheel) 
rather than a static test. Additionally, the levels of certain proposed 
parameters, e.g., load and force and applied to the tire, were 
highlighted as needing further consideration.
    Commenters also questioned the practicability of the Toyota test 
given the expected cost of equipment required to perform the test and 
the perceived lack of benefits resulting from the absence of failures 
in NHTSA's research. RMA suggested that the agency retain the current 
procedure, with revised specifications applicable to tires with smaller 
aspect ratios.
    The current resistance to bead unseating test has the force applied 
to the center of the sidewall of the tire. The agency believes that 
while the Toyota test parameters may provide a more ``real world'' 
approach by applying forces in the tread area, they would not 
necessarily increase the overall stringency of the test. This belief is 
supported by agency research, which found that the Toyota test yields 
results (no failures) identical to those derived from testing tires to 
the current bead unseating test.
    The agency's research on this test consisted of fifty-four tires 
evaluated in the agency's Phase 1A Tire Debeading tests for their 
propensity to debead. Each tire was bead unseat tested using one of the 
two following procedures: (1) A modification of a procedure developed 
by Toyota that utilizes a sliding wedge-based test fixture to apply a 
force across the tread until the tire debeads or the rim comes in 
contact with the wedge, and (2) a modified version of the FMVSS No. 109 
test procedure which allows the plunger load to continue until bead 
unseating occurs. A report that more fully discusses these data is 
contained in the Docket (NHTSA-02-8011-21).
    The agency has decided to include in the new standard the current 
requirement for bead unseating that exists in FMVSS No. 109. To make 
this requirement consistent for all light vehicle tries, the agency has 
also decided to extend this requirement to LT tires. While the agency 
is not establishing a new or revised test at this stage, it continues 
to believe that bead unseating may contribute to a major safety 
problem: rollover. Therefore, bead unseating, if appropriately 
addressed through a safety performance requirement, could beneficially 
impact rollover crash prevention.
    Information and data obtained and analyzed by the agency indicate 
that tire bead unseating does occur in real world applications and that 
it contributes to rollover because rim contact with the road is a 
tripping mechanism that leads to a tripped rollover. During the 
agency's 1997-98 dynamic rollover testing, 3 out of 12 vehicles 
debeaded their tire during severe maneuvers. These three vehicles 
included a pick-up truck, a MPV, and a passenger car. All three 
vehicles were equipped with P-metric tires, and all were certified as 
complying with the current bead unseating requirements. TREAD rollover 
testing conducted in 2001 and 2002 also demonstrated debeading as a 
result of severe maneuvers.\33\
---------------------------------------------------------------------------

    \33\ The tires involved in these debeading incidents passed the 
FMVSS No. 109 test.
---------------------------------------------------------------------------

    After completing the research on tire aging discussed below, the 
agency will conduct research to try to identify and refine an 
alternative test that better simulates bead unseating than the current 
test. If supported by our research results, the agency will initiate 
rulemaking to adopt an improved bead unseating test.
    With regard to RMA's suggestion that the agency revised testing 
specifications for tires with smaller aspect ratios, the agency notes 
that the current testing apparatus (the ``block'') can be used to test 
a vast majority of tires in the OE and replacement market. Low aspect 
tires that may be problematic fits with the testing apparatus would, in 
any case, comply with the requirements because the block would contact/
``bottom out'' on the rim before debeading could occur. The agency 
plans, during its bead unseating research, to review the design of the 
bead unseating apparatus and to determine whether and how to best 
modify it to accommodate low aspect ratio tires.
6. Aging
    In the NPRM, the agency proposed adopting one of the following 
tests: (1) an adhesion (peel) test based on the American Society for 
Testing Materials (ASTM) D413-98, Standard Test Methods for Rubber 
Property-Adhesion to Flexible Substrate, (2) a long term durability 
endurance test based on Michelin's procedure for endurance testing, and 
(3) an oven aging test.
    Commenters generally asserted that the three tests, as proposed, 
are not appropriate means of testing the effects of aging on tires or 
that they do not reflect real world performance. RMA opposed adoption 
of the peel strength test and the long term durability endurance test. 
RMA stated that the results of its testing in accordance with the ASTM 
D-413 protocol demonstrated that such testing has poor repeatability. 
Further, they assert that peel force does not correlate with field 
performance or the test wheel test because: (1) It evaluates only a 
component of the tire, not the tire's overall performance, (2) peel 
strength data inversely correlates with field data, and (3) it 
evaluates the tire's belt compound for ultimate tensile strength in a 
non-aged state and does not simulate long-term duration or field 
exposure.
    RMA also opposed the long term durability endurance test stating 
that the length of the test would add a $100

[[Page 38139]]

million differential over the other options. RMA also stated that the 
industry has had little or no experience with this test methodology, 
although the test was suggested by Michelin, a member of RMA.
    While RMA asserted that it finds an aging test redundant in light 
of the revised high speed, endurance, and low pressure tests, it did 
provide the agency with their suggestion for test parameters for the 
oven aging tests: (1) 70[deg] C as the aging temperature instead of the 
proposed 75[deg] C, and (2) three endurance steps of 4 hours at 85% 
load, 6 hours at 90% load, and 14 hours at 100% load.
    The Alliance and Ford commented that the proposed aging tests cause 
the tire wedge to age anaerobically (caused by absence of oxygen), a 
condition that is not exhibited in ODI field data. Ford recommended a 
revised version of the agency's oven aging test using a 50/50 blend of 
oxygen/nitrogen as the filling gas and a 14 day duration in an oven 
followed by a dynamic test on a test wheel. Ford indicated that this 
test would simulate the performance of a tire oxidatively aged for 2-3 
years.
    ECE/GRRF suggested that the aging test be combined with the 
endurance test.
    With regard to the 250-hour long-term durability endurance test, 
the agency does not have enough information to conclude that this test 
would be appropriate for regulatory purposes because of its length and 
resultant cost. Michelin has indicated that the test is most effective 
and provides better correlations at a duration of approximately 350-400 
hours. This amount of time makes this test considerably more expensive 
than either a peel test or an oven aging test and would impose a large 
cost burden on the industry as well as a large regulatory burden on the 
agency's compliance testing. We cannot at present show that burden 
would be justified by the safety benefits.
    The agency conducted Michelin-like dynamic aging testing (250-hour 
test inflated with oxygen-nitrogen mixture), oven aging testing, and 
adhesion strength testing. The parameters for the oven aging testing 
and adhesion strength testing are the same as those proposed by the 
agency. The data show that, in general, most of the tires completed the 
drum tests including the dynamic aging and oven aging tests. Three P-
metric tires had catastrophic and partial damage failures during the 
dynamic aging tests, and two other P-metric tires had failures during 
the oven aging test. The adhesion data demonstrate a wide range of 
results from a low of 19.9 lbs/in to a high of 76.9 lbs/in adhesion 
strength between the tire belts. From these data, however, the agency 
has been unable to draw any definite correlations of tire conditioning 
on adhesion strength. A report that more fully discusses these data and 
analysis is contained in the Docket (NHTSA-02-8011-27).
    The agency has decided to defer rulemaking on an aging test until 
further research is completed. The agency intends to develop and 
propose an oven-aging test for FMVSS No. 139 in approximately 2 years. 
In developing an oven-aging test, the agency will consider the 
recommendations submitted to the agency including those mentioned above 
pursuant to refining both the static and dynamic components of the 
test. Additionally, the agency will assess the performance of the test 
tires and tires in the field to assure that the test correlates with 
the field data. The agency has opened a docket for the collection of 
information relevant to tire aging (Docket No. NHTSA-2002-13865).
    After analysis and consideration of the comments, as well as 
results from agency's own testing, the agency concurs with commenters 
that the peel test is not appropriate to pursue at this juncture. With 
regard to the peel test, RMA commented that its testing indicated an 
inverse correlation between peel strength and a tire's endurance. In 
the agency's testing, some tires that demonstrated a low peel strength 
value performed well under the proposed endurance parameters, while 
some tires that exhibited high peel strength values failed to complete 
the proposed endurance test. These results, along with RMA's suggestion 
that the peel test proposal evaluates a tire's belt compound for 
ultimate tensile strength in a non-aged state but does not simulate 
long-term duration of field exposure, has led the agency to determine 
that a peel test is not sufficiently useful for evaluating tire aging 
to be included in the standard as a performance requirement.
    The agency acknowledges that, during the Firestone hearings, 
members of Congress suggested that an aging test could evaluate the 
risk of tire failure at a period later in the life of a tire than the 
period tested by the current endurance test. Additionally, reports 
(Clark, Govindjee) resulting from the Ford-Firestone investigation 
recommended that the agency should consider instituting an aging test 
in its revised regulation because of the known degradation of peel 
strength with time and temperature. For several reasons, the agency has 
been unable, during the limited time available, to develop a workable 
aging test with the capacity to enhance real world safety.
    At present, an industry-wide recommended practice for the 
accelerated aging of tires does not exist. With the exception of 
Michelin, the tire industry did not respond to the agency's request in 
the NPRM for information on corporate design and testing 
specifications. Additionally, the agency did not acquire sufficient 
test data and field data to enable it to evaluate the performance of an 
aging test and determine whether correlations exist in the data. 
Recently, however, some industry members have begun a dialogue and 
offered to share data with the agency.
7. Post-Test Pressure Measurement
    For the high speed, endurance, and low inflation pressure 
performance tests, the NPRM proposed that the inflation pressure be 
measured within 15 minutes after the completion of the specified test. 
Any decrease in pressure from the initial inflation pressure would 
signify failure. The agency had borrowed the 15 minute specification 
from GTS-2000 and because it represented what the agency thought was a 
more objective criterion than the current requirement in 109 for 
measurement to be taken ``immediately'' after the test.
    In response to the proposal, RMA, citing safety reasons, urged the 
agency to revise the time-period for measurement to specify that it be 
taken within an hour. According to RMA, requiring measurement of the 
temperature of a hot tire, which must be performed manually, within 15 
minutes of test completion subjects the technician to great danger due 
to the risk of tire explosion. Additionally, RMA argued that the 
additional time for measurement would not unfairly bias the success 
rates of the tires being tested because the inflation pressure would 
reduce, rather than increase, over time as the tire cools. Therefore, 
it is more likely that a tire tested within 15 minutes of completion of 
a test would contain the requisite amount of pressure necessary to pass 
the test than a tire tested at closer to 1 hour after completion of the 
test.
    The agency conducted experiments at VRTC concerning post-testing 
pressure measurements. These tests indicated tires require longer than 
15 minutes for the pressure inside of them to stabilize after a 
performance tests and that a span of 1 hour after testing provides 
sufficient time to allow cooling of the tire and stabilization of its 
internal pressure. Measurements taken before the end of the 1-hour 
period may be

[[Page 38140]]

artificially high and mask test induced pressure losses due to the heat 
generated in the tire during testing. Additionally, the agency's 
confirmation testing at STL indicated that a tire's inflation pressure 
requires substantially more than 15 minutes to stabilize after testing 
is completed. This testing revealed that the inflation pressure 
decreased an average of 6-8 psi (the pressure decrease ranged from 5-12 
psi) between 15 minutes and 1 hour after completion of testing in both 
P-metric and LT tires.
    In response to RMA's suggestion and based upon our own analysis of 
available data, the agency has decided to require that all post-test 
pressure measurements be taken at least one hour after the test is 
completed. The agency has determined that a 1-hour period provides a 
sufficient time period for tire cooling and would prevent superficially 
high tire temperatures from masking test-induced pressure losses that 
would not be detectable at an earlier measurement marker.

D. Tire Selection Criteria/De-Rating of P-metric Tires

    Commenters expressed a range of sentiments on these issues. Tire 
industry commenters strongly supported retaining the de-rating 
percentage of 1.10 for P-metric tires used on non-passenger car 
vehicles, and the proposal to revise FMVSS No. 110 to require 
determination of normal load based on 85% of the load at the vehicle 
placard pressure.
    The vehicle industry commenters supported the extension of FMVSS 
No. 110 applicability to light trucks, MPVs and vans under 10,000 GVWR, 
but urged the agency to retain the vehicle normal load at 88% of the 
maximum load rating. The Alliance also suggested that the agency de-
link the tire selection criteria from the load parameter used in the 
high-speed test, saying that no rationale exists for the linkage. While 
the Alliance stated that revising the load reserve requirement would 
affect areas of vehicle performance, such as braking and CAFE, and 
would require some redesign of vehicle systems and components, they did 
not provide specific data to support these assertions. GM stated that 
22% of its car and 6% of its light truck volumes would not comply with 
the proposed tire selection criteria. Subaru also indicated that a 
significant percentage of its fleet would need to be altered to meet 
the proposals.
    Consumer group commenters suggested that the agency require a 
higher reserve load, between 18 and 20 percent because they believe 
that 15% does not adequately address typical loading conditions for 
trucks and heavier vehicles.
    Tire reserve load currently refers to a tire's remaining load-
carrying capabilities when the tire is inflated to the tire 
manufacturer's maximum cold inflation pressure shown on the tire 
sidewall and the vehicle is loaded to its gross vehicle weight rating 
(GVWR). A reserve load is provided by vehicle manufacturers, as per the 
requirements of FMVSS No. 110, to account for overloading of the 
vehicle, under-inflation of tires, or both. The load reserve margin 
required by FMVSS No. 110 is linked with the load parameter in the 
FMVSS No. 109 high-speed test. The load parameter for the proposed high 
speed test was 85% percent of the maximum load as labeled on the tire.
    The primary purpose of FMVSS No. 110 is to specify requirements for 
tire selection to prevent tire overloading. Since the standard is a 
vehicle-based standard, the tire selected for each vehicle to which the 
standard applies is based on the load limits for the tire and the 
maximum vehicle weight. The maximum load rating (in lbs or kg) for a 
tire is currently determined at the maximum inflation pressure of 240 
kPa (35 psi) for standard load P-metric tires. If the vehicle 
manufacturer, however, chooses to recommend an inflation pressure 
(labeled on the placard) lower than the maximum inflation pressure, the 
actual rated load is lower than that maximum rated load (based on 
maximum inflation pressure) because the tire load rating decreases with 
a lower inflation pressure.\34\
---------------------------------------------------------------------------

    \34\ For example, if 2 similar vehicles (similar GVWR and weight 
distribution) are equipped with the same tires size but the first 
has a placard pressure of 32 psi and the other a placard pressure of 
26, psi, based on our current requirement, the reserve load will be 
identical for both vehicles. However, if the reserve load is based 
on placard pressure, then the vehicle with the higher placard 
pressure will have a higher load rating and load reserve than the 
vehicle with the lower placard pressure since the load rating 
increases with increased inflation pressure.
---------------------------------------------------------------------------

    The agency believes that the actual rated load is a more 
appropriate measure of load reserve than the maximum rated load. The 
purpose of FMVSS No. 110 is to prevent the overloading of a tire as 
installed on a vehicle, not on the tire in the abstract. The agency has 
concluded, therefore, that the most appropriate way for the vehicle 
manufacturer to determine the reserve load for the tire on the vehicle 
is to determine the load at recommended inflation pressure (as labeled 
on the placard), not at the maximum inflation pressure on the tire 
sidewall, since few, if any, vehicle manufacturers list the maximum 
inflation pressure as their recommended inflation pressure.
    However, if FMVSS No 110 were revised as proposed in the NPRM, 
vehicle manufacturers would be required to increase the reserve load 
from 12 percent to 15 percent on their vehicles. Additionally, the 
margin would, in fact, need to be made larger because the vehicle 
normal load would be based on the load rating at the vehicle's placard 
pressure rather than the load rating at the maximum inflation pressure 
of the tire.
    The agency proposed an 85% figure, stating that increasing the tire 
reserve needed by a vehicle under normal loading conditions from 12 to 
15 percent would result in a larger margin of safety when a vehicle is 
loaded to its GVWR or its tires are underinflated. Based on comments 
and further analysis, the agency believes that 85% figure combined with 
the load reserve being based on the load rating at placard pressure 
rather than at maximum inflation pressure is insufficiently justified 
at this time. Currently, the agency does not have any data that links 
reserve load to tire failure. The most recent data we have on this 
issue was analyzed in a 1981 study. That study found no correlation 
between reserve load and tire failure. Further, the proposed reserve 
load increase would have necessitated the vehicle manufacturers' making 
major changes in the design of some of their vehicles to comply with 
the requirement.\35\ For instance, some vehicle manufacturers for some 
vehicles would have had to ``plus'' size the tires on their vehicles, 
which could, in turn, have necessitated a redesigning of other vehicle 
systems such as the suspension and braking systems.
---------------------------------------------------------------------------

    \35\ In the FRE, the agency estimates that, based on available 
compliance data, 6 of 14 light vehicles would have failed the 85% 
lead reserve requirement. These data are discussed in more detail in 
the FRE.
---------------------------------------------------------------------------

    In response to the vehicle manufacturers' concerns, we have decided 
to de-link the tire selection criteria from the load used in the high-
speed test. The agency believes that if it were to require that the 
vehicle normal load at placard pressure be no greater than the figure 
specified for the load parameter in the high speed test, 85%, too many 
vehicles would need a costly \36\ tire upsize to comply with 
requirements that do not, based on all currently available data, appear 
to provide safety benefits. Further, the agency is not aware of any 
safety rationale to continue to link the load

[[Page 38141]]

reserve requirements with the loading parameter in the high-speed test.
---------------------------------------------------------------------------

    \36\ The cost of tire upsizing is discussed in greater detail in 
the FRE.
---------------------------------------------------------------------------

    For passenger cars and for non-passenger car vehicles equipped with 
LT tires, the final rule requires that the vehicle normal load be based 
on 94% of load rating at the vehicle's placard pressure. Therefore, 
vehicle manufacturers will be required to insure that the tire reserve 
load corresponds with the tire's load carrying capabilities when the 
tire is inflated to the vehicle manufacturers recommended cold tire 
inflation pressure rather than the tire manufacturer's maximum cold 
inflation pressure shown on the tire sidewall. The 94% figure was 
chosen to approximate closely the load reserve that results from the 
current requirement of 88% based of load rating at the tire's maximum 
inflation pressure.
    By specifying an 94% value based on vehicle normal load, the agency 
is addressing the vehicle industry's concerns that a significant number 
of vehicles would otherwise need to be redesigned to accommodate larger 
tire sizes, while aiming to reflect more accurately actual vehicle 
loading conditions of vehicles by requiring that each vehicle 
manufacturer select the appropriate reserve load for that vehicle. The 
agency has recently conducted a FMVSS No. 110 vehicle normal load 
evaluation and has concluded that almost all light vehicles could meet 
a revised criteria for load reserve based on 94% of placard pressure 
with only a minor increase, e.g., 1 or 2 psi, in this listed inflation 
pressure to accommodate the new requirement. Because 1 or 2 psi does 
not have a meaningful effect on the ride, comfort and, consequently, 
the marketability of a vehicle, this provision should impose little or 
no cost on the industry.
    For the final rule, the agency has also decided to retain the de-
rating factor of 1.10 for P-metric tires used on non-passenger car 
vehicles. For non-passenger car vehicles equipped with P-metric tires, 
the vehicle normal load shall be not greater than the derated value of 
94% of the tire load rating at the vehicle's placard pressure. This de-
rating provides a greater load reserve when these tires are installed 
on vehicles other than passenger cars. For the first time, this final 
rule requires light trucks to have a specified tire reserve, the same 
as for passenger cars, under normal loading conditions.
    The agency has decided to retain the de-rating factor for P-metric 
tires used on MPVs, trucks, and buses in part in response to widespread 
support from commenters. Additionally, the agency continues to believe 
that the premise behind the 10 percent de-rating of P-metric tires 
remains valid today. This premise is that the reduction in the load 
rating is intended to provide a safety margin for the generally harsher 
treatment, such as heavier loading and possible off-road use, that 
passenger car tires receive when installed on a MPV, truck, bus or 
trailer, instead of on a passenger car.
    The final rule adopts an expanded Table 1 text for occupant loading 
and distribution for designated seating capacities up to 22 occupants.

E. Applicability and Effective Dates

    The requirements adopted by this rule apply, except where specified 
below, to new pneumatic radial tires for use on motor vehicles with a 
GVWR of 10,000 pounds or less, manufactured after 1975, except for 
motorcycles and LSVs, and for new motor vehicles with a GVWR or 10,000 
pounds or less.
    Given the increasing consumer preference for using light trucks for 
passenger purposes, the agency is requiring that the tire performance 
requirements for passenger car tires also apply to LT tires (load C, D, 
and E) used on light trucks. No commenters disagreed with the agency's 
statement in the NPRM that LT tires are increasingly utilized in the 
same manner as P-metric tires on light vehicles or with the agency's 
statement that the use of these tires on passenger vehicles will 
continue to increase in the near future.
    Several commenters suggested that certain tires produced for 
specialty uses or antique vehicles be excluded from adhering to the new 
performance requirements. RMA suggested that the agency exclude 
temporary spares, various trailer tires, snow and deep lug tires, and 
bias tires from the applicability of FMVSS No. 139. The TRA asked that 
special-use tires such as ST, FI, and 8-12 rim diameter and below tires 
(typically used on smaller, towed trailers) be excluded from FMVSS No. 
139 and continue to be covered by FMVSS No. 109. Specialty Tires and CU 
argued that bias ply tires should continue to be regulated under FMVSS 
No. 109, not FMVSS No. 139 because the agency did not conduct any 
testing of these tires under the proposed parameters, they may not pass 
the new tests, and they are not part of the group of tires targeted by 
the TREAD Act to be upgraded. Hoosier Tires and Denman, makers of small 
lot specialty tire of both bias and radial design (15,000) per year 
suggest that limited production tires continue to be covered by FMVSS 
No. 109 and not become subject to the requirements of FMVSS No. 139.
    The agency emphasizes that it is not changing the ``on-road'' 
versus ``off-road'' definition in this rulemaking. It also notes that 
specialty tire manufacturers are currently required to subject their 
``on-road'' light vehicle tires to the performance tests in FMVSS No. 
109 and 119.
    The agency is aware of several manufacturers, such as Denman and 
Hoosier, which produce bias tires for racing, off-road, and antique/
classic car applications. These tires represent a very small (less than 
1 percent) segment of the market for light vehicle tires and are not 
offered by any vehicle manufacturer on any new light vehicle sold in 
the U.S. Further, the number of miles that they are driven per year on 
highways is insignificant. Therefore, the agency has decided to exclude 
bias, ST, FI, and 8-12 rim diameter tires from FMVSS No. 139. These 
tires, however, will continue to be covered by FMVSS No. 109 and 119. 
FMVSS No. 109 will not be deleted.
    The agency, however, has decided that FMVSS No. 139 will be 
applicable to all radial P-metric and LT tires load ranges C, D, and E, 
produced for light vehicles manufactured after 1975, even specialty 
radial tires made in small lots or in limited production. Radial snow 
tires and other deep tread tires are also required to comply with FMVSS 
No. 139. Limited production, snow, and deep tread radial tires are 
operated on the same roads as mass produced P-metric tires and the 
agency believes that they should be capable of the same level of 
performance under comparable conditions. Further, the number of miles 
that they are driven per year on highways is believed to be greater 
than the number of on-road miles for the bias tires discussed in the 
immediately preceding paragraph. Retread tires will continue to be 
covered by FMVSS No. 117 and non-pneumatic spare tires will continue to 
be covered by FMVSS No. 129.
    Most tire manufacturer and vehicle manufacturer commenters 
requested a longer lead-time than the two alternative implementation 
schedules proposed in the NPRM. The agency has decided to establish an 
effective date for implementation of both tire and vehicle requirements 
of 4 years after the date of publication of the final rule. The 
proposed implementation schedules in the NPRM reflected NHTSA's desire 
for expedited action on this issue. In view of the comments received by 
the tire and vehicle industry and the significance of the tire and 
vehicle design and production changes that may occur as a result of 
these new requirements in area not substantively

[[Page 38142]]

revised in 30 years, NHTSA finds that an effective date of June 1, 
2007, is reasonable and in the public interest.
    RMA suggested a 5-year lead-time. The Alliance suggested a 
September 1, 2007, effective date. Both urged that tire and vehicle 
modifications would require this time period to assure compliance and 
successful matching of the high number of tires and vehicles affected 
by this rule. Consumer groups, however, suggested a faster 
implementation schedule for both P-metric and LT tires, with CU urging 
that implementation begin in September 1, 2002.
    For both tires and vehicles, the agency has decided to extend the 
effective date to June 1, 2007. This extension of the effective date 
reflects the reality that tire manufacturers will need to modify tire 
design and production to accommodate changes in materials, compounds 
and construction as well as respond to any revised aspects of vehicle 
design initiated by this final rule. It also recognizes that the 
vehicle manufacturers will, in response to the altered materials/
compounds or constructions of tires, need to effect design changes to 
revalidate/redesign vehicle characteristics such as braking, handling, 
fuel consumption, and that some of this work can only be accomplished 
subsequent to the design and production changes initiated by the tire 
manufacturers. NHTSA believes that 4 years is in the public interest 
because it is need to provide sufficient lead-time for tire 
manufacturers and vehicle manufacturers to make necessary design and 
production changes for their tires and vehicles to comply with the new 
requirements.
    Finally, to encourage the earliest possible application of the new 
tire performance and vehicle requirements, NHTSA is allowing 
manufacturers to implement the new requirements before the required 
dates.

F. Other Issues

1. Modification to FMVSS Nos. 110 and 120
    The purpose of FMVSS No. 110 and 120 is to provide safe operational 
performance by ensuring that vehicles to which they apply are equipped 
with tires of adequate load rating and rims of appropriate size and 
type designation. Until recently, FMVSS No. 110 applied to passenger 
cars and FMVSS No. 120 applied to vehicles other than passenger cars 
including motorcycles and trailers.
    The Tire Information final rule specified that the applicability of 
FMVSS Nos. 110 and 120 would correspond with the applicability of the 
new light vehicle tire standard, FMVSS No. 139. FMVSS No. 110, in its 
entirety, now applies to light vehicles with a GVWR of 10,000 pounds or 
less, except motorcycles and low-speed vehicles. FMVSS No. 120 will 
only apply to vehicles over 10,000 pounds GVWR and motorcycles.
    As discussed above in the Tire Selection Criteria/Load Limits 
section, the load reserve requirement contained in FMVSS No. 110, under 
its new applicability, has now been extended to cover MPVs, vans, 
trailers and pickup trucks for the first time. This load requirement, 
however, has been de-linked from the load specified for the high speed 
test. This means that P-metric and LT tires used on these vehicles are 
required to have a load reserve similar to that for P-metric tire used 
on passenger cars.
    The agency has also decided to extend S4.4.1(b) of FMVSS No. 110 to 
light trucks and vans for the first time. S4.4.1(b) requires that each 
rim retain a deflated tire in the event of a rapid loss of inflation 
pressure from a vehicle speed of 97 km/h until the vehicle is stopped 
with a controlled braking operation. No commenter responded to this 
issue.
2. Modification to FMVSS Nos. 117 and 129
    FMVSS No. 117 specifies performance requirements for retreaded 
pneumatic passenger car tires and FMVSS No. 129 specifies performance 
requirements for new non-pneumatic tires for passenger cars. FMVSS No. 
117 specifies that retreaded tires shall comply with the FMVSS No. 109 
strength and resistance-to-bead unseating tests and FMVSS No. 129 
specifies that its tire strength and high-speed specifications mirror 
those of FMVSS No. 109. The agency proposed that, to maintain 
consistent testing procedures and requirements for all tires for use on 
light vehicles, the strength and resistance to bead-unseating test 
procedures in FMVSS No. 117 would be replaced with the proposed road 
hazard and bead unseating tests in FMVSS No. 139 and, similarly, the 
strength and high speed test procedures and requirements in FMVSS No. 
129 would be revised to mirror those proposed for FMVSS No. 139. To 
retain consistency with the applicability of FMVSS No. 139, the agency 
also proposed to revise the applicability of FMVSS Nos. 117 and 129 to 
include retreaded and non-pneumatic tires, respectively, for use on 
motor vehicles with a GVWR of 10,000 pounds or less, manufactured after 
1975, except for motorcycles.
    Several commenters objected to the agency adopting the proposed 
test road hazard and bead unseating tests for retreaded tires. For 
instance, ITRA and TANA argued that the proposed tests are redundant 
since the retread process does not affect the structure of the original 
casing of the tire. No comments were received on the proposed revision 
to FMVSS No. 129 or the revised applicability for both standards.
    The agency had decided not to adopt the revised applicability 
provisions of FMVSS No. 117 and 129 as proposed in the NPRM. Given that 
the construction of retreaded tires and non-pneumatic tire/wheel 
assemblies would be different for other light vehicles than for 
passenger cars and the agency has not conducted any research or testing 
in this area, it needs to better understand the performance and safety 
implications of this proposal before its institution.
    Because the agency is retaining the strength and road hazard 
requirements of FMVSS No. 109 for FMVSS No. 139, it has also decided to 
retain these requirements for FMVSS Nos. 117 and 129. This decision 
will impose no new requirements on tire retreaders. Retreaders will 
continue to be required to follow the same procedures and fulfill the 
same requirements that have been required under FMVSS No. 117. 
Similarly, non-pneumatic tires will be subject to the same performance 
requirements for strength testing that have existed up to the present.
    Additionally, FMVSS No. 129 will incorporate by reference the high 
speed and endurance tests in FMVSS No. 109 rather than adopting those 
in FMVSS No. 139. The agency has elected to retain these tests because, 
due to the limited time frame for this rulemaking, it was unable to 
evaluate the effect of the new, more stringent high speed and endurance 
parameters on FMVSS No. 129 tires to the new high speed and endurance 
tests.
    The intent of the agency in this rulemaking has been to focus on 
mainstream passenger vehicle tires, OE and replacement pneumatic radial 
tires, which represent over 95% of the market. The agency intends to 
reexamine the applicability of FMVSS Nos. 117 and 129, as well as 
testing FMVSS Nos. 117 and 129 tires to the new high speed and 
endurance parameters at a future time. After the agency completes its 
research on aging, bead unseating, and road hazard impact, and makes 
its rulemaking decisions based on that research, NHTSA will then 
consider whether to incorporate any new or revised procedure into FMVSS 
Nos. 117 and 129.

[[Page 38143]]

3. Shearography Analysis
    The agency solicited comments on the use of shearography analysis 
for post-test tire inspection purposes. Commenters, except for the 
consumer groups, generally believe that shearography is a beneficial 
laboratory research tool but is not sufficiently developed to use to 
determine pass/fail criteria for a regulation. According to the 
Alliance, correlations between physical indications of possible tire 
structural degradation observed by means of shearography and subsequent 
tire failures have not been validated to the level of certainty that is 
requisite to establish pass/fail criteria in a FMVSS. RMA stated that 
the technology requires a very highly skilled operator/interpreter and 
that even the slightest degree of incipient belt separation in the tire 
at the conclusion of the tests does not mean imminent tire failure 
under on-the-road usage that would require interpretation which may 
vary and may be highly subjective. PC and CU argue that visual 
inspection is inadequate and that shearography could be used to 
supplement visual inspection to ensure that interior tire damage does 
not go undetected.
    Based on the comments and the agency's understanding of 
shearography analysis, NHTSA agrees with the tire and vehicle 
manufacturers that shearography analysis is not sufficiently developed 
enough at present to be used to distinguish pass/fail criteria in our 
performance tests. Therefore, the agency is not adopting shearography 
analysis for any post-test inspection, but will continue utilizing it 
in conjunction with its tire research and may pursue it as an 
inspection method for tires in its regulatory regime at some future 
time.
4. Revision of UTQG
    The agency solicited comments on whether, based on the proposed 
high speed test speed steps, there is a need to revise the grades and 
testing speeds specified in the UTQG Temperature Grading Requirement.
    RMA supports no revision to the UTQGS scope and testing conditions 
at present. ETRTO suggested that the UTQG rating is useless since tires 
are labeled with the Speed Symbol, which indicates a tire's capability 
to resist high temperatures. Public Citizen urged the agency to retain 
the UTQG ratings instead of replacing it with the speed rating system 
because the speed rating system does not address a tire's treadwear and 
traction capabilities.
    The agency appreciates that range and diversity of comments 
received in response to the request for comments on this issue in the 
NPRM. The agency will take these comments and the issues contained 
therein into consideration if and when we address the effectiveness of 
the temperature grading, specifically, and/or the entire UTQGS, more 
generally, in a future rulemaking.
5. Analysis of Responses to Agency Questions in NPRM
    The agency presented the following italicized questions for public 
comment in the NPRM.
    Are there any voluntary consensus standards or requirements of 
other countries or regions which address the issues raised in this 
NPRM?
    The Alliance, ETRTO, RMA, GRRF, and Center for Regulatory 
Effectiveness (CRE) advocate the adoption of an ECE R30 type test, such 
as GTS-2000 or proposed GTR. The RMA and CRE have asked that NHTSA 
reconsider its decision to propose a government-unique standard in 
light of its obligations under the Technology Transfer Act and OMB 
Circular A-119. More specifically, the CRE asked NHTSA to consider the 
following voluntary consensus standards--ISO 10191, SAE J1561, and SAE 
J1633/ISO 10454.
    In the NPRM, NHTSA stated the following:

G. National Technology Transfer and Advancement Act

    Under the National Technology and Transfer and Advancement Act 
of 1995 (NTTAA) (Pub. L. 104-113), ``all Federal agencies and 
departments shall use technical standards that are developed or 
adopted by voluntary consensus standards bodies, using such 
technical standards as a means to carry out policy objectives or 
activities determined by the agencies and departments.'' Certain 
technical standards developed by the Society of Automotive Engineers 
(SAE) and other bodies have been incorporated into this proposal but 
the overall need for safety precludes, in NHTSA's view, the adoption 
of such voluntary standards as a substitute for this proposal for 
several reasons. First, no one voluntary standard contains all six 
of the proposed test procedures and requirements in this proposal. 
Second, voluntary consensus standards do not exist for several of 
the test procedures and requirements in the agency's proposal. 
Third, while the testing conditions and procedures of some voluntary 
standard have been incorporated by reference into the agency's 
proposal, the specified performance requirements of the voluntary 
standards are either different than those specified in our proposal 
or are non-existent.

    Under the NTTAA and OMB Circular A-119, NHTSA is required to 
consider the adoption of standards developed by a voluntary consensus 
body. To be considered such a voluntary consensus standards body under 
the NTTAA, a body must be a private sector one. The agency considered 
two standards developed by such a body, SAE: The SAE J1981 Road Hazard 
Test and the SAE J1561 high speed test. The SAE J1561 high speed test 
is based on a speed rating methodology similar to GTS-2000, proposed/
model GTR, and ECE R30. Similarly, SAE J1633/ISO 10454 is the LT tire 
version of the SAE J1561 test that uses the same test methodology as 
the SAE J1561 tests to establish test speeds.\37\ The ISO 10191 test is 
merely a combination of current FMVSS No. 109 and ECE R30. More 
specifically, it includes the endurance test, bead unseating, and 
strength tests from FMVSS No. 109 and the high speed test from ECE R30. 
Therefore, it is no more stringent than the current FMVSS No. 109 tests 
and the ECE R30 tests, both of which are discussed in section VI.C. of 
this document. The rationale for why we have not adopted the voluntary 
consensus standards suggested by CRE is stated above in section VI.C. 
Although neither the ECE R30 high speed test, nor the proposed/model 
GTR and GTS-2000 high speed tests were developed by voluntary consensus 
standards bodies, we did evaluate them when developing our proposal and 
adopting the final rule. The reasons we did not adopt these high speed 
tests and their methodology are set forth in section VI.C. 
Additionally, we are not adopting the SAE road hazard test for the 
reasons stated above in section VI.C.
---------------------------------------------------------------------------

    \37\ The first two speed steps of SAE J1633/ ISO 10454 utilize 
test speeds that are extremely low, 12 mph and 18 mph, and the final 
speed is the rated speed for 30 minutes. The inflation pressure 
utilized during the test is pressure at maximum load, which is 
typically the maximum inflation pressure of the tire.
---------------------------------------------------------------------------

    Advocates suggests that the optional wet grip test being developed 
by WP.29 should be considered for the standard. The agency notes that 
this test was neither proposed nor discussed in the NPRM. Further, the 
agency has not analyzed crash data to see what, if any, safety benefits 
would accrue from a wet grip requirement.
    The agency seeks comments on whether practicable and repeatable 
``real-world'' testing procedures, conditions, specifications exist and 
whether they could be utilized as part of a minimum performance 
standard?
    No comments were received suggesting ``real-world'' testing 
procedures, conditions, or specifications.
    The agency seeks comments on the appropriateness of specifying the 
vehicle model year 1975 as a limitation

[[Page 38144]]

on the applicability of the proposed standard?
    One commenter, GRRF, supported 1975 as cut-off date for the new 
tire standard and suggested the retention of FMVSS No. 109 for tires 
for earlier vehicles. The applicability for FMVSS Nos. 109 and 139 
established by this final rule mirrors this suggestion, since both seem 
reasonable.
    The agency seeks comment on whether the four required inflation 
pressures in FMVSS No. 109 should be retained in English units in the 
proposed standard and/or only be specified in metric units?
    Currently, FMVSS No. 109 specifies that a tire's maximum 
permissible inflation pressure shall be 32, 36, 40, or 60 psi, or 240, 
280, 300, 340, or 350 kPa. The 32, 36, 40, and 60 psi figures were 
originally based on bias ply tire specifications, and are not the 
English equivalents of the metric listing of maximum permissible 
inflation pressure values, 240, 280, 300, 340, and 350 kPa, established 
for and used on radial tires.
    RMA supports retaining the 32, 36, 40, and 60 psi specifications in 
FMVSS No. 109 but not including them in FMVSS No. 139. The Alliance, on 
the other hand, suggested including the figures in the new standard but 
formatting them so that they would be specified in metric units 
followed by the English equivalent in parentheses.
    Based on the agency's decision to retain the requirements for bias 
ply tires under FMVSS No. 109, FMVSS No. 139 will contain a listing of 
only 240, 280, 300, 340, and 350 kPa as maximum permissible inflation 
pressures. As required in S5.5.4(a) of FMVSS No. 139, tires are 
required to be labeled with the maximum inflation pressure value in 
metric followed by the equivalent psi in parenthesis.
6. Other
    RMA suggests that NHTSA adopt the tolerances listed in ASTM-F-551 
Standard Practice for Using a 67.23-in. (1.707-m) Diameter Laboratory 
Test Wheel in Tire Testing. NHTSA will consider this suggestion in its 
tire testing.
    RMA suggests that NHTSA should adopt a specific tire pressure 
reserve limit and comments that they will be petitioning the agency for 
such a ruling in the near future. Since the time that RMA submitted 
this comment, it has petitioned the agency for a rulemaking to adopt a 
tire pressure reserve limit. The agency is currently evaluating the 
petition and the practicability of initiating such a rulemaking.

VII. Benefits

    For a fuller discussion of the benefits, see the agency's Final 
Regulatory Evaluation (FRE). A copy of the FRE has been placed in the 
docket.
    The final rule will increase the strength, endurance, and heat 
resistance of tires by raising the stringency of the existing standard 
on endurance and high speed tests and by requiring a low pressure 
performance test. The agency anticipates that tires that meet these 
tests will experience fewer tire failures. Based on the tires tested by 
the agency and tire tests provided by RMA, the agency estimates that 2 
to 3 percent will fail the new high speed test, 2 to 3.5 percent will 
fail the new endurance test, and 0-6 percent will fail the low pressure 
test. In total, 5 to 11 percent of tires currently will not pass the 
adopted tests.
    As discussed in the FRE, we estimate a target population, 414 
fatalities and 10,275 non-fatal injuries annually, for tire problems 
(flat tire/blowout). However, the agency does not know how many of 
these crashes are influenced by tire design or under-inflation. The 
agency assumes that under-inflation is involved in 20 percent of flat 
tire/blowout cases that resulted in a crash. The agency assumes that 
the influence that under-inflation has on the chances of a blowout is 
affected by both tire pressure and the properties of the tire. 
Therefore, the agency assumes that proper inflation will address 50 
percent of these cases and improved tires will address the other 50 
percent of these cases. Consequently, 41 fatalities (414 x .2 x .5) and 
1,028 injuries are addressed by the TPMS final rule. This leaves the 
target population for this proposal at 373 fatalities and 9,247 
injuries.
    We assume a 5-10 percent reduction in flat tire/blowouts for making 
improvements to those tires not passing the tests. Thus, the total 
potential improvement would be 19 to 37 lives saved (373 * .05 to .10) 
and 462 to 925 (9,247 * .05 to .10) injuries avoided if only those 
tires in the target population were the ones that needed improvements. 
For those tires currently not passing the adopted tests (5 to 11 
percent), the benefits will be 1 to 4 lives saved (19 * 0.05 to 37 * 
0.11) and 23 to 102 injuries reduced (462 * .05 to 925 * .11) when all 
tires on the road meet the adopted requirements.

VIII. Costs

    The following is a summary of the costs associated with the 
performance requirements contained light vehicle tire standard. It is 
based on the increased stringency of the high speed and endurance tests 
and the addition of a low inflation pressure performance test.

A. Original Equipment Tire and Vehicle Costs

    The adopted tests will result in tires being designed that are less 
susceptible to heat build-up. For the proposed requirements, the agency 
believed that many, if not all, of the P-metric tires rated C for 
Temperature resistance and some LT tires will not be able to pass the 
new tests. In the NPRM, the agency attempted to determine the 
difference in price between two tires that appear be similar in all 
characteristics except that one tire is rated B for temperature 
resistance while the other is rated C. The agency estimated that the 
difference in price between a B or C-rated tire that might fail the 
proposed standard and a B-rated tire that will pass the proposed 
standard is $3 per tire (in 2001 dollars) and that the cost 
differential for a vehicle model equipped with C-rated tires, depending 
on whether it had a full-size spare, was $12 to $15 per vehicle. No 
comments were received on these estimates.
    The final rule contains different, less burdensome test parameters 
than those in the NPRM. The estimated failure rate for currently 
produced tires was 33% for the parameters in the NPRM. For the 
parameters adopted in this final rule, the rate is 5% to 11%. 
Additionally, the average tires that failed the tests in the final rule 
did so at a later point in the tests or failed during inspection after 
the tests were completed. This indicates that, in addition to the 
decreased failure rate, the degree of failure is less for tires that 
fail when tested to the parameters in the final rule as compared to 
those that failed when tested to the parameters in the NPRM. Therefore, 
the costs per failing tire should be less than our previous estimate of 
$3 per tire. We believe the incremental costs, on an average tire 
basis, are in the range of $0.25 to $1.00 per failing tire. Since we 
estimate that 5 to 11 percent of the current tires would fail the final 
rule requirements, the average cost is estimated to range from $0.01 
per tire ($0.25 x .05) to $0.11 per tire ($1 x .11).
    Since only a portion of new vehicles are equipped with tires that 
do not meet the final rule, the agency estimates the average price 
increase for new vehicles by weighting the vehicles that will receive 
improvements at $0.25 to $1 per tire with the vehicles whose tires and 
prices will not change.
    The agency estimates that approximately 85 percent of light 
vehicles (passenger cars, pickups, SUVs,

[[Page 38145]]

and vans) are sold with a temporary spare tire.\38\ Thus, the average 
cost per vehicle for the new vehicle fleet will be $1.04 (4 x $0.25 x 
0.85 + 5 x $0.25 x .15) to $4.15 (4 x $1.00 x 0.85 + 5 x $1.00 x 0.15). 
On an average vehicle basis, based on the current tires that fail the 
test, the average cost is $0.05 per vehicle (1.04 x .05) to $0.46 per 
vehicle ($4.25 x .11).
---------------------------------------------------------------------------

    \38\ Temporary spare tires are not covered by the final rule.
---------------------------------------------------------------------------

    In the NPRM, the agency sought comment on whether the proposal, if 
it resulted in the lowest priced new tires being taken off the market 
(tires rated C for Temperature resistance appear to be lowest priced 
tires), would affect the market of new vehicle and aftermarket tire 
sales by either (a) increasing the popularity of alternatives to 
conventional new tires, such as temporary spare tires for new vehicles, 
and retreads and used tires in the aftermarket, or (b) encouraging tire 
manufacturers to making tradeoffs in tire construction, e.g., in 
traction, treadwear and rolling resistance, to improve the heat 
resistance of his tires. No commenters provided information on (a), but 
several tire manufacturers responded to (b) by indicating that tire 
manufacturers will need to alter design and/or construction attributes 
of their tires to comply with the proposed tests.\39\ Based on the 
estimated failure rates for the testing parameters established in the 
final rule, the agency anticipates that the manufacturers will not need 
to invoke any strategies (e.g., reducing amount of tread or tread depth 
to lower heat build-up) that may have deleterious implications for 
treadwear or wet traction ability of the tire.
---------------------------------------------------------------------------

    \39\ To affect such a tradeoff, a tire manufacturer could alter 
the design construction of the core of the tire or could reduce the 
amount of tread on the tire. When one lessens the amount of tread on 
a tire, one lowers the heat build-up that occurs in the tire.
---------------------------------------------------------------------------

    Finally, the agency anticipates that its revision to the load 
reserve provisions of FMVSS No. 110 will impose no costs on either tire 
or vehicle manufacturers.

B. Total Annual Costs

    The agency anticipates that between 5 percent and 11 percent of the 
combined sales of P-metric and LT tires will not pass the adopted 
tests. There are an estimated 287 million light vehicle tires sold of 
which 5 to 11 percent might increase in price by $0.25 to $1 per tire. 
The overall annual cost for new original equipment and replacement 
tires is estimated at $3.6 million (287 million tires x .05 x $0.25) to 
$31.6 million (287 million tires x .11 x $1) and the net costs per 
equivalent life saved will be about $5 million based on the mid-point 
of cost and discounted benefits estimates.
    We do not anticipate an increase in costs for the road hazard 
impact and bead unseating tests because our testing indicates that all 
current production tires pass these tests.

C. Testing Costs

    The final rule is estimated to increase test costs by $76.40 per 
tire model tested. With about 5,540 tire models tested annually, the 
incremental test costs are estimated to be $423,000 per year.
    The final rule will not require any new or different testing 
equipment than that currently used by tire manufacturers.

IX. Effective Date

    NHTSA is requiring tire and vehicle manufacturers to begin 
compliance on June 1, 2007. The agency believes that it has shown good 
cause for a four-year leadtime in section VI.E. of this document.

X. Rulemaking Analyses and Notices

A. Executive Order 12866 and DOT Regulatory Policies and Procedures

    Executive Order 12866, ``Regulatory Planning and Review'' (58 FR 
51735, October 4, 1993), provides for making determinations whether a 
regulatory action is ``significant'' and therefore subject to Office of 
Management and Budget (OMB) review and to the requirements of the 
Executive Order. The Order defines a ``significant regulatory action'' 
as one that is likely to result in a rule that may:
    (1) Have an annual effect on the economy of $100 million or more or 
adversely affect in a material way the economy, a sector of the 
economy, productivity, competition, jobs, the environment, public 
health or safety, or State, local, or Tribal governments or 
communities;
    (2) Create a serious inconsistency or otherwise interfere with an 
action taken or planned by another agency;
    (3) Materially alter the budgetary impact of entitlements, grants, 
user fees, or loan programs or the rights and obligations of recipients 
thereof; or
    (4) Raise novel legal or policy issues arising out of legal 
mandates, the President's priorities, or the principles set forth in 
the Executive Order.
    NHTSA has considered the impact of this rulemaking action under 
Executive Order 12866 and the Department of Transportation's regulatory 
policies and procedures. This rulemaking document was reviewed by the 
Office of Management and Budget under Executive Order 12866, 
``Regulatory Planning and Review.'' The rulemaking action was 
determined to be economically significant, as proposed. However, it is 
no longer economically significant. The rule is likely to result in an 
expenditure by automobile manufacturers and/or tire manufacturers of 
between $3.6 and $31.6 million in annual costs. The benefits are 
estimated to be 1-4 lives saved and 23-102 injuries reduced. NHTSA is 
placing in the public docket a FRE describing the costs and benefits of 
this rulemaking action. The costs and benefits are summarized earlier 
in this document.

B. Regulatory Flexibility Act

    The Regulatory Flexibility Act of 1980 (5 U.S.C. 601 et seq.) 
requires agencies to evaluate the potential effects of their proposed 
and final rules on small business, small organizations and small 
governmental jurisdictions. I hereby certify that the final rule will 
not have a significant impact on a substantial number of small 
entities.
    The final rule will affect motor vehicle manufacturers and tire 
manufacturers and/or suppliers. The agency, based on comments received 
to the NPRM, believes that three specialty tire manufacturers may be 
small businesses. However, we anticipate that the increase in price per 
tire for these manufacturers as a result of this final rule will have 
no real impact as they will pass on these prices to consumers.
    There are thousands of small tire retail outlets that will in some 
small way be impacted by this rule. As mentioned earlier, increasing 
the price of the less expensive tire could potentially allow used tires 
and retread tires to make more inroads into the tire retail business. 
This may impact small businesses. At this time, it is unknown whether 
the impacts will be insignificant and just an increase in price to 
consumers, or whether there will be some competitive effects brought 
about by the price increase.
    NHTSA estimates that there are only about four small passenger car 
and light truck vehicle manufacturers in the United States. These 
manufacturers serve a niche market. The agency believes that small 
manufacturers manufacture less than 0.1 percent of total U.S. passenger 
car and light truck production per year.
    NHTSA notes that final stage manufacturers and alterers could also 
be affected by this rule. Many final stage manufacturers and alterers 
install supplier manufactured tires in vehicles they produce. The final 
rule will not have any significant effect on final stage manufacturers 
or alterers, however,

[[Page 38146]]

since the tires they purchase should be tested and certified by the 
tire manufacturer and the potential cost impacts associated with this 
action should only slightly affect the price of new motor vehicles and 
replacement tires.
    Additional information concerning the potential impacts of the 
requirements on small entities is presented in the FRE.

C. National Environmental Policy Act

    NHTSA has analyzed this final rule for the purposes of the National 
Environmental Policy Act. The agency has determined that implementation 
of this action would not have any significant impact on the quality of 
the human environment.

D. Executive Order 13132 (Federalism)

    The agency has analyzed this rulemaking in accordance with the 
principles and criteria contained in Executive Order 13132 and has 
determined that it does not have sufficient federal implications to 
warrant consultation with State and local officials or the preparation 
of a federalism summary impact statement. The final rule will not have 
any substantial impact on the States, or on the current Federal-State 
relationship, or on the current distribution of power and 
responsibilities among the various local officials.

E. Unfunded Mandates Act

    The Unfunded Mandates Reform Act of 1995 requires agencies to 
prepare a written assessment of the costs, benefits and other effects 
of proposed or final rules that include a Federal mandate likely to 
result in the expenditure by State, local or Tribal governments, in the 
aggregate, or by the private sector, of more than $100 million annually 
(adjusted annually for inflation with base year of 1995). Adjusting 
this amount by the implicit gross domestic product price deflator for 
the year 2000 results in $109 million (106.99/98.11 = 1.09). The 
assessment may be included in conjunction with other assessments, as it 
is here.
    This rule is not estimated to result in expenditures by State, 
local or tribal governments of more than $109 million annually. 
However, it is likely to result in the expenditure by automobile 
manufacturers and/or their tire manufacturers of more than $109 million 
annually. The average costs estimate in this analysis is $3 per tire. 
Estimating that 32.8 percent of 287 million light vehicle tires sold 
annually (including new vehicle tire sales and aftermarket tires sales 
but excluding temporary spare tires) results in $3.6 to $31.6 million 
in annual costs. These effects have been discussed in the FRE.

F. Civil Justice Reform

    This final rule will not have any retroactive effect. Under 49 
U.S.C. 21403, whenever a Federal motor vehicle safety standard is in 
effect, a State may not adopt or maintain a safety standard applicable 
to the same aspect of performance which is not identical to the Federal 
standard, except to the extent that the State requirement imposes a 
higher level of performance and applies only to vehicles procured for 
the State's use. 49 U.S.C. 21461 sets forth a procedure for judicial 
review of final rules establishing, amending or revoking Federal motor 
vehicle safety standards. That section does not require submission of a 
petition for reconsideration or other administrative proceedings before 
parties may file suit in court.

G. National Technology Transfer and Advancement Act

    Under the National Technology and Transfer and Advancement Act of 
1995 (NTTAA) (Pub. L. 104-113), ``all Federal agencies and departments 
shall use technical standards that are developed or adopted by 
voluntary consensus standards bodies, using such technical standards as 
a means to carry out policy objectives or activities determined by the 
agencies and departments.'' Certain technical standards developed by 
the Society of Automotive Engineers (SAE) and other bodies have been 
considered in the formulation of these requirements, but the overall 
need for safety improvements precludes, in NHTSA's view, the adoption 
of such voluntary standards as a substitute for this rule. Voluntary 
consensus standards do not exist for several of the test procedures and 
requirements in the agency's rule. The voluntary consensus standards 
suggested by some commenters, such as the CRE, only address the high 
speed and road hazard impact aspects of tire performance. While these 
testing conditions and procedures in pertinent voluntary standards were 
considered for the agency's final rule, the specified performance 
requirements of the voluntary standards are either different than those 
specified in our final rule or are non-existent. Consideration and 
analysis of these standards are discussed in greater detail in section 
VI.C. of this document. Further, a more in-depth discussion of the 
agency's consideration of voluntary consensus standards or other 
foreign standards is contained in section VI.F.5. of this document.

H. Paperwork Reduction Act

    This final rule contains the following ``collections of 
information,'' as that term is defined in 5 CFR part 1320 Controlling 
Paperwork Burdens on the Public:
    Rim Labeling Requirements--The Department of Transportation is 
submitting the following information collection request to OMB for 
review and clearance under the Paperwork Reduction Act of 1995 (Pub. L. 
104-13, 44 U.S.C. chapter 35).
    Agency: National Highway Traffic Safety Administration (NHTSA).
    Title: Tires and Rims Labeling, and Vehicle Placard Requirements.
    Type of Request: Modification of an existing collection, for rim 
markings.
    OMB Clearance Number: 2127-0503.
    Affected Public: The rim-labeling respondents are manufacturers of 
rims.
    Estimate of the Total Annual Reporting and Recordkeeping Burden 
Resulting from the Collection of Information: No change from current 
OMB clearance obtained by NHTSA in the year 2000, and has a current 
expiration date of December 31, 2003.
    Estimated Costs: No change from current OMB clearance obtained by 
NHTSA in the year 2000, and has a current expiration date of December 
31, 2003.
    Summary of the Collection of Information: Each rim manufacturer 
must label their rim with the applicable safety information. These 
labeling requirements ensure that tires are mounted on the appropriate 
rims; and that the rims and tires are mounted on the vehicles for which 
they are intended. This requirement received its latest OMB clearance 
in the year 2000, and has a current expiration date of December 31, 
2003.
    The Transportation Recall Enhancement, Accountability, and 
Documentation (TREAD) Act of 2000 mandates a rulemaking proceeding to 
revise and update the safety performance requirements for tires. In 
response, NHTSA proposed a new Federal Motor Vehicle Safety Standard 
requiring all new tires for use on vehicles with a gross vehicle weight 
rating of 10,000 pounds or less to meet new and more stringent 
performance requirements. The new Federal Motor Vehicle Safety Standard 
(FMVSS) No. 139 is titled ``New pneumatic radial tires for light 
vehicles.'' Most SUVs, vans, trailers, and pickup trucks will be 
required to comply with the same tire selection and rim requirements as 
passenger cars. FMVSS No. 120

[[Page 38147]]

continues to apply to vehicles over 10,000 pounds GVWR and motorcycles.
    To accommodate the vehicles equipped with tires that comply with 
FMVSS No. 139, FMVSS No. 110 will be re-titled ``Tire selection and 
rims for motor vehicles with a GVWR of 10,000 pounds or less'' and the 
current non-passenger rim marking requirements of FMVSS No. 120 will 
also be placed in FMVSS No. 110. These rim marking requirements mandate 
that each rim or, at the option of the manufacturer in the case of a 
single-piece wheel, each wheel disc shall be marked with the following: 
(1) The designation that indicates the source of the rim's published 
nominal dimensions, (2) the rim size designation, and in case of 
multipiece rims, the rim type designation, (3) the symbol DOT, 
constituting a certification by the manufacturer of the rim that the 
rim complies with all applicable Federal motor vehicle safety 
standards, and (4) a designation that identifies the manufacturer of 
the rim by name, trademark, or symbol, and (5) the month, day and year 
or the month and year of manufacture, expressed either numerically or 
by use of a symbol, at the option of the manufacturer.
    Any manufacturer that elects to express the date of manufacture by 
means of a symbol shall notify NHTSA in writing of the full names and 
addresses of all manufacturers and brand name owners utilizing that 
symbol and the name and address of the trademark owner of that symbol, 
if any. The notification shall describe in narrative form and in detail 
how the month, day, and year or the month and year are depicted by the 
symbol. Such description shall include an actual size graphic depiction 
of the symbol, showing and/or explaining the interrelationship of the 
component parts of the symbol as they will appear on the rim or single 
piece wheel disc, including dimensional specifications, and where the 
symbol will be located on the rim or single piece wheel disc. The 
notification shall be received by NHTSA not less than 60 calendar days 
before the first use of the symbol. All information provided to NHTSA 
under this paragraph will be placed in the public docket. Each 
manufacturer of wheels shall provide an explanation of its date of 
manufacture symbol to any person upon request. Based on the facts that 
these are existing rim labeling requirements, and that they do not 
affect either the production or quantity of rims produced, NHTSA 
believes that this maintenance effort will not result in any net 
increase in the burden on those parties currently covered by existing 
regulations.

I. Plain Language

    Executive Order 12866 requires each agency to write all rules in 
plain language. Application of the principles of plain language 
includes consideration of the following questions:
    [sbull] Have we organized the material to suit the public's needs?
    [sbull] Are the requirements in the rule clearly stated?
    [sbull] Does the rule contain technical language or jargon that 
isn't clear?
    [sbull] Would a different format (grouping and order of sections, 
use of headings, paragraphing) make the rule easier to understand?
    [sbull] Would more (but shorter) sections be better?
    [sbull] Could we improve clarity by adding tables, lists, or 
diagrams?
    [sbull] What else could we do to make the rule easier to 
understand?

XI. Regulatory Text

List of Subjects in 49 CFR Part 571

    Imports, Motor vehicle safety, Motor vehicles, Rubber and rubber 
products, and Tires.


0
In consideration of the foregoing, we are further amending 49 CFR part 
571 as amended at 67 FR 69623 (November 18, 2002) and at 68 FR 33655 
(June 5, 2003) and also in a final rule published elsewhere in this 
issue as follows:

PART 571--FEDERAL MOTOR VEHICLE SAFETY STANDARDS

0
1. The authority citation for part 571 continues to read as follows:

    Authority: 49 U.S.C. 322, 20111, 30115, 30166 and 30177; 
delegation of authority at 49 CFR 1.50.


0
2. Section 571.109 is amended by revising its heading and by revising 
S2 to read as follows:


Sec.  571.109  Standard No. 109--New Pneumatic Bias Ply and Certain 
Specialty Tires.

* * * * *
    S2. Application. This standard applies to new pneumatic radial 
tires for use on passenger cars manufactured before 1975, new pneumatic 
bias ply tires, and ST, FI, and 8-12 rim diameter and below tires for 
use on passenger cars manufactured after 1948. However, it does not 
apply to any tire that has been so altered so as to render impossible 
its use, or its repair for use, as motor vehicle equipment.
* * * * *

0
3. Section 571.110 is amended by revising S2, S4.1, S4.2.1, S4.2.2, 
S4.4.1(a), and table 1 following S4.4.1(b), by adding S4.2.1.1, 
S4.2.1.2, S4.2.2.1, S4.2.2.2, S4.2.2.3, and S4.4.2 and by adding to S3 
in alphabetical order, definitions for ``Rim diameter,'' ``Rim size 
designation,'' ``Rim type designation,'' ``Rim width,'' and ``Weather 
side,'' to read as follows:


Sec.  571.110  Standard No. 110; Tire selection and rims for motor 
vehicles with a GVWR of 4,536 kilograms (10,000 pounds) or less.

* * * * *
    S2. Application. This standard applies to motor vehicles with a 
gross vehicle weight rating (GVWR or 4,536 kilograms (10,000 pounds) or 
less, except for motorcycles, and to non-pneumatic spare tire 
assemblies for those vehicles.

S3. Definitions

* * * * *
    Rim diameter means nominal diameter of the bead seat.
    Rim size designation means rim diameter and width.
    Rim type designation means the industry of manufacturer's 
designation for a rim by style or code.
    Rim width means nominal distance between rim flanges.
* * * * *
    Weather side means the surface area of the rim not covered by the 
inflated tire.
* * * * *
    S4.1. General. Vehicles shall be equipped with tires that meet the 
requirements of Sec.  571.139, New pneumatic tires for light vehicles, 
except that passenger cars may be equipped with a non-pneumatic spare 
tire assembly that meets the requirements of Sec.  571.129, New non-
pneumatic tires for passenger cars and S6 and S8 of this standard. 
Passenger cars equipped with such an assembly shall meet the 
requirements of S4.3(e), and S5, and S7 of this standard.
* * * * *
    S4.2.1 Tire load limits for passenger cars.
    S4.2.1.1 The vehicle maximum load on the tire shall not be greater 
than the applicable maximum load rating as marked on the sidewall of 
the tire.
    S4.2.1.2 The vehicle normal load on the tire shall not be greater 
than 94 percent of the load rating at the vehicle manufacturer's 
recommended cold inflation pressure for that tire.
    S4.2.2 Tire load limits for multipurpose passenger vehicles, 
trucks, buses, and trailers.
    S4.2.2.1 Except as provided in S4.2.2.2, the sum of the maximum 
load ratings of the tires fitted to an axle shall not be less than the 
GAWR of the axle system as specified on the vehicle's certification 
label required by 49 CFR

[[Page 38148]]

part 567. If the certification label shows more than one GAWR for the 
axle system, the sum shall be not less than the GAWR corresponding to 
the size designation of the tires fitted to the axle.
    S4.2.2.2 When passenger car (P-metric) tires are installed on an 
MPV, truck, bus, or trailer, each tire's load rating is reduced by 
dividing it by 1.10 before determining, under S4.2.2.1, the sum of the 
maximum load ratings of the tires fitted to an axle.
    S4.2.2.3 (a) For vehicles equipped with P-metric tires, the vehicle 
normal load on the tire shall be no greater than the value of 94 
percent of the derated load rating at the vehicle manufacturer's 
recommended cold inflation pressure for that tire.
    (b) For vehicles equipped with LT tires, the vehicle normal load on 
the tire shall be no greater than 94 percent of the load rating at the 
vehicle manufacturer's recommended cold inflation pressure for that 
tire.
* * * * *
    S4.4.1 * * *
    (a) Be constructed to the dimensions of a rim that is listed by the 
manufacturer of the tires as suitable for use with those tires, in 
accordance with S4 of Sec.  571.139.
    (b) * * *

  Table I.--Occupant Loading and Distribution for Vehicle Normal Load for Various Designated Seating Capacities
----------------------------------------------------------------------------------------------------------------
 Designated seating capacity, number of       Vehicle normal load, number of        Occupant distribution in a
                occupants                               occupants                    normally loaded vehicle
----------------------------------------------------------------------------------------------------------------
2 through 4.............................  2....................................  2 in front.
5 through 10............................  3....................................  2 in front, 1 in second seat.
11 through 15...........................  5....................................  2 in front, 1 in second seat, 1
                                                                                  in third seat, 1 in fourth
                                                                                  seat.
16 through 22...........................  7....................................  2 in front, 2 in second seat, 2
                                                                                  in third seat, 1 in fourth
                                                                                  seat.
----------------------------------------------------------------------------------------------------------------

    S4.4.2. Rim markings for vehicles other than passenger cars. Each 
rim or, at the option of the manufacturer in the case of a single-piece 
wheel, each wheel disc shall be marked with the information listed in 
paragraphs (a) through (e) of this S4.4.2, in lettering not less than 3 
millimeters in height, impressed to a depth or, at the option of the 
manufacturer, embossed to a height of not less than 0.125 millimeters. 
The information listed in paragraphs (a) through (c) of this S4.2.2 
shall appear on the outward side. In the case of rims of multi piece 
construction, the information listed in paragraphs (a) through (e) of 
this S4.2.2 shall appear on the rim base and the information listed in 
paragraphs (b) and (d) of this S4.2.2 shall also appear on each other 
part of the rim.
    (a) A designation that indicates the source of the rim's published 
nominal dimensions, as follows:
    (1) ``T'' indicates The Tire and Rim Association.
    (2) ``E'' indicates The European Tyre and Rim Technical 
Organization.
    (3) ``J'' indicates Japan Automobile Tire Manufacturers'' 
Association, Inc.
    (4) ``L'' indicates ABPA (Brazil), a.k.a. Associacao Latino 
Americana De Pneus E Aros.
    (5) ``F'' indicates Tire and Rim Engineering Data Committee of 
South Africa (Tredco).
    (6) ``S'' indicates Scandinavian Tire and Rim Organization (STRO).
    (7) ``A'' indicates The Tyre and Rim Association of Australia.
    (8) ``I'' indicates Indian Tyre Technical Advisory Committee 
(ITTAC).
    (9) ``R'' indicates Argentine Institute of Rationalization of 
Materials, a.k.a. Instituto Argentino de Racionalizacion de Materiales, 
(ARAM).
    (10) ``N'' indicates an independent listing pursuant to S4.1 of 
Sec.  571.139 or S5.1(a) of Sec.  571.119.
    (b) The rim size designation, and in case of multipiece rims, the 
rim type designation. For example: 20 x 5.50, or 20 x 5.5.
    (c) The symbol DOT, constituting a certification by the 
manufacturer of the rim that the rim complies with all applicable 
Federal motor vehicle safety standards.
    (d) A designation that identifies the manufacturer of the rim by 
name, trademark, or symbol.
    (e) The month, day and year or the month and year of manufacture, 
expressed either numerically or by use of a symbol, at the option of 
the manufacturer. For example: ``September 4, 2001'' may be expressed 
numerically as: ``90401'', ``904, 01'' or ``01, 904''; ``September 
2001'' may be expressed as: ``901'', ``9, 01'' or ``01, 9''.
    (1) Any manufacturer that elects to express the date of manufacture 
by means of a symbol shall notify NHTSA in writing of the full names 
and addresses of all manufacturers and brand name owners utilizing that 
symbol and the name and address of the trademark owner of that symbol, 
if any. The notification shall describe in narrative form and in detail 
how the month, day, and year or the month and year are depicted by the 
symbol. Such description shall include an actual size graphic depiction 
of the symbol, showing and/or explaining the interrelationship of the 
component parts of the symbol as they will appear on the rim or single 
piece wheel disc, including dimensional specifications, and where the 
symbol will be located on the rim or single piece wheel disc. The 
notification shall be received by NHTSA not less than 60 calendar days 
before the first use of the symbol. The notification shall be mailed to 
the Office of Vehicle Safety Compliance (NVS-222), National Highway 
Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 
20590. All information provided to NHTSA under this paragraph will be 
placed in the public docket.
    (2) Each manufacturer of wheels shall provide an explanation of its 
date of manufacture symbol to any person upon request.
* * * * *

0
4. Section 571.119 is amended by revising its heading, S1, S2, S3, and 
tables I, II, and III to read as follows:


Sec.  571.119  Standard No. 119; New pneumatic tires for motor vehicles 
with a GVWR of more than 4,536 kilograms (10,000 pounds) and 
motorcycles.

    S1. Scope. This standard establishes performance and marking 
requirements for tires for use on motor vehicles with a GVWR of more 
than 10,000 pounds and motorcycles.
    S2. Purpose. The purpose of this standard is to provide safe 
operational performance levels for tires used on motor vehicles with a 
GVWR of more than 10,000 pounds, trailers, and motorcycles, and to 
place sufficient information on the tires to permit their proper 
selection and use.
    S3. Application. This standard applies to new pneumatic tires 
designed for highway use on motor vehicles with a GVWR of more than 
4,536 kilograms

[[Page 38149]]

(10,000 pounds), trailers, and motorcycles manufactured after 1948.
* * * * *

                Table I.--Strength Test Plunger Diameter
------------------------------------------------------------------------
                                                      Plunger diameter
                                                   ---------------------
                                                       (mm)     (inches)
------------------------------------------------------------------------
Tire type:
  Light truck.....................................      19.05      \3/4\
  Motorcycle......................................  .........   \5/16\''
  Tires for 12-inch or smaller rims, except             19.05      \3/4\
   motorcycle.....................................
Tires other than above types:
 Tubeless:
    17.5-inch or smaller rims.....................      19.05      \3/4\
Larger than 17.5-inch rims:
      Load range F................................      31.75     1\1/4\
      Load range over F...........................      38.10     1\1/2\
 Tube type:
      Load range F................................      31.75     1\1/4\
      Load range over F...........................      38.10     1\1/2\
------------------------------------------------------------------------


                                                        Table II.--Minimum Static Breaking Energy
                                                        [Joules (J)) and Inch-Pounds (inch-lbs)]
--------------------------------------------------------------------------------------------------------------------------------------------------------
                  Load range                       All 12 rim      Light truck        Tube type         Tubeless          Tube type         Tubeless
-----------------------------------------------  diameter code       17.5 rim    -----------------------------------------------------------------------
     Tire characteristic          Motorcycle     or smaller rim    diameter or
-----------------------------------------------       size         smaller rim
                                               -----------------     tubeless                1\1/             Inche-             1\1/             Inche-
  Plunger diameter  (mm and               \5/                   ----------------- 31.75 J    4\''      J       lbs    38.10 J    2\''      J       lbs
           inches)              7.94J    16\''  19.05 J    \3/              \3/
                                                          4\''   19.05 J   4\''
--------------------------------------------------------------------------------------------------------------------------------------------------------
A............................       16     150  .......  ......  .......  ......  .......  .......  .......  .......  .......  .......  .......  .......
B............................       33     300  .......  ......  .......  ......  .......  .......  .......  .......  .......  .......  .......  .......
C............................       45     400  .......  ......  .......  ......  .......  .......  .......  .......  .......  .......  .......  .......
D............................  .......  ......  .......  ......  .......  ......  .......  .......  .......  .......  .......  .......  .......  .......
E............................  .......  ......  .......  ......  .......  ......  .......  .......  .......  .......  .......  .......  .......  .......
F............................  .......  ......      406   3,600      644   5,700    1,785   15,800    1,412   12,500  .......  .......  .......  .......
G............................  .......  ......  .......  ......      711   6,300  .......  .......  .......  .......    2,282   20,200    1,694   15,000
H............................  .......  ......  .......  ......      768   6,800  .......  .......  .......  .......    2,598   23,000    2.090   18,500
J............................  .......  ......  .......  ......  .......  ......  .......  .......  .......  .......    2,824   25,000    2,203   19,500
L............................  .......  ......  .......  ......  .......  ......  .......  .......  .......  .......    3,050   27,000  .......  .......
M............................  .......  ......  .......  ......  .......  ......  .......  .......  .......  .......    3,220   28,500  .......  .......
N............................  .......  ......  .......  ......  .......  ......  .......  .......  .......  .......    3,389   30,000  .......  .......
--------------------------------------------------------------------------------------------------------------------------------------------------------


                                       Table III.--Endurance Test Schedule
----------------------------------------------------------------------------------------------------------------
                                                                     Test load: Percent of maximum
                                                            Test              load rating             Total best
           Description                  Load range         wheel   --------------------------------- revolutions
                                                         speed  (r/    I--7     II-- 16    III-- 24
                                                             m)       hours      hours      hours    (thousands)
----------------------------------------------------------------------------------------------------------------
Speed restricted service:
    88 km/h (55 mph).............  F, G, H, J, L, M, N.        125         66         84        101       352.0
    80 km/h (50 mph).............  F, G, H, J, L.......        100         66         84        101       282.5
    56 km/h (35 mph).............  All.................         75         66         84        101       211.0
Motorcycle.......................  All.................        250    \1\ 100    \2\ 108        117       510.0
All other........................  F...................        200         66         84        101       564.0
                                   G...................        175         66         84        101       493.5
                                   H, J, L, N..........        150         66         84        101       423.5
----------------------------------------------------------------------------------------------------------------
\1\ 4 hr. for tire sizes subject to high speed requirements (S6.3).
\2\ 6 hr. for tire sizes subject to high speed requirements (S6.3).


0
5. Section 571.120 is amended by revising its heading, S3, S5.1.1, 
S5.1.2, and S5.3 to read as follows:


Sec.  571.120  Standard No. 120; Tire selection and rims for motor 
vehicles with a GVWR of more than 4,536 kilograms (10,000 pounds).

* * * * *
    S3. Application. This standard applies to motor vehicles with a 
gross vehicle weight rating (GVWR) of more than 4,536 kilograms (10,000 
pounds and motorcycles, to rims for use on those vehicles, and to non-
pneumatic spare tire assemblies for use on those vehicles.
    S5.1.1 Except as specified in S5.1.3, each vehicle equipped with 
pneumatic tires for highway service shall be equipped with tires that 
meet the requirements of Sec.  571.119, New pneumatic tires for motor 
vehicles with a GVWR of more than 10,000 pounds, and rims that are 
listed by the manufacturer of the tires as suitable for use with those 
tires, in accordance with S5.1 of Sec.  571.119, except that vehicles 
may be equipped with a non-pneumatic spare tire assembly that meets the 
requirements of Sec.  571.129, New non-pneumatic tires for passenger 
cars, and S8 of this standard. Vehicles equipped with such an assembly 
shall meet the requirements of S5.3.3, S7, and S9 of this standard.
    S5.1.2 Except in the case of a vehicle which has a speed attainable 
in 3.2 kilometers of 80 kilometers per hour or less, the sum of the 
maximum load ratings of the tires fitted to an axle shall be not less 
than the gross axle weight rating (GAWR) of the axle system as 
specified on the vehicle's certification label required by 49 CFR part 
567.

[[Page 38150]]

Except in the case of a vehicle which has a speed attainable in 2 miles 
of 50 mph or less, the sum of the maximum load ratings of the tires 
fitted to an axle shall be not less than the gross axle weight rating 
(GAWR) of the axle system as specified on the vehicle's certification 
label required by 49 CFR part 567. If the certification label shows 
more than one GAWR for the axle system, the sum shall be not less than 
the GAWR corresponding to the size designation of the tires fitted to 
the axle. If the size designation of the tires fitted to the axle does 
not appear on the certification label, the sum shall be not less than 
the lowest GAWR appearing on the label. When a tire subject to FMVSS 
No. 109 or 139 is installed on a multipurpose passenger vehicle, truck, 
bus, or trailer, the tire's load rating shall be reduced by dividing by 
1.10 before calculating the sum (i.e., the sum of the load ratings of 
the tires on each axle, when the tires' load carrying capacity at the 
recommended tire cold inflation pressure is reduced by dividing by 
1.10, must be appropriate for the GAWR).
* * * * *
    S5.3 Each vehicle shall show the information specified in S5.3.1 
and S5.3.2 and, in the case of a vehicle equipped with a non-pneumatic 
spare tire, the information specified in S5.3.3, in the English 
language, lettered in block capitals and numerals not less than 2.4 
millimeters high and in the format set forth following this paragraph. 
This information shall appear either--
    (a) After each GAWR listed on the certification label required by 
Sec.  567.4 or Sec.  567.5 of this chapter; or at the option of the 
manufacturer,
    (b) On the tire information label affixed to the vehicle in the 
manner, location, and form described in Sec.  567.4 (b) through (f) of 
this chapter as appropriate of each GVWR-GAWR combination listed on the 
certification label.
* * * * *

0
6. Section 571.139 is amended by revising S3 and S5, adding S5.1 
through S5.4, adding the text of S6, and adding S6.1 through S6.6 to 
read as follows:


Sec.  571.139  Standard No. 139; New pneumatic radial tires for light 
vehicles.

* * * * *
    S3. Definitions
    Bead means the part of the tire that is made of steel wires, 
wrapped or reinforced by ply cords and that is shaped to fit the rim.
    Bead separation means a breakdown of the bond between components in 
the bead.
    Bias ply tire means a pneumatic tire in which the ply cords that 
extend to the beads are laid at alternate angles substantially less 
than 90 degrees to the centerline of the tread.
    Carcass means the tire structure, except tread and sidewall rubber 
which, when inflated, bears the load.
    Chunking means the breaking away of pieces of the tread or 
sidewall.
    Cord means the strands forming the plies in the tire.
    Cord separation means the parting of cords from adjacent rubber 
compounds.
    Cracking means any parting within the tread, sidewall, or inner 
liner of the tire extending to cord material.
    CT means a pneumatic tire with an inverted flange tire and rim 
system in which the rim is designed with rim flanges pointed radially 
inward and the tire is designed to fit on the underside of the rim in a 
manner that encloses the rim flanges inside the air cavity of the tire.
    Extra load tire means a tire designed to operate at higher loads 
and at higher inflation pressures than the corresponding standard tire.
    Groove means the space between two adjacent tread ribs.
    Innerliner means the layer(s) forming the inside surface of a 
tubeless tire that contains the inflating medium within the tire.
    Innerliner separation means the parting of the innerliner from cord 
material in the carcass.
    Light truck (LT) tire means a tire designated by its manufacturer 
as primarily intended for use on lightweight trucks or multipurpose 
passenger vehicles.
    Load rating means the maximum load that a tire is rated to carry 
for a given inflation pressure.
    Maximum load rating means the load rating for a tire at the maximum 
permissible inflation pressure for that tire.
    Maximum permissible inflation pressure means the maximum cold 
inflation pressure to which a tire may be inflated.
    Measuring rim means the rim on which a tire is fitted for physical 
dimension requirements.
    Open splice means any parting at any junction of tread, sidewall, 
or innerliner that extends to cord material.
    Outer diameter means the overall diameter of an inflated new tire.
    Overall width means the linear distance between the exteriors of 
the sidewalls of an inflated tire, including elevations due to 
labeling, decorations, or protective bands or ribs.
    Ply means a layer of rubber-coated parallel cords.
    Ply separation means a parting of rubber compound between adjacent 
plies.
    Pneumatic tire means a mechanical device made of rubber, chemicals, 
fabric and steel or other materials, that, when mounted on an 
automotive wheel, provides the traction and contains the gas or fluid 
that sustains the load.
    Radial ply tire means a pneumatic tire in which the ply cords that 
extend to the beads are laid at substantially 90 degrees to the 
centerline of the tread.
    Reinforced tire means a tire designed to operate at higher loads 
and at higher inflation pressures than the corresponding standard tire.
    Rim means a metal support for a tire or a tire and tube assembly 
upon which the tire beads are seated.
    Section width means the linear distance between the exteriors of 
the sidewalls of an inflated tire, excluding elevations due to 
labeling, decoration, or protective bands.
    Sidewall means that portion of a tire between the tread and bead.
    Sidewall separation means the parting of the rubber compound from 
the cord material in the sidewall.
    Test rim means the rim on which a tire is fitted for testing, and 
may be any rim listed as appropriate for use with that tire.
    Tread means that portion of a tire that comes into contact with the 
road.
    Tread rib means a tread section running circumferentially around a 
tire.
    Tread separation means pulling away of the tread from the tire 
carcass.
    Treadwear indicators (TWI) means the projections within the 
principal grooves designed to give a visual indication of the degrees 
of wear of the tread.
    Wheel-holding fixture means the fixture used to hold the wheel and 
tire assembly securely during testing.
* * * * *

S5. General requirements

    S5.1. Size and construction. Each tire shall fit each rim specified 
for its size designation in accordance with S4.1.
    S5.2. Performance requirements. Each tire shall conform to each of 
the following:
    (a) It shall meet the requirements specified in S6 for its tire 
size designation, type, and maximum permissible inflation pressure.
    (b) It shall meet each of the applicable requirements set forth in 
paragraphs (c) and (d) of this S5.2, when mounted on a model rim 
assembly corresponding to any rim designated by the tire manufacturer 
for use with the tire in accordance with S4.
    (c) Except in the case of a CT tire, its maximum permissible 
inflation pressure

[[Page 38151]]

shall be 240, 280, 300, 340, or 350 kPa. For a CT tire, the maximum 
permissible inflation pressure shall be 290, 330, 350, or 390 kPa.
    (d) Its load rating shall be that specified either in a submission 
made by an individual manufacturer, pursuant to S4, or in one of the 
publications described in S4 for its size designation, type and each 
appropriate inflation pressure. If the maximum load rating for a 
particular tire size is shown in more than one of the publications 
described in S4, each tire of that size designation shall have a 
maximum load rating that is not less than the published maximum load 
rating, or if there are differing maximum load ratings for the same 
tire size designation, not less then the lowest published maximum load 
rating.
    S5.3. Test sample. For the tests specified in S6, use:
    (a) One tire for high speed;
    (b) Another tire for endurance and low inflation pressure 
performance; and
    (c) A third tire for physical dimensions, resistance to bead 
unseating, and strength, in sequence.
    S5.4. Treadwear indicators. Except in the case of tires with a 12-
inch or smaller rim diameter, each tire shall have not less than six 
treadwear indicators spaced approximately equally around the 
circumference of the tire that enable a person inspecting the tire to 
determine visually whether the tire has worn to a tread depth of one 
sixteenth of an inch. Tires with 12-inch or smaller rim diameter shall 
have not less than three such treadwear indicators.
* * * * *
    S6. Test procedures, conditions and performance requirements. Each 
tire shall meet all of the applicable requirements of this section when 
tested according to the conditions and procedures set forth in S5 and 
S6.1 through S6.7.

S6.1. Tire dimensions

    S6.1.1 Test conditions and procedures.
    S6.1.1.1 Tire Preparation.
    S6.1.1.1.1 Mount the tire on the measuring rim specified by the 
tire manufacturer or in one of the publications listed in S4.1.1
    S6.1.1.1.2 In the case of a P-metric tire, inflate it to the 
pressure specified in the following table:

------------------------------------------------------------------------
  Inflation pressure  (kPa)       T-type           CT Tires  (kPa)
----------------------------- temporary use ----------------------------
                                  spare
                                inflation
   Standard      Reinforced      pressure       Standard     Reinforced
                                  (kPa)
------------------------------------------------------------------------
         180            220            420            230           270
------------------------------------------------------------------------

    S6.1.1.1.3 In the case of a LT tire, inflate it to the pressure at 
maximum load as labeled on sidewall.
    S6.1.1.1.4 Condition the assembly at an ambient room temperature of 
38[deg] C for not less than 24 hours.
    S6.1.1.1.5 Readjust the tire pressure to that specified in 
S6.1.1.2.
    S6.1.1.2 Test Procedure.
    S6.1.1.2.1 Measure the section width and overall width by caliper 
at six points approximately equally spaced around the circumference of 
the tire, avoiding measurement of the additional thickness of the 
special protective ribs or bands. The average of the measurements so 
obtained are taken as the section width and overall width, 
respectively.
    S6.1.1.2.2 Determine the outer diameter by measuring the maximum 
circumference of the tire and dividing the figure so obtained by Pi 
(3.14).
    S6.1.2 Performance Requirements. The actual section width and 
overall width for each tire measured in accordance with S6.1.1.2, shall 
not exceed the section width specified in a submission made by an 
individual manufacturer, pursuant to S4.1.1(a) or in one of the 
publications described in S4.1.1(b) for its size designation and type 
by more than:
    (a) (For tires with a maximum permissible inflation pressure of 32, 
36, or 40 psi) 7 percent, or
    (b) (For tires with a maximum permissible inflation pressure of 
240, 280, 290, 300, 330, 350 or 390 kPa, or 60 psi) 7 percent or 10 mm 
(0.4 inches), whichever is larger.

S6.2 High Speed Performance

    S6.2.1 Test conditions and procedures.
    S6.2.1.1 Preparation of tire.
    S6.2.1.1.1 Mount the tire on a test rim and inflate it to the 
pressure specified for the tire in the following table:

------------------------------------------------------------------------
                                                         Test pressure
                   Tire application                          (kPa)
------------------------------------------------------------------------
P-metric:
    Standard load....................................                220
    Extra load.......................................                260
Load Range C.........................................                320
Load Range D.........................................                410
Load Range E.........................................                500
CT:
  Standard load......................................                270
  Extra load.........................................                310
------------------------------------------------------------------------

    S6.2.1.1.2 Condition the assembly at 38[deg] C for not less than 
three hours.
    S6.2.1.1.3 Before or after mounting the assembly on a test axle, 
readjust the tire pressure to that specified in S6.2.1.1.1.
    S6.2.1.2 Test procedure.
    S6.2.1.2.1 Press the assembly against the outer face of a test drum 
with a diameter of 1.70 m +/- 1%.
    S6.2.1.2.2 Apply to the test axle a load equal to 85% of the tire's 
maximum load carrying capacity.
    S6.2.1.2.3 Break-in the tire by running it for 2 hours at 80 km/h.
    S6.2.1.2.4 Allow tire to cool to 38[deg] C and readjust inflation 
pressure to applicable pressure in 6.2.1.1.1 immediately before the 
test.
    S6.2.1.2.5 Throughout the test, the inflation pressure is not 
corrected and the test load is maintained at the value applied in 
S6.2.1.2.2.
    S6.2.1.2.6 During the test, the ambient temperature, measured at a 
distance of not less than 150 mm and not more than 1 m from the tire, 
shall be maintained at not less than 38[deg] C.
    S6.2.1.2.7 The test is conducted, continuously and uninterrupted, 
for ninety minutes through three thirty-minute consecutive test stages 
at the following speeds: 140, 150, and 160 km/h.
    S6.2.1.2.8 Allow the tire to cool for one hour. Measure its 
inflation pressure. Then, deflate the tire, remove it from the test 
rim, and inspect it for the conditions specified in S6.2.2(a).
    S6.2.2 Performance requirements. When the tire is tested in 
accordance with S6.2.1:
    (a) There shall be no visual evidence of tread, sidewall, ply, 
cord, innerliner, belt or bead separation, chunking, open splices, 
cracking, or broken cords.
    (b) The tire pressure, when measured at least 1 hour after the end 
of the test, shall not be less than the initial pressure specified in 
S6.2.1.

S6.3 Tire Endurance

    S6.3.1 Test conditions and procedures.
    S6.3.1.1 Preparation of Tire.

[[Page 38152]]

    S6.3.1.1.1 Mount the tire on a test rim and inflate it to the 
pressure specified for the tire in the following table:

------------------------------------------------------------------------
                                                         Test Pressure
                   Tire application                          (kPa)
------------------------------------------------------------------------
P-metric:
  Standard load......................................                180
  Extra load.........................................                220
LT:
  Load Range C.......................................                260
  Load Range D.......................................                340
  Load Range E.......................................                410
CT:
  Standard load......................................                230
  Extra load.........................................                270
------------------------------------------------------------------------

    S6.3.1.1.2 Condition the assembly at 38[deg] C for not less than 
three hours.
    S6.3.1.1.3 Readjust the pressure to the value specified in 
S6.3.1.1.1 immediately before testing.
    S6.3.1.2 Test Procedure.
    S6.3.1.2.1 Mount the assembly on a test axle and press it against 
the outer face of a smooth wheel having a diameter of 1.70 m +/- 1%.
    S6.3.1.2.2 During the test, the ambient temperature, measured at a 
distance of not less than 150 mm and not more than 1 m from the tire, 
shall not be less than 38[deg] C.
    S6.3.1.2.3 Conduct the test, without interruptions, at not less 
than 120 km/h test speed with loads and test periods not less than 
those shown in the following table:

------------------------------------------------------------------------
                                                Load as a percentage of
     Test period          Duration  (hours)     tire maximum load rating
------------------------------------------------------------------------
             1                        4                        85%
             2                        6                        90
             3                       24                       100
------------------------------------------------------------------------

    S6.3.1.2.4 Throughout the test, the inflation pressure is not 
corrected and the test loads are maintained at the value corresponding 
to each test period, as shown in the table in S6.3.1.2.3.
    S6.3.1.2.5 Allow the tire to cool for one hour after running the 
tire for the time specified in the table in S6.3.1.2.3, measure its 
inflation pressure. Inspect the tire externally on the test rim for the 
conditions specified in S6.3.2(a).
    S6.3.2 Performance requirements. When the tire is tested in 
accordance with S6.3.1:
    (a) There shall be no visual evidence of tread, sidewall, ply, 
cord, belt or bead separation, chunking, open splices, cracking or 
broken cords.
    (b) The tire pressure, when measured at least one hour after the 
end of the test, shall not be less than the initial pressure specified 
in S6.3.1.

S6.4 Low Inflation Pressure Performance

    S6.4.1 Test conditions and procedures.
    S6.4.1.1 Preparation of tire.
    S6.4.1.1.1 This test is conducted following completion of the tire 
endurance test using the same tire and rim assembly tested in 
accordance with S6.3 with the tire deflated to the following 
appropriate pressure:

------------------------------------------------------------------------
                                                         Test pressure
                   Tire application                          (kPa)
------------------------------------------------------------------------
P-metric:
  Standard load......................................                140
  Extra load.........................................                160
LT:
  Load Range C.......................................                200
  Load Range D.......................................                260
  Load Range E.......................................                320
CT:
  Standard load......................................                170
  Extra load.........................................                180
------------------------------------------------------------------------

    S6.4.1.1.2 The assembly is conditioned at not less than 38[deg] C.
    S6.4.1.1.3 Before or after mounting the assembly on a test axle, 
readjust the tire pressure to that specified in S6.4.1.1.1.
    S6.4.1.2 Test procedure.
    S6.4.1.2.1 The test is conducted for ninety minutes at the end of 
the test specified in S6.3, continuous and uninterrupted, at a speed of 
120 km/h (75 mph).
    S6.4.1.2.2 Press the assembly against the outer face of a test drum 
with a diameter of 1.70 m + 1%.
    S6.4.1.2.3 Apply to the test axle a load equal to 100% of the 
tire's maximum load carrying capacity.
    S6.4.1.2.4 Throughout the test, the inflation pressure is not 
corrected and the test load is maintained at the initial level.
    S6.4.1.2.5 During the test, the ambient temperature, at a distance 
of not less than 150 mm and not more than 1 m from the tire, is 
maintained at not less than 38[deg] C.
    S6.4.1.2.6 Allow the tire to cool for one hour. Measure its 
inflation pressure. Then, deflate the tire, remove it from the test 
rim, and inspect it for the conditions specified in S6.4.2(a).
    S6.4.2 Performance requirements. When the tire is tested in 
accordance with S6.4.1:
    (a) There shall be no visual evidence of tread, sidewall, ply, 
cord, innerliner, belt or bead separation, chunking, open splices, 
cracking, or broken cords, and
    (b) The tire pressure, when measured at least one hour after the 
end of the test, shall not be less than the initial pressure specified 
in S6.4.1.
    S6.5 Tire strength.
    S6.5.1 Tire strength for P-metric tires. Each tire shall comply 
with the requirements of S5.3 of Sec.  571.109.
    S6.5.2 Tire strength for LT tires. Each tire shall comply with the 
requirements of S7.3 of Sec.  571.119.
    S6.6 Tubeless tire bead unseating resistance. Each tire shall 
comply with the requirements of S5.2 of Sec.  571.109.
* * * * *

    Issued: June 18, 2003.
Otis Cox,
Deputy Administrator.
[FR Doc. 03-15874 Filed 6-23-03; 8:45 am]

BILLING CODE 4910-59-P