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Historically, gout was common among
patients with lead poisoning (Batuman 1993).
More recently, associations between various
measures of lead dose and serum uric acid
(urate) levels have been reported in studies of
occupationally exposed populations (Ehrlich
et al. 1998; Wang et al. 2002) as well as in
general population studies (Lin et al. 2002;
Shadick et al. 2000). These associations are
present at much lower lead doses than those
associated with gout in historical lead poison-
ing. Lead exposure also increases the risk for
adverse renal outcomes. Lead has been
reported to cause nephrotoxicity by several
mechanisms, although it is not known which
of these is the predominant pathway (Nolan
and Shaikh 1992; Sanchez-Fructuoso et al.
2002; Vaziri 2002). Uric acid is also a nephro-
toxicant, and increasing evidence suggests that
this toxicity occurs at lower levels than previ-
ously recognized (Johnson et al. 2003). Several
adverse renal and vascular outcomes have been
reported in a recently developed rodent model
of low-level hyperuricemia, including hyper-
tension and tubulointerstitial fibrosis (Mazzali

et al. 2001a), renal afferent arteriolopathy
(Mazzali et al. 2002), glomerular hypertrophy,
glomerulosclerosis (Nakagawa et al. 2003), and
glomerular hypertension (Sanchez-Lozada
et al. 2002). More important, uric acid in this
model accelerates renal dysfunction from other
causes (Kang et al. 2002; Mazzali et al. 2001b).
This raises the intriguing possibility that
increased uric acid is one mechanism by which
lead causes nephrotoxicity.

In our recently reported analyses of data
from the first of three evaluations in a longitu-
dinal study of the health effects of inorganic
lead exposure in 803 current and former lead
workers (Weaver et al. 2003), we found asso-
ciations between lead exposure and dose meas-
ures and adverse renal function outcomes.
Lead measures were associated with decreased
renal function, primarily in the oldest tertile
of workers (> 46 years of age). Therefore, we
analyzed data from the entire population of
lead workers and conducted separate analyses
of the oldest tertile of workers in some models
to determine whether the lead biomarkers
were associated with uric acid and whether

uric acid levels were associated with renal
function outcomes. In addition, we evaluated
whether relations between the lead biomarkers
and renal outcomes were altered after adjust-
ment for uric acid.

Materials and Methods

Study overview and design. We report data
from 803 current and former lead workers
who completed the first of three annual evalua-
tions in a longitudinal study of the renal, vas-
cular, hematopoietic, and nervous system
effects of inorganic lead exposure. Participants
were evaluated between 24 October 1997 and
19 August 1999. All participants provided
written, informed consent. The study protocol
was approved by institutional review boards at
the SoonChunHyang University and the
Johns Hopkins University Bloomberg School
of Public Health. Participation in the study
was voluntary, and workers were paid approxi-
mately $30 for their time and effort.

Study population. As previously described
(Schwartz et al. 2001; Weaver et al. 2003),
workers were recruited from 26 different
plants that produced lead batteries, lead
oxide, lead crystal, or radiators or were sec-
ondary lead smelters. Workers were desig-
nated as lead workers based on the potential
for exposure to lead in the manufacturing
process. No medical exclusionary criteria
were used. Study participants were not cur-
rently occupationally exposed to other
known renal toxicants.
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Recent research suggests that both uric acid and lead may be nephrotoxic at lower levels than pre-
viously recognized. We analyzed data from 803 current and former lead workers to determine
whether lead biomarkers were associated with uric acid and whether previously reported associa-
tions between lead dose and renal outcomes were altered after adjustment for uric acid. Outcomes
included uric acid, blood urea nitrogen, serum creatinine, measured and calculated creatinine
clearances, and urinary N-acetyl-β-D-glucosaminidase (NAG) and retinol-binding protein. Mean
(± SD) uric acid, tibia lead, and blood lead levels were 4.8 ± 1.2 mg/dL, 37.2 ± 40.4 µg/g bone
mineral, and 32.0 ± 15.0 µg/dL, respectively. None of the lead measures (tibia, blood, and dimer-
captosuccinic-acid–chelatable lead) was associated with uric acid, after adjustment for age, sex,
body mass index, and alcohol use. However, when we examined effect modification by age on
these relations, both blood and tibia lead were significantly associated (β = 0.0111, p < 0.01 and
β = 0.0036, p = 0.04, respectively) in participants in the oldest age tertile. These associations
decreased after adjustment for blood pressure and renal function, although blood lead remained
significantly associated with uric acid (β = 0.0156, p = 0.01) when the population was restricted to
the oldest tertile of workers with serum creatinine greater than the median (0.86 mg/dL). Next, in
models of renal function in all workers, uric acid was significantly (p < 0.05) associated with all
renal outcomes except NAG. Finally, in the oldest tertile of workers, associations between lead
dose and NAG were unchanged, but fewer associations between the lead biomarkers and the clini-
cal renal outcomes remained significant (p ≤ 0.05) after adjustment for uric acid. In conclusion,
our data suggest that older workers comprise a susceptible population for increased uric acid due
to lead. Uric acid may be one, but not the only, mechanism for lead-related nephrotoxicity.
Key words: kidney function, mechanisms, occupational lead exposure, renal early biologic effect
markers, uric acid. Environ Health Perspect 113:36–42 (2005). doi:10.1289/ehp.7317 available
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Data collection. Data collection was com-
pleted either at the Institute of Industrial
Medicine of the SoonChunHyang University
in Chonan or at the study plants, using previ-
ously reported methods (Schwartz et al. 2001;
Weaver et al. 2003). Data and biologic speci-
mens collected included a standardized ques-
tionnaire on demographics, medical history,
and occupational history; blood pressure
measured with a Hawksley random zero
sphygmomanometer (Lee et al. 2001); height
and weight measurement; a blood specimen
[for blood lead, blood urea nitrogen (BUN),
serum creatinine, and uric acid]; a spot urine
sample [for N-acetyl-β-D-glucosaminidase
(NAG), retinol-binding protein (RBP), and
creatinine]; and tibia lead concentration. A
4-hr urine collection after oral administration
of 10 mg/kg dimercaptosuccinic acid (DMSA)
was also obtained to measure DMSA chelat-
able lead and creatinine clearance (787 partici-
pants completed this collection).

Laboratory methods. The lead biomarkers
and renal outcomes were measured using

previously reported assays (Schwartz et al.
2001; Weaver et al. 2003). In brief, blood lead
was measured (Fernandez 1975) with an
Hitachi 8100 Zeeman background-corrected
atomic absorption spectrophotometer (Hitachi
Ltd. Instruments, Tokyo, Japan) at the
Institute of Industrial Medicine, a certified ref-
erence laboratory for lead in South Korea.
Tibia lead was assessed via a 30-min measure-
ment of the left mid-tibia diaphysis using
109Cd in a back-scatter geometry to fluoresce
the K-shell X rays of lead. The lead X rays were
recorded with a radiation detector and then
quantified and compared with calibration data
to estimate the concentration of lead in bone
(Todd and Chettle 1994; Todd and McNeill
1993). The emitted K-shell X rays were attenu-
ated as they passed through bone and overlying
tissues. The lead X rays were therefore normal-
ized to the amount of elastic scattering from
the bone itself to yield a measurement accuracy
that is independent of the distance between the
radiation source and the subject, subject posi-
tioning, small subject movements, overlying
tissue thickness, and bone size, shape, geome-
try, and density (Todd 2000a, 2000b; Todd
and Chettle 1994; Todd and McNeill 1993).
All point estimates, including negative values,
were retained in the statistical analyses in order
to minimize bias and to avoid censoring of
data (Kim et al. 1995). Urine lead levels in the
4-hr collection were measured at the
Wadsworth Center of the New York State
Department of Health (Albany, NY, USA) by
electrothermal atomic absorption spectrometry
with Zeeman background correction (model
4100ZL; Perkin Elmer, Norwalk, CT, USA)
(Parsons and Slavin 1999). BUN, serum creati-
nine, and uric acid were measured via an auto-
matic chemical analyzer (model TBA 40FR
Biochemical Analyzer; Toshiba, Tokyo,
Japan). Urine creatinine was measured in spot
samples (for adjustment of NAG and RBP)
and in the 4-hr sample after DMSA (for deter-
mination of measured creatinine clearance and
adjustment of DMSA-chelatable lead levels),

using a modification of the Sigma kit (Sigma
Chemical Company, St. Louis, MO, USA)
assay (Weaver et al. 2000). Measured creati-
nine clearance was defined as [(urinary creati-
nine in milligrams per deciliter ×  urine volume
in milliliters) ÷  serum creatinine in milligrams
per deciliter] ÷  collection time in minutes.
Calculated creatinine clearance was obtained
from the Cockcroft-Gault equation (Cockcroft
and Gault 1976). NAG activity (expressed in
micromoles of substrate converted per hour)
was measured using the PPR NAG test kit
(PPR Diagnostics, Ltd., London, UK), and
RBP was measured using a modification of the
method of Topping et al. (1986). As previously
reported by Weaver et al. (2003), the mean
between-day coefficient of variation (CV) for
138 random NAG samples assayed in dupli-
cate was 6.0%; the CV for RBP was 7.4%
(75 samples assayed in duplicate).

Statistical analysis. The overall goal of our
analysis was to develop models that would
allow hypotheses to be generated regarding
causal pathways involving lead, uric acid,
blood pressure, and renal function. As shown
in Figure 1, these variables are biologically
interrelated. As a result, adjustment for covari-
ates presents unique challenges. Adjustment
for renal function and blood pressure likely
results in overcontrol when associations
between lead measures and uric acid are being
evaluated. This is because renal dysfunction
and elevated blood pressure are risk factors for
increased uric acid (Wortmann and Kelley
2001), and both can be caused or exacerbated
by lead dose; thus, they may be in the causal
pathway between lead and uric acid. On the
other hand, because non-lead-related factors
contribute to both renal dysfunction and ele-
vated blood pressure, lack of adjustment for
these variables in such models likely results in
residual confounding. The interrelatedness of
these variables, as it relates to the potential for
confounding versus causality, has been exten-
sively discussed in the literature pertaining to
uric acid as a risk factor for adverse cardiac,
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Figure 2. Biologic relations among variables in models from Tables 4–6. (A) Associations of lead biomarkers with uric acid (black arrow) in method 1 (Table 4). The
gray arrows represent the blood pressure pathway added in method 2, Table 4; blue arrows represent the renal function pathway added in method 3 (Table 4).
(B) Relations between uric acid levels and renal function outcomes. Data in Table 5 control for blood pressure (gray arrows); lead biomarkers (blue arrow) were
also added to these methods (Table 6 shows selected methods in the oldest tertile of workers). (C) Associations of lead biomarkers, uric acid, and blood pressure
with renal function outcomes (presented in Table 6). These methods specifically assessed the effect of uric acid (blue arrows) on the main association between
lead biomarkers and renal outcomes (black arrow), while controlling for blood pressure (gray arrows) and other covariates.
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Figure 1. Biologic relations among lead, uric acid,
blood pressure, and renal function variables. Uric
acid is an established nephrotoxicant at high levels
(a); the threshold for renal toxicity is uncertain. The
association between uric acid levels and increased
blood pressure may be causal or due to confound-
ing (b). Specifically, high uric acid levels may
cause hypertension secondary to renal dysfunction
but whether low-level uric acid causes primary
hypertension is less certain.



vascular, and renal outcomes (Johnson et al.
2003). Therefore, we have presented our data
both with and without additional adjustment.

Analysis in these current and former lead
workers was directed toward the following
steps: a) to evaluate associations of three lead
dose biomarkers (tibia lead, blood lead, and
DMSA-chelatable lead) with uric acid, with
and without control for blood pressure and
renal function, while controlling for other
covariates (Figure 2A); b) to evaluate associa-
tions between uric acid and six renal function
outcomes (BUN, serum creatinine, measured
creatinine clearance, calculated creatinine
clearance, RBP, and NAG), with and without
control for lead, while adjusting for blood
pressure and other covariates (Figure 2B); and
c) to determine whether relations among these
lead biomarkers and the six renal outcomes
were altered by adjustment for uric acid, while
controlling for other covariates, including
blood pressure (Figure 2C). Statistical analysis
was completed using SAS software (SAS
Institute, Inc., Cary, NC, USA).

Initially, we examined variable distribu-
tions. The distributions of NAG and RBP
showed departures from normality and were
thus ln-transformed; the adequacy of this
transformation was subsequently confirmed
by examination of the residuals from regres-
sion models. Linear regression modeling was
used to evaluate associations between lead
measures and both uric acid and renal func-
tion as outcomes, in separate models.
Covariate selection for regression models of
uric acid as the outcome used a priori vari-
ables [age, sex, and body mass index (BMI;
weight in kilograms divided by the square of
height in meters)] in modeling that initially
included other biologically relevant variables
in separate models. Variables with p-values
< 0.1 were then modeled together, and those
with significant p-values in the combined

model were retained. The additional covariates
assessed included diabetes and hypertension
(both based on participant report of physician
diagnosis), use of analgesics (based on ques-
tionnaire data on medication use), work status
(current vs. former lead worker), systolic and
diastolic blood pressure, renal function (BUN,
serum creatinine, measured creatinine clear-
ance, and calculated creatinine clearance),
tobacco use, and alcohol consumption. Serum
creatinine was selected as the measure of renal
function in the uric acid models because the
proportion of variance explained by the model
when it was included (r2 = 0.37) was the high-
est, compared with the other renal outcome
measures. Continuous independent variables
were centered at the mean or, for the effect
modification models discussed below, at the
tertile cut-point nearest to the mean. Covariate
selection for the renal outcome models was
previously reported (Weaver et al. 2003).

Finally, models with cross-product terms
of the lead measures and age (age was catego-
rized by tertiles) were evaluated, in order to
assess effect modification by age on associa-
tions between the lead biomarkers and uric
acid. In these models, age was also entered
into the model as a centered, continuous vari-
able, in order to avoid residual confounding.

We evaluated models for linear regression
assumptions and the presence of outlying
points using added variable plots (Weisberg
1985), which are graphical summaries of the
relation between Y and a particular X (referred
to as Xa below), adjusted for all of the other
covariates. Specifically, the residuals of the
regression of Y on all of the covariates except
Xa are plotted on the y-axis. This is the part of
Y not explained by those covariates. Next, the
residuals from the regression of Xa on all the
other covariates are computed. This is the part
of Xa not explained by the other covariates.
These residuals are plotted on the x-axis. For
each plot, two lines were overlaid: the regres-
sion line, and a line determined by a scatter

plot smoothing method (lowess) that calcu-
lates a locally weighted least squares estimate
for each point in the scatter plot (Cleveland
1979). This allows an examination of the data
for outliers that are overly influential, as evi-
denced by inconsistency between the lowess
and regression lines (i.e., when one or two
data points with both high lead dose and uric
acid move the lowess line away from the
regression line, they are likely to overly influ-
ence the regression line as well). When applica-
ble, models were repeated without outliers.
Models were also assessed for collinearity
through examination of variance inflation fac-
tors and conditional indices.

Results

Selected demographics, exposure, and health
outcome measures. Information on demo-
graphics, lead biomarkers, uric acid levels, renal
function, and selected comorbid conditions is
presented in Tables 1 and 2. Mean (± SD)
blood, tibia, and DMSA-chelatable lead levels
were 32.0 ± 15.0 µg/dL, 37.2 ± 40.4 µg/g bone
mineral, and 0.768 ± 0.862 mg/g creatinine,
respectively. Values for these lead measures var-
ied over a wide range. Mean values for uric
acid and renal outcomes were normal,
although the range for each included several
abnormal outliers.

Lead measure associations with uric acid
levels. In linear regression modeling of uric
acid levels in all 803 lead workers, after adjust-
ment for age, sex, BMI, and alcohol use, none
of the lead measures was associated (Table 3).
Next, we performed regression modeling to
evaluate whether age, divided into tertiles
(≤ 36 years, 36.1–46.0 years, > 46.0 years),
modified relations between the lead bio-
markers and uric acid levels. In models
adjusted for age, sex, BMI, and alcohol use,
we found evidence of effect modification by
age (Table 4, method 1). Blood and tibia lead,
in separate models, were associated with uric
acid in participants in the oldest age tertile. As
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Table 2. Selected demographic, exposure, and health outcome measures (continuous variables) of
803 current and former lead workers in South Korea. 

Health outcome Mean ± SD Range

Age (years) 40.4 ± 10.1 17.8–64.8
BMI (kg/m2) 23.0 ± 3.0 15.7–34.2
Systolic blood pressure (mm Hg) 123.2 ± 16.3 83.7–215.3
Diastolic blood pressure (mm Hg) 75.7 ± 12.0 36.0–126.7
Blood lead (µg/dL) 32.0 ± 15.0 4.3–85.7
Tibia lead (µg Pb/g bone mineral) 37.2 ± 40.4 –7.4–337.6
DMSA-chelatable lead (mg Pb/g creatinine)a 0.768 ± 0.862 0.02–8.98
Lead job duration (years) 8.2 ± 6.5 < 1–36.2
Uric acid (mg/dL) 4.8 ± 1.2 1.4–12.3
BUN (mg/dL) 14.4 ± 3.7 6–32.2
Serum creatinine (mg/dL) 0.90 ± 0.16 0.48–2.5
Measured creatinine clearance (mL/min)a 114.7 ± 33.6 11.8–338.9
Calculated creatinine clearance (mL/min) 94.7 ± 20.7 41.1–184.5
NAG (µmol/hr/g creatinine) 215.3 ± 188.5 13.8–2577.0
RBP (µg/g creatinine) 63.6 ± 190.6 5.2–4658.7
an = 787.

Table 1. Selected demographic, exposure, and
health outcome measures (categorical variables)
of 803 current and former lead workers in South
Korea. 

Characteristic No. (%)

Sex 
Male 639 (79.6)
Female 164 (20.4)

Work status
Current lead worker 709 (88.3)
Former lead worker 94 (11.7)

Diabetes 6 (0.8)
Hypertension 58 (7.2)
Regular analgesic use 16 (2.0)
Alcohol use

Never 233 (29.1)
Current use 521 (65.0)
Past use 48 (6.0)

Tobacco use
Never 255 (31.8)
Current use 458 (57.1)
Past use 89 (11.1)



expected, because of the biologic interrelated-
ness of these variables (discussed in “Materials
and Methods” and shown in Figures 1
and 2), both lead associations decreased after
additional adjustment for systolic blood pres-
sure (Table 4, method 2) and renal function
(Table 4, method 3). However, blood lead
remained associated with uric acid (β =
0.0156, p = 0.01) when these associations
were modeled in the 133 oldest workers who
had serum creatinine greater than the median
value (0.86 mg/dL).

Associations between uric acid levels and
renal outcomes. The six renal function meas-
ures were modeled as outcomes to evaluate
whether uric acid was associated with renal
function in this population of lead workers.
Uric acid levels were associated in all renal
outcome models except NAG (Table 5).
Higher uric acid was associated with worse
renal function as assessed by the clinical meas-
ures but, conversely, with lower RBP. These
associations remained significant after the lead
biomarkers were added into the models.

Effect of uric acid adjustment on lead
measure associations in renal function models.
Associations between the lead biomarkers and
the renal outcomes, after adjustment for uric
acid, were modeled in the oldest tertile of
workers because the associations of lead bio-
markers with uric acid were in the oldest subset

and the associations between higher lead dose
and worse renal function were also primarily
in this group. The median age of these
266 workers was 51.1 years with a range of
46.0–64.8 years. As shown in Table 6, associ-
ations between the lead measures and NAG
were unchanged after adjustment for uric
acid. However, fewer associations between
lead biomarkers and clinical renal outcomes
remained significant (p ≤ 0.05) after adjust-
ment for uric acid.

Discussion

In this study, we used data from the first of
three evaluations in a longitudinal study of
Korean lead workers to develop hypotheses
about causal pathways among lead biomarkers,
uric acid, renal function, and blood pressure.
First, we evaluated associations of three lead
dose biomarkers with uric acid, with and with-
out control for blood pressure and renal func-
tion, while controlling for other covariates
(Figure 2A). Next, we evaluated associations
between uric acid and six renal function out-
comes, with and without control for lead, while
adjusting for blood pressure and other covari-
ates (Figure 2B). Finally, we examined the
effect of uric acid adjustment on associations
between the lead biomarkers and renal out-
comes, while controlling for other covariates,
including blood pressure (Figure 2C).

Blood and tibia lead associations with uric
acid were observed in participants in the oldest
age tertile, after adjustment for age, sex, BMI,
and alcohol ingestion. These associations were
diminished after adjustment for blood pres-
sure and renal function, although blood lead
remained significantly associated with uric
acid in the 133 oldest workers who had serum
creatinine greater than the median. Next, uric
acid was significantly associated with all renal
function outcomes except NAG. Lastly, after
adjustment for uric acid, fewer associations
between lead biomarkers and the clinical renal
outcomes remained significant (p ≤ 0.05).

It has been recognized for many years that
individuals who have been heavily exposed to
lead are at increased risk for both gout and
renal disease (Batuman 1993; Shadick et al.
2000). In high-level lead exposure, urate
clearance is decreased to a greater extent than
can be explained by decreased glomerular fil-
tration alone (Emmerson and Ravenscroft
1975). A defect in tubular secretion of urate is
thought to be the primary factor involved
(Ball and Sorensen 1969; Emmerson 1965;
Emmerson and Ravenscroft 1975), although
excessive tubular reabsorption (Emmerson
et al. 1971) and extrarenal mechanisms such
as lead effects on porphyrin metabolism
(Emmerson and Ravenscroft 1975) have also
been considered. Associations between lead
measures and uric acid have been examined in
populations encompassing a wide range of
lead doses (Table 7). Relations between lead
dose and gout or uric acid have also been
studied in various patient populations.
Increased EDTA-chelatable lead burdens have
been reported in patients who have both gout
and renal disease compared with other groups
such as patients with gout alone or with renal
disease of known non-lead-related etiology
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Table 3. Linear regression models to evaluate associations of lead dose biomarkers with uric acid levels
(n = 803).

Model Lead variable β-coefficient SE β p-Value Model r 2

1 Tibia lead (µg Pb/g bone mineral) –0.0005 0.0010 0.62 0.32
2 Blood lead (µg/dL) 0.0027 0.0027 0.32 0.31
3 DMSA-chelatable lead (µg Pb/g creatinine) 0.0259 0.0431 0.55 0.31

Uric acid was modeled separately as the outcome, with one of the three lead biomarkers included per model. Regression
results from each model are presented only for the association of the lead biomarker with uric acid. Models were also
adjusted for age, sex, BMI, and alcohol use.

Table 4. Linear regression models to evaluate effect modification by age in tertiles on associations of blood and tibia lead with uric acid in all lead workers, with
outliers removed (method 1), and with additional control for systolic blood pressure (method 2) and serum creatinine (model 3) (n = 803).

Method 1 Method 2 Method 3
Variable β-coefficient SE β p-Value β-coefficient SE β p-Value β-coefficient SE β p-Value

Blood lead model
Intercept 4.9217 0.0757 < 0.01 4.9350 0.0759 < 0.01 4.8528 0.0736 < 0.01
Age (years) –0.0182 0.0039 < 0.01 –0.0199 0.0040 < 0.01 –0.0210 0.0039 < 0.01
Systolic blood pressure (mm Hg) — — — 0.0047 0.0023 0.04 0.0046 0.0022 0.04
Serum creatinine (mg/dL) — — — — — — 2.1830 0.2666 < 0.01
Blood lead (µg/dL) 0.0111 0.0041 < 0.01 0.0105 0.0041 0.01 0.0071 0.0039 0.07
Blood lead × age category 2 –0.0109 0.0057 0.05 –0.0107 0.0056 0.06 –0.0063 0.0054 0.25
Blood lead × age category 1 –0.0150 0.0058 0.01 –0.0148 0.0058 0.01 –0.0107 0.0056 0.06

Tibia lead model
Intercept 4.8932 0.0749 < 0.01 4.9087 0.0750 < 0.01 4.8430 0.0735 < 0.01
Age (years) –0.0155 0.0039 < 0.01 –0.0174 0.0040 < 0.01 –0.0184 0.0038 < 0.01
Systolic blood pressure (mm Hg) — — — 0.0052 0.0022 0.02 0.0048 0.0022 0.03
Serum creatinine (mg/dL) — — — — — — 2.1808 0.3189 < 0.01
Tibia lead (µg Pb/g bone mineral) 0.0036 0.0018 0.04 0.0031 0.0018 0.08 0.0019 0.0017 0.28
Tibia lead × age category 2 –0.0057 0.0028 0.04 –0.0053 0.0028 0.06 –0.0019 0.0028 0.49
Tibia lead × age category 1 –0.0071 0.0029 0.02 –0.0067 0.0029 0.02 –0.0044 0.0029 0.13

—, Variable not included in method. Models were also adjusted for sex, BMI, and alcohol use. The oldest age tertile is the reference category. Slopes in the middle (age category 2) and
youngest (age category 1) age categories are obtained by adding their respective β-coefficients (of the cross-product term for age × lead) to the β-coefficient of the reference category
(oldest age group). p-Values for the cross-product terms reflect the statistical significance of the difference between the slopes of the regression line in that age category and the
regression line for the oldest age group.



(Batuman 1993; Miranda-Carus et al. 1997;
Sanchez-Fructuoso et al. 1996). Lin et al.
(2001) measured blood lead and EDTA-
chelatable lead in 67 patients with chronic
renal insufficiency and gout and 34 patients
with chronic renal insufficiency only. Mean
blood lead levels were similar in the two
groups (5.4 and 4.4 µg/dL, respectively), but
mean EDTA-chelatable lead levels (138.1 and
64.2 µg/72 hr, respectively) were significantly
(p < 0.01) different. All four uric acid meas-
ures were associated with EDTA-chelatable
lead after adjustment for age, sex, BMI, daily
protein intake, and creatinine clearance. Next,
30 participants with chronic renal insuffi-
ciency, gout, and EDTA-chelatable lead levels
between 80.2 and 361 µg/72 hr were ran-
domized to either a treatment group receiving
1 g EDTA per week for 4 weeks (n = 20) or a
control group who received glucose in normal
saline infusions. The two groups had similar
uric acid, renal function, and lead measures
prechelation. In the treated group, mean
EDTA-chelatable lead declined from 159.2 to

41 µg/72 hr; mean serum urate decreased
from 10.2 to 8.6 mg/dL (p = 0.02 for percent
change, compared with the control group),
and mean urate clearance increased from
2.7 to 4.2 mL/min (p < 0.01 for percent
change, compared with the control group).
Mean creatinine clearance also increased from
50.8 to 54.2 mL/min (p = 0.06 for percent
change, compared with the control group).
Similar uric acid findings, including results
from chelation, were noted in a population of
111 participants with normal renal function,
of whom 27 had gout (Lin et al. 2002).

The data discussed above and presented in
Table 7 are generally consistent with the
premise that in young, otherwise healthy
workers, a higher lead dose, such as mean
blood lead level > 50–60 µg/dL [or perhaps
higher, because neither Wang et al. (2002) nor
Ehrlich et al. (1998) adjusted for blood pres-
sure or renal function], is required before asso-
ciations with uric acid are present. However,
in studies that include participants with other
risk factors for elevated uric acid, such as older

age or comorbid conditions, lower lead levels
are associated with increases in uric acid. 

High levels of uric acid are known to be
nephrotoxic; however, controversy exists as
to whether observed relations between lower
levels of uric acid and renal dysfunction are
causal or due to confounding. Recently, a
rodent model of hyperuricemia was devel-
oped (Mazzali et al. 2001a). As noted in the
introductory remarks, a range of adverse
renal and vascular outcomes, similar to those
noted in humans with primary hypertension
(Mazzali et al. 2002) and/or renal dysfunc-
tion (Nakagawa et al. 2003), was observed in
these rats. In humans, uric acid was found to
be associated with reduced renal blood flow
and increased renal vascular resistance in
patients with primary hypertension (Messerli
et al. 1980). Thus, uric acid may be nephro-
toxic at lower levels than previously recog-
nized, as opposed to being simply a marker
for other renal risk factors.

Many mechanisms for the adverse affect of
lead on the kidneys, either directly or through
the vascular system, have been proposed
(Nolan and Shaikh 1992; Sanchez-Fructuoso
et al. 2002; Vaziri 2002). One mechanism not
commonly considered in low to moderate lead
exposure is increased uric acid. However, there
are a number of similarities between the renal
and vascular effects reported from low-level
uric acid and those from lead exposure.
Tubulointerstitial fibrosis, a classic (although
nonspecific) finding in lead exposure, has been
observed in the uric acid model in the absence
of the urate crystals that are commonly seen in
this pathology at higher levels of hyperuricemia
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Table 5. Linear regression models to evaluate associations of uric acid with renal outcomes while controlling
for covariates (n = 803).

Model Renal function outcome Uric acid β-coefficient SE β p-Value

1 BUN (mg/dL) 0.4186 0.1246 < 0.01
2 Serum creatinine (mg/dL) 0.0267 0.0038 < 0.01
3 Measured creatinine clearance (mL/min) –2.5300 0.9791 0.01
4 Calculated creatinine clearance (mL/min) –2.1700 0.4662 < 0.01
5 ln NAG [ln (µmol/hr/g creatinine)] –0.0262 0.0210 0.21
6 ln RBP [ln (µg/g creatinine)] –0.1067 0.0254 < 0.01

Each renal outcome was modeled separately. Regression results from each model are presented only for the association
of uric acid with the renal outcome. BUN, serum creatinine, measured creatinine clearance, and calculated creatinine
clearance models were adjusted for age, sex, BMI, current/former worker status, and hypertension. NAG and RBP models
were adjusted for age, sex, BMI, systolic blood pressure, current/former worker status, alcohol ingestion, and diabetes.

Table 6. Linear regression models to evaluate associations of lead dose biomarkers and uric acid levels with renal outcomes in 266 lead workers in the oldest tertile
of age.

Method 1 (lead biomarker models) Method 2 (uric acid models) Method 3 (combined models)
Independent variables β coefficient SE β p-Value β coefficient SE β p-Value β coefficient SE β p-Value

BUN (mg/dL) models
Blood lead (µg/dL) 0.0352 0.0183 0.05 — — — 0.0293 0.0185 0.11
Uric acid (mg/dL) — — — 0.4663 0.2307 0.04 0.3963 0.2343 0.09

Serum creatinine (mg/dL) models
Blood lead (µg/dL) 0.0016 0.0006 < 0.01 — — — 0.0012 0.0006 0.03

Uric acid (mg/dL) — — — 0.0245 0.0072 < 0.01 0.0215 0.0073 < 0.01
Tibia lead (µg Pb/g bone mineral) 0.0004 0.0002 0.03 — — — 0.0003 0.0002 0.06

Uric acid (mg/dL) — — — 0.0246 0.0072 < 0.01 0.0233 0.0072 < 0.01
Measured creatinine clearance (mL/min) models

Blood lead (µg/dL) 0.1187 0.1177 0.31 — — — 0.1697 0.1198 0.16
Uric acid (mg/dL) — — — –2.4871 1.4456 0.09 –2.9352 1.4769 0.05

Calculated creatinine clearance (mL/min) models
Blood lead (µg/dL) –0.1221 0.0594 0.04 — — — –0.0950 0.0600 0.11
Uric acid (mg/dL) — — — –2.0384 0.7487 < 0.01 –1.8095 0.7604 0.02

ln NAG [ln (µmol/hr/g creatinine)] models
Blood lead (µg/dL) 0.0089 0.0028 < 0.01 — — — 0.0092 0.0028 < 0.01

Uric acid (mg/dL) — — — –0.0115 0.0364 0.76 –0.0289 0.0361 0.42
Tibia lead (µg Pb/g bone mineral) 0.0023 0.0008 < 0.01 — — — 0.0023 0.0008 < 0.01

Uric acid (mg/dL) — — — –0.0070 0.0366 0.85 –0.0094 0.036 0.80
DMSA-chelatable lead (mg Pb/g creatinine) 0.1931 0.0511 < 0.01 — — — 0.1944 0.0512 < 0.01

Uric acid (mg/dL) — — — –0.0182 0.0373 0.63 –0.0235 0.0363 0.52

BUN, serum creatinine, measured creatinine clearance, and calculated creatinine clearance models were also adjusted for age, sex, BMI, current/former worker status, and hyper-
tension. NAG and RBP models were adjusted for age, sex, BMI, systolic blood pressure, current/former worker status, alcohol ingestion, and diabetes. Only models in which p ≤ 0.05 for
the lead variable without uric acid adjustment are shown, with the exception of the measured creatinine clearance model; this model is included because the p-value for the β-coefficient
of the uric acid variable decreased to ≤ 0.05 after adjustment for blood lead.



(Mazzali et al. 2001a). Glomerular hyper-
trophy was reported in hyperuricemic rodents
(Nakagawa et al. 2003), and Inglis et al. (1978)
reported this in adults who survived childhood
lead poisoning. Afferent renal arterial thicken-
ing has also been observed in hyperuricemic
rats (Mazzali et al. 2002). Renal vascular dis-
ease in lead-exposed humans has been reported
in several case series (Inglis et al. 1978; Morgan
et al. 1966; Wedeen et al. 1975). Sanchez-
Fructuoso et al. (2002) recently reported
hypertrophy of the medium and small renal
arteries and arterioles in rats whose blood lead
levels ranged from 52.9 to 33.2 µg/dL at
day 90 (when lead ingestion ceased). However,
these vascular abnormalities were not observed
in rats whose lead exposures, over a 12-month
period, were either lower (blood lead levels
~ 20–30 µg/dL) (Khalil-Manesh et al. 1993)
or much higher (blood lead levels of
45.5–125.4 µg/dL, averaged over a 12-month
period) (Khalil-Manesh et al. 1992). Uric acid
was not measured in these rodent studies; how-
ever, Goyer (1971) reported hyperuricemia
that was not thought to be related to extent of
renal insufficiency in lead-exposed rats, which
suggests that lead may be one of the exposures
that does increase uric acid in rats despite the
presence of the uricase enzyme. Mazzali et al.
(2001a) reported that increased systolic blood
pressure was correlated with serum uric acid.
Increased systolic blood pressure was associated
with lead dose in the same Korean lead worker
population studied in this report (Lee et al.
2001); similar associations have also been
reported in other populations (Sharp et al.
1987). Increased juxtaglomerular renin stain-
ing was present in the uric acid model (Mazzali
et al. 2001a). Data suggest that lead exposure
also increases renin; this effect may vary with
length of exposure. Several reviews have con-
cluded that renin is increased with short- to
moderate-term lead exposure in both animals

and humans but is normal or decreased with
prolonged exposure (Gonick and Behari 2002;
Sharp et al. 1987; Vander 1988). Decreased
neuronal nitric oxide synthase expression in the
macula densa was reported in rodents in the
uric acid model (Mazzali et al. 2001a). In con-
trast, the effect of lead on NO does not involve
decreased NO synthase expression (Vaziri
2002). In fact, just the opposite occurs because
lead exposure generates oxidants that deplete
NO, and NO synthase expression is up-regu-
lated in response.

Conclusion

Our data suggest that, at the moderate levels of
lead exposure present in our population, older
workers comprise a susceptible population for
increased uric acid. This is consistent with the
published literature, as noted above. The
impact of adjustment for renal function and
blood pressure suggests that the effect of lead
on uric acid may be mediated through these
pathways (Figure 2A). However, because blood
lead remained associated with uric acid in our
most susceptible group (the oldest workers
who had the greatest renal dysfunction), even
after adjustment for renal function and blood
pressure, mechanisms other than decreased
glomerular filtration, such as decreased tubular
secretion or even extrarenal mechanisms, may
be involved at these exposure levels. Because
our data [and those of others (Shadick et al.
2000)] suggest an effect of lead on uric acid
beyond that due to renal dysfunction alone,
and because uric acid was associated with
adverse renal outcomes and resulted in reduced
significance of lead biomarker associations in
our population, uric acid may be one mecha-
nism through which lead is nephrotoxic.
However, this is not the only mechanism for
lead-related nephrotoxicity. In our data, the
association between blood lead and serum crea-
tinine remained significant (p < 0.05) even

after adjustment for uric acid. Associations
between lead dose and NAG were unchanged,
and uric acid was inversely associated with
RBP. The effects of lead and uric acid on the
NO system are also different. Thus, other
mechanisms must be involved.

Conclusions regarding causality in this
study must be limited because it is cross-
sectional. An additional limitation is that we
were not able to adjust for the use of medica-
tions that influence uric acid because Koreans
are not routinely provided with the names of
their medications. However, few participants
reported any prescription medication use.
Our results do suggest that further evaluation
of relations among the lead dose biomarkers,
uric acid, and renal function in our longitudi-
nal data set would be of value. This is particu-
larly true because these mechanistic relations
may be clinically important. EDTA chelation
has been reported to improve both renal func-
tion and urate clearance in patients with renal
insufficiency and gout, even when EDTA-
chelatable lead body burdens were quite low
(Lin et al. 2001). If this work is replicated in
other populations and low-level uric acid is
found to be nephrotoxic, uric acid should also
be monitored in patients who are in the early
stages of diseases such as early chronic renal
insufficiency and whose lead body burdens
are amenable to chelation.
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