


Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

Techniques and Methods 4–D2

Except where noted, all photographs courtesy of Donald O. Rosenberry, U.S. Geological Survey.

Cover artwork by John M. Evans, U.S. Geological Survey, retired.

Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

Techniques and Methods 4–D2

U.S. Department of the Interior DIRK KEMPTHORNE, Secretary

U.S. Geological Survey

Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2008

For product and ordering information:

World Wide Web: http://www.usgs.gov/pubprod

Telephone: 1-888-ASK-USGS

For more information on the USGS--the Federal source for science about the Earth, its natural and living resources,

natural hazards, and the environment: World Wide Web: http://www.usgs.gov

Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Rosenberry, D.O., and LaBaugh, J.W., 2008, Field techniques for estimating water fluxes between surface water and ground water: U.S. Geological Survey Techniques and Methods 4–D2, 128 p.

Contents

1.	. Introduction and Characteristics of Flow		
	By James W. LaBaugh and Donald O. Rosenberry		
2.	Use of Monitoring Wells, Portable Piezometers, and Seepage Meters		
	to Quantify Flow Between Surface Water and Ground Water	.39	
	By Donald O. Rosenberry, James W. LaBaugh, and Randall J. Hunt		
3.	Hydrogeologic Characterization and Methods Used in the Investigation		
	of Karst Hydrology	.71	
	By Charles J. Taylor and Earl A. Greene		
4.	Analysis of Temperature Gradients to Determine Stream Exchanges		
	with Ground Water	15	
	By James Constantz Richard Niswonger and Amy F. Stewart		

Conversion Factors, Definitions, and Abbreviations

Inch/Pound to SI

Multiply	Ву	To obtain
	Length	
kilometer (km)	0.6214	mile (mi)
meter (m)	3.281	foot (ft)
centimeter (cm)	0.3937	inch (in)
millimeter (mm)	0.03937	inch (in)
	Area	
square kilometer (km²)	0.3861	square mile (mi²)
square meter (m ²)	10.76	square foot (ft²)
square centimeter (cm ²)	0.1550	square inch (in²)
square centimeter (cm ²)	0.001076	square foot (ft²)
	Volume	
liter (L)	0.2642	gallon (gal)
liter (L)	1.057	quart (qt)
liter (L)	61.02	cubic inch (in³)
milliliter (mL)	0.06102	cubic inch (in³)
cubic centimeter (cm³)	0.06102	cubic inch (in³)
cubic meter (m³)	264.2	gallon (gal)
cubic meter (m³)	35.31	cubic foot (ft³)
	Flow rate, velocity	
milliliter per minute (mL/min)	0.06102	cubic inch per minute (in³/min)
liter per minute (L/min)	0.2642	gallons per minute (gpm)
centimeter per day (cm/d)	0.0328	feet per day (ft/d)
meter per second (m/s)	283461	feet per day (ft/d)
	Pressure	
kilopascal (kPa)	0.1450	pound per square inch (psi)
kilopascal (kPa)	0.009869	atmosphere, standard (atm)
kilopascal (kPa)	0.3346	feet of water (at 39 degrees F)
kilopascal (kPa)	0.01	bar
	Mass to weight force	
gram (g)	0.0353	ounce (oz)
gram (g)	0.002205	pound (lb)
	Velocity	
knot (kn)	1.151	miles per hour (mph)
meter per second (m/s)	2.237	miles per hour (mph)
	Discharge	
cubic meters per second (m³/s)	35.315	cubic feet per second (cfs)
liters per second (L/s)	0.03531	cubic feet per second (cfs)
	Thermal conductivity	
Watt per meter per degree Celsius	0.5778	BTU per foot-hour per degree
$(W/m/^{\circ}C)$		Fahrenheit (BTU/ft-hr/°F)
	Energy	
Joule (J)	0.0009478	British thermal unit (BTU)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: $^{\circ}F=(1.8\times^{\circ}C)+32$

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows: $^{\circ}C=(^{\circ}F-32)/1.8$

