
NIST Interagency Report 7343
(Draft)

The Security Content
Automation Program (SCAP):
Automating Compliance
Checking, Vulnerability
Management, and Security
Measurement

Stephen D. Quinn
Peter Mell
Karen Kent

The Security Content Automation
Program (SCAP): Automating
Compliance Checking,
Vulnerability Management, and
Security Measurement (Draft)

Stephen D. Quinn
Peter Mell
Karen Kent

NIST Interagency Report 7343
(Draft)

C O M P U T E R S E C U R I T Y

Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

October 2006

U.S. Department of Commerce

Carlos M. Gutierrez, Secretary

Technology Administration

Robert C. Cresanti, Under Secretary of Commerce for
Technology

National Institute of Standards and Technology

William Jeffrey, Director

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analysis to advance the development and productive use of
information technology. ITL’s responsibilities include the development of technical, physical,
administrative, and management standards and guidelines for the cost-effective security and privacy of
sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s
research, guidance, and outreach efforts in computer security and its collaborative activities with industry,
government, and academic organizations.

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report 7343 (Draft)
44 pages (October 2006)

 ii

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Abstract

A security checklist is a document that contains instructions for securely configuring an information
technology (IT) product for an operational environment or verifying that an IT product has already been
securely configured. Checklists can take many forms, including files that can automatically set or verify
security configurations; having such automated methods has become increasingly important for several
reasons, including the complexity of achieving compliance with various laws, regulations, and guidelines,
and the increasing rates of vulnerabilities in systems and threats against those vulnerabilities. Automation
is also needed to ensure that systems are secured consistently and their security verified effectively.

In response to these needs, the Security Content Automation Program (SCAP) seeks to encourage the
development of automated checklists, particularly those that are compliant or compatible with the
Extensible Configuration Checklist Description Format (XCCDF) and/or the Open Vulnerability and
Assessment Language (OVAL). These are widely used for automated checklists—XCCDF primarily for
mapping policies and other sets of requirements to high-level technical checks, and OVAL primarily for
mapping high-level technical checks to the low-level details of executing those checks. For example,
XCCDF could map a requirement for authentication management in NIST Special Publication (SP) 800-
53 to a specified need to check that the system’s minimum password length is at least 8 characters.
OVAL could then define how that check should be performed on a particular type of system, such as a
Windows computer or a UNIX computer.

This publication provides an overview of the Security Content Automation Program, and then focuses on
explaining how XCCDF and OVAL files can be used as part of security content automation. The
publication also examines how security content automation can be beneficial in achieving compliance
with the Federal Information Security Management Act (FISMA), and how some of the same checklist
components used to support FISMA compliance efforts can also be used for other compliance needs, such
as Department of Defense (DOD) 8500.2/8510 compliance.

 iii

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Authority

The National Institute of Standards and Technology (NIST) developed this document in furtherance of its
statutory responsibilities under the Federal Information Security Management Act (FISMA) of 2002,
Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum requirements, for
providing adequate information security for all agency operations and assets; but such standards and
guidelines shall not apply to national security systems. This guideline is consistent with the requirements
of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), “Securing Agency
Information Systems,” as analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental
information is provided in A-130, Appendix III.

This guideline has been prepared for use by Federal agencies. It may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright, though attribution is desired.

Nothing in this document should be taken to contradict standards and guidelines made mandatory and
binding on Federal agencies by the Secretary of Commerce under statutory authority, nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other Federal official.

Purpose and Scope

The Cyber Security Research and Development Act of 2002 tasks NIST to develop, and revise as
necessary, a checklist setting forth settings and option selections that minimize the security risks
associated with each computer hardware or software system that is, or is likely to become widely used
within the Federal government. Such checklists, when combined with well-developed guidance,
leveraged with high-quality security expertise, vendor product knowledge, operational experience, and
accompanied with tools, can markedly reduce the vulnerability exposure of an organization.

This publication is intended to educate readers on the first planned phase of the Security Content
Automation Program (SCAP). The program seeks to encourage the development of checklists that can be
used with a variety of tools to automate the application or verification of security-related configuration
settings for operating systems and application. SCAP specifically focuses on the creation of checklists
that support agency compliance with FISMA and map to the minimum security controls for information
systems described in NIST Special Publication (SP) 800-53, Recommended Security Controls for Federal
Information Systems, and the information system categories described in Federal Information Processing
Standards (FIPS) 199, Standards for Security Categorization of Federal Information and Information
Systems.1

Audience

The primary audience for this publication is computer security staff, system administrators, IT product
vendors, security checklist developers, and others who are responsible for performing duties involving the
use of security checklists to apply security settings or verify existing settings. Those responsible for
developing policy and security guidance should also find this document helpful.

1 The text in the Purpose and Scope section is based on text from NIST Interagency Report (IR) 7275, Specification for the
Extensible Configuration Checklist Description Format (XCCDF).

 iv

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Acknowledgements

The authors, Stephen D. Quinn, Peter Mell, and Karen Kent of the National Institute of Standards and
Technology (NIST), wish to thank their colleagues who reviewed drafts of this document and contributed
to its technical content. The authors would like to acknowledge Tim Grance, Ron Ross, and Murugiah
Souppaya from NIST, as well as representatives from MITRE, Secure Elements, and Threat Guard, for
their keen and insightful assistance throughout the development of the document. Additional
acknowledgements will be added to the final version of the publication.

Trademark Information

All names are registered trademarks or trademarks of their respective companies.

 v

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Table of Contents

1. Introduction to Security Checklists...1
1.1 Existing Efforts .. 2

1.1.1 Checklist Creation ...2
1.1.2 Checklist Repository Programs ...3
1.1.3 Vulnerability Identification and Classification...3
1.1.4 Vulnerability and Checklist Languages..4

1.2 The Need for Automated Checklists ... 4
2. The Security Content Automation Program ...6

2.1 Program Benefits .. 6
2.1.1 Streamlining Compliance to Policies ...7
2.1.2 Combining and Customizing Checklists ..8
2.1.3 Quickly Distributing Assessment Instructions..8

2.2 Checklist Categorization ... 8
2.3 Checklist Development Process ... 10
2.4 Checklist Usage Process .. 11

3. Understanding SCAP-Provided XML Content ..14
3.1 The Basics of XCCDF... 14
3.2 The Basics of OVAL.. 17
3.3 Using XCCDF and OVAL for FISMA Compliance... 19
3.4 Comparing FISMA and DOD 8500.2/8510 Compliance ... 22

4. Customizing SCAP-Provided XML Content..23
4.1 XCCDF Customization.. 23

4.1.1 XCCDF Profiles ...23
4.1.2 XCCDF Groups ...25
4.1.3 XCCDF Rules ..26
4.1.4 XCCDF Values ..27

4.2 OVAL Customization... 29
4.2.1 OVAL Definitions ...29
4.2.2 OVAL Tests, Objects, States, and Variables...31

List of Appendices

Appendix A— Glossary ..33

Appendix B— Acronyms..35

Appendix C— Resources ...37

 vi

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

List of Figures

Figure 1: Steps for Checklist Developers..11
Figure 2: Steps for Checklist Users ..12
Figure 3: Example of XCCDF Profile Definition ..24
Figure 4: Example of XCCDF Group Definition ..25
Figure 5: Example of XCCDF Rule Definition ...27
Figure 6: Example of XCCDF Value Definition ...28
Figure 7: Example of OVAL Definition ..30
Figure 8: Example of OVAL Test ..31
Figure 9: Examples of OVAL Objects ...31
Figure 10: Examples of OVAL States ...32
Figure 11: Example of OVAL Variable ..32

List of Tables

Table 1: Primary Contributors to the NIST Checklist Repository Beta..3
Table 2: Comparison of Checklist Categories...10
Table 3: Sample Values from an XCCDF Rule...14
Table 4: Sample Values from an XCCDF Value Statement..15
Table 5: Sample Values from an OVAL Criteria Definition ...18
Table 6: Example of Minimum Password Lengths by Impact and Environment21
Table 7: Examples of Rule Usage for Windows XP Professional Profiles21

 vii

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

1.

Introduction to Security Checklists
A security checklist (sometimes referred to as a lockdown guide, hardening guide, security guide,
Security Technical Implementation Guide [STIG], security configuration guide, or benchmark)2 is
essentially a document that contains instructions or procedures for securely configuring an information
technology (IT) product for an operational environment or verifying that an IT product has already been
securely configured. A checklist might include any of the following:

 Configuration files that automatically set or verify various security settings (e.g., executables, security
templates that modify settings, scripts)

 Documentation (e.g., text file) that guides the checklist user to manually configure an IT product

 Documents that explain the recommended methods to securely install and configure a device

 Policy documents that set forth guidelines for such things as auditing, authentication mechanisms
(e.g., passwords), and perimeter security.

Not all instructions in a security checklist are necessarily for security settings. Checklists can also include
administrative practices for an IT product that go hand-in-hand with improvements to the product’s
security. Often, successful attacks on systems are the direct result of poor administrative practices such as
not changing default passwords or failure to apply old patches.

The following are some examples of the types of devices and software for which checklists are intended:

 General-purpose operating systems

 Common desktop applications such as e-mail clients, Web browsers, word processors, personal
firewalls, and antivirus software

 Infrastructure devices such as routers, firewalls, virtual private network (VPN) gateways, intrusion
detection systems (IDS), wireless access points, and telecom systems

 Application servers such as Domain Name System (DNS) servers, Dynamic Host Configuration
Protocol (DHCP) servers, Web servers, Simple Mail Transfer Protocol (SMTP) servers, File Transfer
Protocol (FTP) servers, and database servers

 Other network-connected devices such as mobile devices, scanners, printers, copiers, and fax
appliances.

When developed correctly, checklists can greatly assist users in configuring IT products to security
baselines that offer more protection than the installed out-of-the-box defaults. Configuring a system to
conform to specified security guidance (e.g., NIST Special Publications [SP], Defense Information
Systems Agency [DISA] STIGs and checklists) or other security specification is a highly technical task.
The following list includes some of the benefits associated with using checklists:

 Providing a baseline level of security to protect against common and dangerous local and remote
threats (e.g., viruses and worms, denial of service attacks, unauthorized access, inappropriate usage)

 Automating the verification of technical security controls for assessments and compliance testing

2 From herein, the Cyber Security Act terminology, checklist, will be used to describe a security configuration checklist or

what other literature may refer to as a lockdown guide, hardening guide, or benchmark configuration.

 1

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

 Mapping specific checks to high-level requirements (e.g., NIST SP 800-53, DISA STIG)

 Significantly reducing the time required to research and develop appropriate security configurations
for installed IT products by leveraging existing checklists with in-house expertise

 Allowing smaller organizations to leverage outside resources to implement recommended practice
security configurations

 Preventing public loss of confidence or embarrassment due to compromise of publicly accessible
systems.

While the use of security checklists can significantly improve overall levels of security in organizations,
no checklist can permit a system or a product to become 100% secure. However, use of checklists that
emphasize hardening of systems against the hidden flaws or bugs inherent in software, including
verifying configuration settings and the application of patches, will typically result in greater levels of
product security and protection from future threats (e.g., zero-day vulnerabilities).

Many security checklists have already been created for protecting various IT products from threats.
Section 1.1 discusses these efforts, and it also addresses other existing efforts related to the
standardization and distribution of security checklists. Section 1.2 explains the increased need to have
automated checklists (e.g., configuration files and tools to apply them) instead of manually applied
checklists (e.g., English prose instructions).

1.1 Existing Efforts

To date, there have been many separate efforts to produce security checklists for IT products. This
section describes several of these efforts, as well as complementary efforts to assist in the identification
and classification of vulnerabilities in IT products.

1.1.1 Checklist Creation

Checklists have been developed by many parties, including IT vendors, consortia, academia, industry,
Federal agencies and other governmental organizations, and others in the public and private sectors.
Examples of well-known checklist creation efforts are as follows:

 The Defense Information Systems Agency (DISA) produces two types of documents that have
specific recommendations for the Department of Defense (DOD). Security Technical Implementation
Guides (STIG) explain security principles for a class of products (e.g., desktop applications, wireless
networking) or a specific product, and list high-level requirements for securing the product or class of
products. A related set of corresponding documents called checklists provide detailed instructions for
evaluating systems to verify that they meet the requirements specified in the STIGs.

 The National Security Agency (NSA) produces a variety of security configuration guides, including
guides for classes of products (e.g., routers, IP telephony) and guides for specific products.

 NIST has produced checklists specifically tailored for Federal agency use that are based on checklists
produced by DISA, NSA, IT product vendors, and other sources. These checklists consist of
publications that describe the settings, and some checklists also include configuration files
(specifically, .inf files) that can be applied to particular Microsoft operating systems.

 The Center for Internet Security (CIS) develops checklists that are intended to be used by a wide
range of organizations and individuals. CIS checklists are created through a consensus process
involving the recommendations of many participants.

 2

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

 IT product vendors such as Microsoft Corporation, Sun Microsystems, ThreatGuard, Citadel, and
Hewlett-Packard have been publishing security guidance documents for many of their products.

1.1.2 Checklist Repository Programs

It can be time-consuming to find checklists for specific products since the checklists are created by many
different sources. NIST decided to establish a centralized repository of checklist information to assist
checklist users in finding what they need. NIST has a beta version of its Security Configuration
Checklists Repository available for public use at http://checklists.nist.gov/. The repository contains
checklists that have been developed and screened to meet the requirements of the NIST Security
Configuration Checklists Program for IT Products, which is the predecessor to the new National Checklist
Program. As of mid-2006, the beta version of the repository hosted over 115 checklists addressing over
155 specific IT products. The format of the checklists varies widely, from documents written in English
prose to files and scripts written for use with automated tools. An example of such a tool is the DISA
Gold Disk, which can scan a system for configuration settings that differ from policy requirements. Table
1 lists the primary contributors to the beta version of the repository.

Users of the repository can browse checklist descriptions to locate and retrieve a particular checklist using
a variety of different fields, including the product category, vendor name, and submitting organization.

Table 1: Primary Contributors to the NIST Checklist Repository Beta

Contributor Contributor’s Web Site for Checklists
CIS http://cisecurity.org/

DISA http://iase.disa.mil/stigs/checklist
Hewlett-Packard http://www.hp.com/

LJK Software http://www.ljk.com/
Microsoft http://www.microsoft.com/

NIST http://checklists.nist.gov/
NSA http://www.nsa.gov/snac/

1.1.3 Vulnerability Identification and Classification

It is very helpful to have checklists use consistent references for vulnerabilities so that it is apparent
which vulnerabilities each checklist addresses. The Common Vulnerabilities and Exposures (CVE)
vulnerability naming standard3 is a dictionary of names for most publicly known security flaws in IT
software. The CVE industry standard has achieved wide acceptance by the security industry and a
number of government organizations. It is funded by US-CERT and the technical analysis work is done
at MITRE Corporation. General CVE information is available at http://cve.mitre.org/.4

CVE provides the computer security community with the following:

3 CVE has not been adopted by any formal standards body. It is a widely used self-declared standard. NIST SP 800-51, Use

of the Common Vulnerabilities and Exposures (CVE) Vulnerability Naming Scheme, is available at
http://csrc.nist.gov/publications/nistpubs/800-51/sp800-51.pdf.

4 In mid-2006, plans for a Common Configuration Enumeration (CCE) standard were announced. It is very similar to CVE,
but it addresses security misconfigurations in software deployments instead of flaws with the software itself. Checklists
could refer to CCE names for misconfigurations just as they refer to CVE names for software flaws. More information on
CCE is available at http://cve.mitre.org/cce/.

 3

http://checklists.nist.gov/
http://cisecurity.org/
http://iase.disa.mil/stigs/checklist
http://www.hp.com/
http://www.ljk.com/
http://www.microsoft.com/
http://checklists.nist.gov/
http://www.nsa.gov/snac/
http://cve.mitre.org/
http://csrc.nist.gov/publications/nistpubs/800-51/sp800-51.pdf
http://cve.mitre.org/cce/

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

 A comprehensive list of publicly known vulnerabilities

 An analysis of the authenticity of newly published vulnerabilities

 A unique name to be used for each vulnerability.

The vulnerabilities listed in CVE can be best viewed using the National Vulnerability Database (NVD),
which provides summaries for all CVE vulnerabilities. Each summary contains attributes of the
vulnerability (including a short summary and vulnerable version numbers) and links to advisories,
patches, and other resources related to the vulnerability. NVD offers a fine-grained search engine that
allows users to search for vulnerabilities containing a variety of characteristics. For example, users can
search on product characteristics such as vendor name, product name, and version number, or on
vulnerability characteristics such as severity, related exploited range, and type of vulnerability. NVD also
supports queries in OVAL format, which is described in Section 1.1.4. NVD is available at
http://nvd.nist.gov/.

1.1.4 Vulnerability and Checklist Languages

Checklists can be developed using many different formats; however, having standard formats supports
interoperability and ease of use. One language widely used for checklists, Extensible Configuration
Checklist Description Format (XCCDF), can define structured collections of security configuration rules
for sets of target systems. The XCCDF specification is designed to support information interchange,
document generation, organizational and situational tailoring, automated compliance testing, and
compliance scoring. The specification also defines a data model and format for storing results of
benchmark compliance testing. The intent of XCCDF is to provide a uniform foundation for expression
of security checklists, benchmarks, and other configuration guidance, and thereby foster more widespread
application of good security practices. More information on XCCDF is available in Sections 3 and 4 of
this publication and from NIST Interagency Report (IR) 7275, Specification for the Extensible
Configuration Checklist Description Format (XCCDF).5

Another language widely used for checklists, Open Vulnerability and Assessment Language (OVAL), is
utilized by security experts to exchange technical details about how to check for the presence of
vulnerabilities and configuration issues on computer systems. The vulnerabilities and configuration
issues are identified using tests—OVAL definitions in Extensible Markup Language (XML)—that can be
utilized by end users or implemented in information security products and services. OVAL provides a
standard XML format for vulnerability identification and scan criteria for vulnerabilities. More
information on OVAL is available at http://oval.mitre.org/ and in Sections 3 and 4 of this publication.

1.2 The Need for Automated Checklists

It has become increasingly important to have automated methods for applying checklists to systems and
comparing checklist settings to the actual settings on systems. Reasons for this include the following:

 Guidance in support of compliance initiatives (e.g., FISMA, STIGs) has become more complex,
making it more difficult to determine the applicability of a configuration given the IT system’s
categorization (e.g., low/moderate/high, Mission Assurance Category [MAC], confidentiality [public,
sensitive, secret]).

 Organizations need to secure a much greater number of systems and a much wider variety of
software.

5 NIST IR 7275 is available for download at http://checklists.nist.gov/docs/xccdf-spec-1.1.pdf. The text in this paragraph was

derived from NIST IR 7275.

 4

http://nvd.nist.gov/
http://oval.mitre.org/
http://checklists.nist.gov/docs/xccdf-spec-1.1.pdf

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

 Software has become more complex, and as a result there are typically many more security-related
configuration settings available, as well as more vulnerabilities that need to be mitigated.

 There is considerable cost in customizing security tools to implement policy. The use of automated
methods as a starting point allows tool vendors to preconfigure them using checklists based on
common policies.

 Systems face many more threats, both in terms of unique threats (e.g., types of attacks) and in the
frequency of attack attempts (e.g., malware).

 The increased rates of new vulnerabilities and new threats cause organizations to need to change the
security configuration of their systems more frequently.

 Organizations need to verify the security posture of many systems regularly as part of security
assessments and security compliance efforts.

Automation is needed to ensure that security settings are applied and verified consistently throughout an
organization and also among different organizations. Benefits of automating the use of security checklists
include the following:

 Easier to ensure compliance with a single policies or multiple policies (e.g., FISMA, Health Insurance
Portability and Accountability Act [HIPAA] of 1996, STIGs)

 Permits faster, more cooperative, and more automated definition of security rules, procedures,
guidance documents, alerts, advisories, and remediation measures

 Permits fast, uniform, manageable administration of security checks and audits

 Permits composition of security rules and tests from different community groups and vendors

 Permits scoring, reporting, and tracking of security status and checklist conformance, both over
distributed systems and over the same systems across their operational lifetimes

 Fosters development of interoperable community and commercial tools for creating and employing
security benchmarks and guidance data.

As of mid-2006, automated security checklists are available for some products, but many of these
checklists use different formats or can only be applied using proprietary tools. Also, many checklists
address some aspects of security configuration in depth, while addressing other aspects at a higher level
only or not at all. To be more effective at securing systems and more efficient to use, automated security
checklists need to be more consistent and comprehensive. Fostering the creation of such checklists is the
primary goal of the Security Content Automation Program, which is described in Section 2.

 5

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

2.

The Security Content Automation Program
In 2004, NIST launched its Security Configuration Checklists Program for IT Products. The goal for the
program was to create a central repository for IT product security checklists of any kind. This would
make it much easier for people to find up-to-date security checklists, compare the levels of security that
the checklists provided, and determine how the checklists should be implemented. As described in
Section 1.1.2, the program has been successful, and the beta repository has been widely used. However,
while many of the checklists in the repository are of high quality, they use many different specification,
test, and report formats, which limits their usefulness for most audiences. Also, commercial and
community developers have created automated tools for applying checklists, but most of these tools use
different, often proprietary, data formats for both input (checklists) and output (reports). The Security
Configuration Checklists Program was recently renamed the NIST National Checklist Program (NCP).

The Security Content Automation Program (SCAP)6 supports the goals of the National Checklist
Program, and it additionally seeks to encourage the development of checklists that are compliant or
compatible with XCCDF and/or OVAL, as described in Section 1.1.4. XCCDF and OVAL are designed
to enable easier, more uniform creation of checklists, and to allow them to be used with a variety of
commercial, open source, and government off-the-shelf (GOTS) tools. Security content automation is the
process of using tools, scripts, and other technologies to automate the application or verification of
security-related configuration settings for operating systems and applications, as specified in XCCDF
and/or OVAL-compliant or compatible checklists. SCAP leverages separate but complementary
government efforts as part of its integrated solution for security content automation. The product of the
NCP will be a single centralized database that provides both security baseline guidance and information
on newly discovered vulnerabilities in the standardized XCCDF and OVAL formats on a per-platform
basis that is downloadable by the public.

This section provides an overview of the SCAP. Section 2.1discusses the benefits that the program
provides. Section 2.2 explains how the program categorizes each checklist to make it easier for users to
find the appropriate checklists for their needs. Sections 2.3 and 2.4 provide overviews of the program’s
processes for checklist development and usage, respectively.

2.1 Program Benefits

The primary intentions of the SCAP is to improve the application, verification, and reporting of security
configuration settings. The benefits of this include the following:

 Strengthening the security of IT systems at Federal agencies and other organizations

 Enabling an automated approach for Federal agencies and other organizations to achieve compliance
to legislation such as FISMA, HIPAA, and Sarbanes-Oxley Act of 2002 [SOX]) for the technical
security controls on their systems. The program benefits compliance efforts in several ways, such as
the following:

– Ensuring that assessments are performed consistently (e.g., equal coverage, high quality,
minimizing false positives/negatives, proper scan disposition)

– Supporting the traceability of specific security settings to corresponding compliance
requirements

– Providing standardized scan criteria

6 The preferred pronunciation for SCAP is “ESS-cap”.

 6

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

– Decreasing the cost of compliance verification

 Encouraging higher accuracy of commercial-off-the-shelf (COTS) and government-off-the-shelf
(GOTS) security scanning and remediation products through the standardization of formats, the
availability of content, and the propagation of standards and content

 Reducing costs for the IT security industry by eliminating substantial duplication of effort and
standardizing vulnerability and misconfiguration checking activities.

Examples of these benefits are presented below.7

2.1.1

Streamlining Compliance to Policies

Most organizations have difficulty measuring the security of their IT systems. They also struggle first to
implement technical policy (e.g., NIST SPs, DISA STIGs) and then to demonstrate unambiguously to
various audiences (e.g, Inspector General, auditors) that they have complied and ultimately improved the
security of their systems. This difficulty arises from various causes, such as different interpretations of
policy, the complexity of systems, and human error. Another cause is the absence of standard assessment
criteria; because of this, vulnerability identification and subsequent policy compliance tools rely on their
own interpretation of what constitutes compliance or a vulnerability. In the case of identification,
different tools assessing the same vulnerability often generate different results.

The SCAP proposes to automate certain technical aspects of security by making configuration
information available in machine-readable XML formats instead of human-readable configuration guides,
checklists, databases, etc. The standard XML formats allow organizations to use COTS, GOTS, or open
source tools to automatically check their security and map it to technical compliance requirements.
Security checklists are of particular interest to Federal agencies in meeting the security requirements of
FISMA. FISMA (section 3544(b)(2)(D)(iii)) requires each agency to determine minimally acceptable
system configuration requirements and ensure compliance with them. Checklists can also map specific
technical control settings to the corresponding NIST SP 800-53 controls, which can make the verification
of compliance more consistent and efficient. For example, a checklist could examine the password
strength settings on a system and report whether or not those settings meet the requirements specified in
NIST SP 800-53.

The development and sharing of these checklists can greatly reduce what would otherwise be a
“reinvention of the wheel” for IT products that are widely used in the Federal government, such as
common operating systems, servers, and client applications. Currently, redundant efforts are assumed by
Federal agencies in identifying and categorizing vulnerabilities into groupings to satisfy compliance
regulations. At the heart of this problem is the lack of standardized assessment data and the format to
facilitate the communication or propagation of such data.

IT vendors that provide recommended checklists “out of the box” that adhere with the FISMA-associated
security control baselines will not only provide more consistency in configuration settings within the
Federal agencies but also provide a much more cost-effective method of establishing and verifying the
minimum configuration settings, even if the agencies modify the original checklists provided by checklist
developers to fine-tune the configuration settings for their particular applications and operational
environments.

7 The examples are based on scenarios presented in Section 1.2 of NISTIR 7275, Specification for the Extensible

Configuration Checklist Description Format (XCCDF).

 7

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

2.1.2

2.1.3

Combining and Customizing Checklists

An organization may wish to use settings from multiple checklists in creating organization-specific
checklists. For example, an organization might want to use settings from a checklist created by an
academic group and add to them supplementary settings from a separate checklist created by a
government agency. The SCAP makes this simple by promoting the use of standard formats for the
checklist and standard identifiers for vulnerabilities. An organization can easily reuse material from one
checklist in other checklists and customize the resulting checklist as needed to correspond to the
organization’s internal security policy. As long as the resulting checklist complies with the standard
formats, it can be used with existing tools to perform assessments and audits, and the tools can generate
reports that specify remediation measures that will bring the evaluated systems into full internal policy
compliance. Another example of combining checklists is having a checklist refer to one or more other
checklists, such as a checklist for a database product referencing the checklist for the operating system on
which the database product runs.

An organization can easily compare multiple checklists if they are in compatible automated formats. For
example, there are tools that can load and display settings from multiple checklists simultaneously, and
even allow users to select which portions of each checklist should be used. This is much easier than
manually comparing several sets of checklists in different formats, such as English prose, spreadsheets,
and scripts. It is particularly helpful for determining compliance with multiple compliance efforts, such
as NIST SP 800-53 and DISA STIGs.

Quickly Distributing Assessment Instructions

Having standard formats for checklists allows organizations to easily share information on assessing new
vulnerabilities. For example, a Federally-funded laboratory that issues a security advisory about a new
Internet worm would not only provide a prose description of the worm’s attack vector, but it would also
create and make available a set of configuration settings in a standard format that allow organizations to
assess their systems’ vulnerability to the worm. Organizations all over the world would read the
advisory, and then use installed tools that support the standard format to check their status and fix
vulnerable systems.

2.2 Checklist Categorization

As discussed earlier in the publication, there are different types of checklists. The SCAP categorizes
checklists based on their level of automation:

 Automated. An automated checklist is one that is applied through one or more tools that
automatically alter or verify settings based on the contents of the checklist. For example, many
checklists are written in the Extensible Markup Language (XML), and special tools exist that can use
the contents of the XML files to check and alter settings on systems.

 Non-Automated. As the name implies, a non-automated checklist is one that is designed to be
implemented manually, such as English prose instructions that describe the steps that an administrator
should perform to secure a system or verify its security settings.

For both automated and non-automated checklists, the SCAP also categorizes each checklist into one of
three tiers, as follows:

 Tier 1. The checklist provides helpful guidance on securing a specific product. However, the
checklist is considered ready for use on Federal agency systems after first performing extensive
modifications and testing. The checklist has not necessarily been tested in production environments.

 8

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Also, the vendor of the product secured by the checklist does not necessarily support or endorse the
use of the checklist; in some cases, using the checklist could possibly violate the terms of a support
contract with the product’s vendor.

 Tier 2. The checklist is considered ready for use on Federal agency systems after first performing
moderate modifications and testing. The controls in the checklist are mapped to the corresponding
controls from NIST SP 800-53. The checklist has been tested in production or mirrored production
environments. The vendor of the product secured by the checklist will continue to provide support
for systems to which the checklist is applied.

 Tier 3. The checklist is specific to Federal agencies,8 so it is considered ready for use on Federal
agency systems after performing minor adjustments and testing to address organization-specific
policies and environmental differences. The controls in the checklist are mapped to the
corresponding controls from NIST SP 800-53. The checklist has been tested in production or
mirrored production environments. The vendor of the product secured by the checklist will continue
to provide support for systems to which the checklist is applied. Also, if the checklist is automated, it
is OVAL or XCCDF-compliant or compatible; these terms are defined below.

Table 2 compares the six checklist categories (automated and non-automated, tiers 1 through 3). The
following items explain the characteristics listed in the table:

 “Maintenance commitment” means that the checklist submitter has agreed to maintain the checklist.

 “Vendor supported” means that if the vendor provides support for a specific product, that the vendor
will continue to provide support for the product after the checklist has been used to configure it.

 “Operationally tested” means that the content has been used on production or mirror systems in a
production or mirror environment and the results reviewed to identify potential problems with the
recommendations.

 “FISMA mapping” means that the checklist maps its specific security control settings to the
corresponding controls from NIST SP 800-53.

 “Federal agency specific” means that the content is tailored to meet general Federal agency
requirements. Examples include:

– Requiring the use of FIPS-compliant encryption

– Mapping against FIPS 199 low/moderate/high categories

– Mapping against NIST SP 800-70 environment categories (enterprise, SOHO, etc.)

 “OVAL and XCCDF compliant” means that the content is in validated OVAL and XCCDF format.
“OVAL and XCCDF compatible” means that the content is provided in a format that can
automatically be translated to OVAL and XCCDF. For example, content could be provided in a
database, and a database query could allow the content to be extracted and formatted in an OVAL and
XCCDF-compliant manner.

8 This requires that the checklist’s settings or instructions support Federal agency-specific requirements such as the use of

Federal Information Processing Standards (FIPS) compliant cryptographic algorithms. Additionally, when applicable, the
checklist should also support Federal agency compliance efforts, such as FISMA, by mapping compliance requirements to
specific settings or instructions.

 9

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Table 2: Comparison of Checklist Categories

Checklist
Category

Maintenance
Commitment

Vendor
Supported

Operationally
Tested

FISMA
Mapping

Federal
Agency
Specific

OVAL and
XCCDF

Compliant or
Compatible

Automated Checklists
Tier 1 Required Optional Optional Optional Optional Optional
Tier 2 Required Required Required Required Optional Optional
Tier 3 Required Required Required Required Required Required
Non-Automated Checklists
Tier 1 Required Optional Optional Optional Optional N/A
Tier 2 Required Required Required Required Optional N/A
Tier 3 Required Required Required Required Required N/A

The checklist categories should be helpful to users in selecting the checklists that best meet their needs.
The checklist usage process, including checklist review and selection, is described in Section 2.4.
Accordingly, checklist developers should keep the categories in mind when creating each checklist and
ensure that the checklist maps to the desired categories. Section 2.3 describes the checklist development
process.

2.3 Checklist Development Process

For checklist developers, the development process is composed of two stages. The first stage involves
only developer actions, whereas the second stage involves interactions between NIST, the developer, and
public reviewers. The first stage contains four steps, as shown in Figure 1:

 In step one, the developer becomes familiar with the procedures and requirements of the checklist
program and completes an agreement to participate in the program. Copies of the procedures,
requirements, and participation agreement are maintained in NIST SP 800-70, Security Configuration
Checklists Program for IT Products—Guidance for Checklists Users and Developers.

 In step two, the developer creates, tests, and refines the checklist. For Tier 2 or Tier 3 consideration,
the checklist must map its tests to FISMA (NIST SP 800-53) controls, and checklist testing must
include production or mirrored production environments. For Tier 3 consideration, the checklist must
be specific to Federal agencies, as described in Section 2.2. Automated tools are available for some
checklist formats to assist developers, such as verifying checklist syntax.

 In step three, the developer documents the checklist according to the guidelines of the program.

 In step four, the developer prepares a checklist submission package and submits it to NIST.

More information on steps three and four is also available from NIST SP 800-70.

In stage two, NIST then performs the remaining four steps, with interaction from the developer and public
reviewers:

 In step five, NIST screens the checklist according to program requirements, including reviewing the
FISMA mapping for Tier 2 and 3 checklists, and addresses any issues with the developer.

 The next step is a public review of the checklist, which typically lasts 30 to 60 days. Comments
submitted during the review are addressed as applicable by the developer and NIST.

 10

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

 For step seven, NIST posts the checklist on the repository and announces its presence.

 Lastly, step eight involves periodic updates to the checklist and issues of checklist archival.

NIST SP 800-70 contains a more detailed explanation of the process for screening and publishing
checklists.

Checklist Program Operational
Environment Policies
Checklist Development Criteria
Recommendations
Checklist Program Operational
Procedures

1. Agrees to Participate

4. Submits Checklist to NIST

2. Builds and Tests Checklist

8. Periodic Updates
as Necessary

7. Listing on Checklist
Repository

6. Checklist Gets Public
Review

5. NIST Screens Checklist

3. Documents Checklist

Steps for
Checklist Developers:

If Major
Update

Required

Checklist Repository,
http://checklists.nist.gov

IT
Product

Checklist

Figure 1: Steps for Checklist Developers

2.4 Checklist Usage Process

The general steps involved for checklist users are shown in Figure 2. For checklist users, the steps are
simple and straightforward:

 In step one, users gather their local requirements (e.g., IT products, the operating environment and
associated security needs) and then acquire or purchase the IT product that best suits their needs.

 In step two, users browse the checklist repository to retrieve checklists that match the user’s
operational environment and security requirements. The repository provides detailed information on
each checklist; NIST SP 800-70 describes these checklist information fields. If a product is intended
to be secure out-of-the-box (e.g., it was secured by the vendor using a security checklist), it is still

 11

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

important to check the repository for updates to that checklist. Users should verify the authenticity
and integrity of each retrieved checklist before using it (e.g., checking message digests or
cryptographic hashes for the checklist files).

 Step three involves tailoring and documenting the checklist as necessary to take into account local
security policies and functional requirements, testing the checklist, and providing any feedback to
NIST and the checklist developers. For checklists that will be used to modify the security
configurations of systems, checklist users should be particularly careful and thorough in their
planning and testing.

 Lastly, step four involves preparation for deploying the checklist, such as making configuration or
data backups, and then applying the checklist in production, either to configure the product or system
to the baseline level of security implemented in the checklist, or to verify that the product or system is
already configured properly.

For some checklist formats, tools are available to assist users in performing steps three and four, such as
customizing which checks are performed, applying the checklists, recording results, and generating
reports.

Figure 2: Steps for Checklist Users

 12

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

NIST SP 800-70 contains more details on considerations associated with each step.

 13

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

3. Understanding SCAP-Provided XML Content
One of the primary goals of the SCAP is to encourage the development of checklists in XML formats,
particularly checklists that are compliant with XCCDF and/or OVAL. This section first provides a high-
level overview of XCCDF and/or OVAL, and explains how they can be used for checklists. It then
focuses on the use of XCCDF and/or OVAL-compliant checklists for helping agencies with FISMA
compliance efforts, and also compares the FISMA and DOD 8500.2/8510 compliance efforts.

3.1 The Basics of XCCDF

As described in Section 1, Extensible Configuration Checklist Description Format (XCCDF) is a
specification language for writing security checklists, benchmarks, and related kinds of documents. An
XCCDF document represents a structured collection of security configuration rules for some set of target
systems. The specification is designed to support information interchange, document generation,
organizational and situational tailoring, automated compliance testing, and compliance scoring. The
specification also defines a data model and format for storing results of benchmark compliance testing.
The intent of XCCDF is to provide a uniform foundation for expression of security checklists,
benchmarks, and other configuration guidance, and thereby foster more widespread application of good
security practices. Development of the XCCDF specification is being led by NSA, with contributions
from other agencies and organizations.9

An XCCDF document is composed of one or more XCCDF rules. An XCCDF rule is a high-level
definition of a technical check on a system. A rule does not directly specify how a check should be
performed, but instead points to other XML documents (such as OVAL definition files, which are
explained in Section 3.2) that contain the actual instructions for performing the check. Table 3 shows
sample values from an XCCDF rule. This particular rule is for ensuring that the minimum password
length is set to at least 8 characters. The System Check section of the rule specifies the OVAL definition
example presented in Section 3.2.

Table 3: Sample Values from an XCCDF Rule

Rule Field Sample Data Explanation
Rule ID MinimumPasswordLength-8 The identifier for this rule
Title Minimum Password Length = 8 The title for the rule
Description This setting specifies the minimum

length of a password in characters.
The rationale behind this setting is
that longer passwords are more
difficult to guess and crack than
shorter passwords. The downside
is that longer passwords are often
more difficult for users to
remember. Organizations that want
to set a relatively large minimum
password length should encourage
their users to use passphrases,
which may be easier to remember
than conventional passwords

The description of the rule

9 More information on XCCDF is available at http://checklists.nist.gov/xccdf.html and from NIST IR 7275, Specification for

the Extensible Configuration Checklist Description Format (XCCDF), which is available for download at
http://checklists.nist.gov/docs/xccdf-spec-1.1.pdf.

 14

http://checklists.nist.gov/xccdf.html
http://checklists.nist.gov/docs/xccdf-spec-1.1.pdf

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Rule Field Sample Data Explanation
References IA-5

(http://csrc.nist.gov/publications/nist
pubs/800-53/SP800-53.pdf)

References to checklists and other documents
that contain requirements to which this rule
maps—in this case, the IA-5 (Authenticator
Management) control from NIST SP 800-53

Requires IA-5 The group to which this rule belongs, if any; in
this case, the IA-5 group

System Check
 Schema http://oval.mitre.org/OVAL/XMLSch

ema/oval
Which XML schema should be used; in most
cases (including this one), the OVAL schema
is specified

 OVAL definition file
 reference

WindowsXP-SP800-68.xml Name of the OVAL definition file

 OVAL definition ID oval:gov.nist.1:def:20 The identifier of the OVAL definition to be
used; in this case, the definition used as the
basis for the Table 5 example

An XCCDF document typically contains dozens or hundreds of XCCDF rules. The document also
defines at least one XCCDF profile, which specifies which rules should be used to check a particular type
of system. For example, a profile for a standard enterprise desktop computer could enable a rule that
checks for a minimum password length of 8 characters, while a profile for a computer with high security
requirements could instead enable a rule that checks for a minimum password length of 12 characters.
Each profile can be thought of as a policy that specifies the technical security control setting requirements
for a type of system. By creating a policy that corresponds to a particular set of requirements, such as
FISMA, STIGs, or HIPAA, the policy can be used to map those high-level requirements to the
corresponding OVAL definitions and tests, as described in Section 3.2.

Optionally, an XCCDF document can have one or more XCCDF groups; each group contains one or more
XCCDF rules and/or one or more other XCCDF groups. Having a group allows multiple related rules to
be enabled or disabled collectively instead of individually.

Another option involving XCCDF rules is to have user-definable values for certain rules, known as
XCCDF values. Table 4 shows sample values from an XCCDF value. This particular value is for setting
the duration of an automated account lockout when too many consecutive failed login attempts have
occurred. In this case, the value has been set to 15 minutes. To take organization policies specifying a
different value into account, a checklist user can either alter this value or override this value with a
different number in the profile(s) that have rules that use the value. Both of these options are explained in
more detail in Section 4. The Lower-Bound and Upper-Bound fields restrict what numbers the checklist
user can enter when specifying a new number for AccountLockoutDurationTime.

Table 4: Sample Values from an XCCDF Value Statement

Rule Field Sample Data Explanation
Value ID AccountLockoutDurationTime The identifier for this value
Type number The type of the value (e.g., string, number,

Boolean)
Operator greater than or equal The comparison operator (in this case, the

system’s value for account lockout duration time
must be greater than or equal to the specified
value)

 15

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Rule Field Sample Data Explanation
Title Account Lockout Duration Time The title for the value
Description This value specifies how long the user

account should be locked out. This is often
set to a low but substantial value (e.g., 15
minutes), for two reasons. First, a legitimate
user that is accidentally locked out only has
to wait 15 minutes to regain access, instead
of asking an administrator to unlock the
account. Second, an attacker who is
guessing passwords using brute force
methods will only be able to try a small
number of passwords at a time, then wait 15
minutes before trying any more. This greatly
reduces the chances that the brute force
attack will be successful.

The description of the value

Question Account lockout duration time (in minutes) Explanatory text that can be presented to the
user when is customizing the checklist

Value 15 The value assigned to the
AccountLockoutDurationTime value (called a
“value number” below for clarity)

Default 15 A suggested default value number for checklist
users’ reference; not actually used when
performing checks or applying configuration
settings

Lower-Bound 10 If a checklist user alters the value number, it
cannot be set lower than 10

Upper-Bound 30 If a checklist user alters the value number, it
cannot be set higher than 30

When an XCCDF profile is used to evaluate the security configuration of a system against a policy, the
following types of documents are typically generated:10

 In the XCCDF language, a benchmark report is a human-readable document containing the results of
the evaluation, including a list of the rules for which the system passed and failed, and also a
“compliance score” that summarizes how closely the system complied with the policy. Many scoring
models can be used, but the XCCDF specification describes three:

– The default scoring model generates a compliance score for each group and also a score at the
top level, which is based on the scores for the rules and groups directly referenced by the
evaluated profile. The advantage of this model is that it is easy to see which groups of checks
were least compliant. The disadvantage of this model is that it is complex—weightings
typically need to be specified for the groups and sometimes rules as well to ensure that the
relative importance of each group and rule is taken into account when calculating the scores.

– The flat model generates a single score for all rules that were used, based on the relative
weighting assigned to each rule. It does not do any scoring based on group definitions. In
the flat model, the weightings of all the selected rules are added together to create a
maximum possible score. That score can then be compared to the total of the weightings of
all the passed rules. This model is simpler than the default scoring model, but because it will

10 This material is based on Section 3.3 of NIST IR 7275.

 16

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

generate different maximum possible scores on different types of systems, it makes it more
difficult to compare the relative security of different systems.

– The flat unweighted model is similar to the flat model, except that it ignores all weightings.
This is a very simple model, but the loss of weighting means that a relatively unimportant
rule and a critically important rule are counted equally, which could lead to somewhat
misleading scores.

 A benchmark results file is machine-readable, typically in XML, and contains detailed information on
the results of the evaluation.

 A fix script is a machine-readable file that can be applied to a system to fix some or all of the
problems that were identified during the evaluation.

3.2 The Basics of OVAL

As described in Section 1, the Open Vulnerability and Assessment Language (OVAL) is used to specify
the technical details for checking systems for the presence of vulnerabilities and configuration issues. A
set of instructions used to check for a security problem, such as an incorrect minimum password length
setting, is known as an OVAL definition. A file containing one or more OVAL definitions (often
hundreds or even thousands) is known as an OVAL definition file. A single definition file often contains
many more tests than would ever be run against a single system; for example, a file could contain checks
for minimum password lengths of at least 8 characters and at least 12 characters, but typically at most one
of these two checks would be run against a particular system. Actually, the intention of the SCAP is not
to have OVAL definition files used directly to perform checks on systems, but rather to have an XCCDF
file use just the OVAL definitions that are needed to check a particular system. Further explanation of
this is provided in Section 3.1.

There are four types of OVAL definitions:11

 Vulnerability definitions, which define “the conditions that must exist on a computer for a specific
vulnerability to be present”

 Patch definitions, which define “the conditions on a computer that determine whether a particular
patch is appropriate for a system”

 Inventory definitions, which define “the conditions on a computer that determine whether a specific
piece of software is installed on the system”

 Compliance definitions, which define “the conditions on a computer that determine compliance with
a specific policy or configuration statement”.

Table 5 shows sample values that have been extracted from an actual OVAL compliance definition.
Explanations of each value have also been provided. The definition ID, version, and class are standard
fields that are part of every OVAL definition. The exact types of information contained in the metadata
vary among definitions, but at a high level they explain the intent of the definition. The criteria provide
the technical details of how the system will be checked for the items of interest, such as the presence of a
vulnerability or the value of a configuration setting. Every OVAL definition has one or more criteria, and
the definition specifies how the results produced by the criteria are combined (e.g., AND, OR).

11 These definitions are taken from the OVAL Web site’s “Structure of the Language” page, located at

http://oval.mitre.org/language/about/structure.html.

 17

http://oval.mitre.org/language/about/structure.html

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

The example in Table 5 has two criteria. One of the criteria is an OVAL test, which is a specific system
check—in this case, that the system is configured to require a minimum password length of at least 8
characters. The other criterion is actually another definition—in this case, an inventory definition that
confirms that the target system is running Windows XP SP2 on a 32-bit architecture. Because of the
order of the criteria, the inventory definition will be checked before the test is performed, which makes
sense because the test may not be valid if run on a different operating system version.

Table 5: Sample Values from an OVAL Criteria Definition

Definition Field Sample Data Explanation
Definition ID oval:gov.nist.1:def:20 The identifier for this definition; unique within

the OVAL definition file
Definition version 1 The version of the definition
Definition class compliance Which type of definition this is
Metadata
 Title Minimum Password Length of 8

Characters
The title for the definition

 Affected product Microsoft Windows XP, SP2, 32 bit The operating system or application version(s)
to which this definition is applicable

 References NIST SP800-68 Appendix A, 1.4b,
http://csrc.nist.gov/itsec/download_
WinXP.html
DISA FSO Checklist, 5.4.1.3
DISA VMS 6XID V0001106
DISA PDI ID 1740

References to checklists and other documents
that contain requirements to which this
definition maps

 Description Minimum password length is 8
characters

The description for the definition—often
considerably longer than the title, but in this
case roughly the same length

 NIST IA-5 Specific security controls from NIST SP 800-
53 to which this definition maps—in this case,
IA-5, which is Authenticator Management12

 Additional
 references

NSA NT Guide: Chap 5, p. 30; NSA
WIN2K Guide, Group Policy:
Security Configuration Toolset:
Chap. 3, p. 22; NSA XP Guide:
Chap. 4, p. 21; DODD 8500.1 Para
4.18; DODI 8500.2 DCCS-2,
DCSC-1; CJCSM 6510.01 App. A,
Enclosure A, Para. 5.b (8)

References to additional security configuration
approaches that contain requirements to which
this definition maps

Criteria
 Definition reference oval:gov.nist.1:def:9 The identifier of another OVAL definition,

which is evaluated to determine if it is true or
false. In this case, the referenced definition
calls four tests, and if they are all evaluated as
true, then the definition is true, otherwise it is
false.

 Definition comment Precondition 9: Windows family,
Windows XP, SP2, 32 bit

A brief explanation of what the definition
addresses; in this case, it is used to determine
if the target system is running Windows XP
SP2 on a 32-bit architecture

12 The XCCDF profile that references this OVAL definition also specifies IA-5 as the NIST SP 800-53 mapping. This has

been done in both the XCCDF document and OVAL definition file in case either file is used without the other.

 18

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Definition Field Sample Data Explanation
 Test reference oval:gov.nist.1:tst:16 The identifier of an OVAL test, which is

evaluated as true or false as part of evaluating
this definition

 Test comment Minimum password length is 8
characters

A brief explanation of what the test addresses;
in this case, it is used to determine if the target
system requires a minimum password length
of 8 characters

As the example in Table 5 shows, definitions often reference one or more tests. The instructions that
comprise each test are also included in the OVAL definition file. A test does not directly contain the
technical details of checking the system, but instead references other OVAL constructs. Typically a test
references an OVAL object, which is a logical construct for a portion of the target system (e.g., password
policy, file, Windows registry key), and an OVAL state, which is a particular check of the specified
OVAL object (e.g., verifying that the password policy requires a minimum password length of at least 8
characters, verifying the existence of a file). An OVAL state can also reference one or more OVAL
variables, which are user-definable values (e.g., minimum password length value of 8). This might sound
unnecessarily complex, but it is a highly modular approach that greatly reduces redundancy and allows
people to use the OVAL definitions without having to understand the details behind them, such as how
the tests are constructed. For those people that want all the details, such as checklist developers, the
information is easily accessed by searching the OVAL definition file for the definition, test, object, and
state ID numbers, and reading the instructions associated with each entity. More technical details on
OVAL definition files, including examples of the XML code for OVAL definitions, are presented in
Section 4. An OVAL definition tutorial is also available from the OVAL Web site at
http://oval.mitre.org/language/about/definition.html.

3.3 Using XCCDF and OVAL for FISMA Compliance

Checklists intended for use in the Federal government are more valuable if they map to the FISMA
security control baselines. NIST SP 800-53, Recommended Security Controls for Federal Information
Systems, provides a catalog of security controls for FISMA compliance. It uses groupings of the controls
to create three minimum baseline security control sets for Federal information systems—low, moderate,
and high impact, as specified in Federal Information Processing Standards (FIPS) Publication (PUB) 199,
Standards for Security Categorization of Federal Information and Information Systems.13 Every system
needs to be protected, but the level of protection may vary based on the value of the system and its data;
low, moderate, or high impact estimates the potential impact of a security breach involving that particular
system. Accordingly, FISMA specifies the most stringent minimum security controls for high impact
systems and the least stringent for low impact systems.

To support FISMA compliance, an XCCDF document could contain separate policies for low, moderate,
and/or high impact systems (in many cases, a system is unlikely to be used at all three impact levels, such
as an enterprise firewall not being low impact). Checklist users can then use the same XCCDF document
and associated OVAL definition files to assess similar systems that are at different impact levels, which is
much more convenient and efficient than having separate documents and files for each impact level.

Another way to tailor XCCDF documents to support FISMA compliance is to have them take into
account the different generic operational environments in which systems function. For example, a system
located in a secured agency-owned building and connected to a protected internal network might have
different security needs than a similar system used on an employee’s home network or directly connected

13 FIPS PUB 199 is available for download from http://csrc.nist.gov/publications/fips/index.html.

 19

http://oval.mitre.org/language/about/definition.html
http://csrc.nist.gov/publications/fips/index.html

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

to the Internet. Having XCCDF profiles take these major environmental differences into account can be
very helpful to the checklists’ users by reducing the amount of time they need to customize the checklists
for their systems’ environments.

The SCAP identifies the following broad and specialized operational environments, any one of which
should be common to most audiences:

 Managed or Enterprise are typically large organizational systems with defined, organized suites of
hardware and software configurations, usually consisting of centrally-managed workstations and
servers protected from the Internet by firewalls and other network security devices.

 Standalone or Small Office/Home Office (SOHO) describes small, informal computer installations
that are used for home or business purposes. Standalone encompasses a variety of small-scale
environments and devices, ranging from laptops, mobile devices, or home computers, to
telecommuting systems, to small businesses and small branch offices of a company.

 Custom environments contain systems in which the functionality and degree of security do not fit the
other environments. Two typical Custom environments are Specialized Security-Limited
Functionality and Legacy:

– Specialized Security-Limited Functionality (SSLF). An SSLF environment contains
systems and networks at high risk of attack or data exposure, with security taking precedence
over functionality. It assumes systems have limited or specialized (not general purpose
workstations or systems) functionality in a highly threatened environment such as an outward
facing firewall or public Web server or whose data content or mission purpose is of such
value that aggressive trade-offs in favor of security outweigh the potential negative
consequences to other useful system attributes such as legacy applications or interoperability
with other systems. Checklists for this environment are not recommended for home users or
for large scale general purpose systems. An SSLF environment could be a subset of another
environment.

– Legacy. A Legacy environment contains older systems or applications that may use older,
less-secure communication mechanisms. Other machines operating in a Legacy environment
may need less restrictive security settings so that they can communicate with legacy systems
and applications. A Legacy environment could be a subset of a Standalone or Managed
environment.

Separate XCCDF profiles can be created for each applicable operational environment in which a system
might be deployed. However, it is more helpful to create profiles that take into account both the three
impact levels and the four operational environments. This means that for a particular type of target, the
XCCDF document could contain up to 12 different profiles. In most cases, not all profiles will be needed
because the target is not expected to be used in certain environments or assigned certain impact levels, or
the target is not expected to have certain impact/environment combinations. For example, an enterprise
intrusion detection and prevention system would not be run in a SOHO environment, and it would not
have an impact level of low. Another example is that SSLF environment would not have any low impact
systems.

Table 6 shows an example of how the minimum password length requirement for a Windows XP
Professional system might vary based on impact level and operational environment. The N/A entries
reflect impact/environment combinations that are not deemed feasible, so the XCCDF document for this
target system would contain 10 profiles. For those profiles that show a value of 8 in Table 6, the profile
would use the MinimumPasswordLength-8 rule (the rule shown in Table 3); for the entries with a value of

 20

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

12, the profile would use the MinimumPasswordLength-12 rule. Table 7 provides another view of how
these two rules are used by the 10 profiles.

Table 6: Example of Minimum Password Lengths by Impact and Environment

Environment High Moderate Low
Enterprise 12 8 8

SOHO 12 8 8
SSLF 12 N/A N/A

Legacy 12 8 8

The 10 profiles would each use a somewhat different combination of rules to specify the requirements
imposed by the different impact levels and operational environments. Table 7 illustrates how several
sample rules might be used by the profiles. Most of the sample rules, such as those for password history
enforcement and account lockout reset, are used by all 10 of the profiles. Other rules are used by only
some profiles, including the password length rules and the account lockout threshold rules.

Table 7: Examples of Rule Usage for Windows XP Professional Profiles

Rule Identifier

Rule’s
SP

800-53
Control
Mapping

En
te

rp
ris

e/
H

ig
h

En
te

rp
ris

e/
M

od
er

at
e

En
te

rp
ris

e/
Lo

w

SO
H

O
/H

ig
h

SO
H

O
/M

od
er

at
e

SO
H

O
/L

ow

SS
LF

/H
ig

h

Le
ga

cy
/H

ig
h

Le
ga

cy
/M

od
er

at
e

Le
ga

cy
/L

ow

PasswordHistoryEnforcement IA-5

MaximumPasswordAge IA-5

MinimumPasswordAge IA-5

MinimumPasswordLength-8 IA-5

MinimumPasswordLength-12 IA-5
PasswordComplexity IA-5

PasswordStorageReversibleEncryption IA-5

AccountLockoutDuration AC-7

AccountLockoutThreshold-10 AC-7
AccountLockoutThreshold-50 AC-7

AccountLockoutReset AC-7

Table 7 also illustrates how FISMA requirements can be mapped to specific technical checks. The
second column in Table 7 lists the SP 800-53 control to which each rule maps. These controls can be
specified by creating a group for each SP 800-53 control (e.g., IA-5, AC-7) and making each rule a
member of the appropriate group. This makes it easy to determine which SP 800-53 controls a particular
profile partially or fully checks, and it allows scores to be produced for each defined control. If the
groups for the controls within a family (e.g., AC-1, AC-2, AC-3) are also placed into a separate group
(e.g., AC), then scores can be generated for each family, as well as each individual control.

 21

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

3.4 Comparing FISMA and DOD 8500.2/8510 Compliance

Like most Federal agencies, both NIST and DISA have the operational requirement of performing
FISMA-compliant reporting, which assumes a granular asset inventory (both computing and non-
computing), asset posture, and asset security as a function of actual and potential vulnerabilities and
security control compliance. Both NIST and DISA are also tasked via legislation or guidance documents
(FISMA and DOD 8500.2/8510, respectively), to provide guidance for security compliance processes to
their respective audiences. NIST does this in the form of NIST SP 800-53 and related documents (e.g.,
FIPS 199), and DISA does this through their STIGs and associated technology-specific checklists.

In meeting their similar objectives for different audiences, both NIST and DISA need to define how a
system can be categorized as a function of mission criticality. Associating the appropriate vulnerabilities
with a system is a daunting task in the absence of automated tools and agreed-upon characterizations.
Both agencies have provided guidance for determining the following:

 What constitutes an asset (both computing and non-computing)

 The category of the asset and the controls that must protect the asset

 Appropriately applicable vulnerabilities (AAV)

 Status of an asset as a function of the AAV.

Making these determinations for systems, such as part of certification and accreditation (C&A) efforts,
can be quite complex.

NIST and DISA have developed separate, yet similar, approaches to determining the category of an asset:

 NIST SP 800-53 defines a methodology based on assigning a high, moderate, or low rating to the
potential impact of disruptions of confidentiality, integrity, and availability of a system.

 DOD 8500.2/8510 defines a methodology that focuses strictly on the potential impact of disruptions
of confidentiality. It assigns an impact rating of Mission Assurance Category (MAC) 1, 2, or 3. It
also categorizes systems as public, sensitive, and classified.

Given the similarity of their missions for different sectors, NIST and DISA have and will continue to
share tools and information for the benefit of their respective audiences. Also, FISMA and DOD
8500.2/8510 require many of the same controls; Appendix G of NIST SP 800-53, Revision 1 maps
controls between the two initiatives to demonstrate that the majority of SP 800-53 controls correspond to
one or more controls from DOD 8500.2,with slight differences. Therefore, many checklist components,
such as XCCDF rules and OVAL criteria and tests, could potentially be used for both FISMA and DOD
8500.2 compliance efforts, as long as the components are mapped correctly to the corresponding FISMA
and DOD 8500.2 requirements.

 22

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

4.

4.1.1

Customizing SCAP-Provided XML Content
Checklist users often have to customize checklists to meet their organizations’ needs. One common
reason is to ensure that a checklist takes into account an organization’s specific policies and environment
characteristics. Another is to take a checklist for a general type of system (e.g., any system running a
particular OS type and version) and customize it for such a system in a particular role, such as an e-mail
server or Web server. In many cases, an organization can customize checklists to meet their needs with
just a few simple modifications. This section provides an introduction into customizing XCCDF and
OVAL-based checklists provided through the NIST SCAP.

4.1 XCCDF Customization

Because XCCDF documents essentially contain the policy for the target system, and most customizations
to checklists involve altering the default policy to correspond to the organization’s policies and
environment, most alterations of SCAP-provided XML content involve changing XCCDF documents.
This section focuses on the minor adjustments most often performed to customize XCCDF content. It is
outside the scope of this publication to explain how to make major modifications to checklists or to create
a new XCCDF document from scratch; information supporting those tasks is available from NISTIR
7275, Specification for the Extensible Configuration Checklist Description Format (XCCDF). There are
also many options available for XCCDF statements that are not discussed in this publication, but NISTIR
7275 contains explanations of them as well.

This section uses a top-down approach to explaining the checklist customization process: from profiles
and groups to rules and values.

XCCDF Profiles

As mentioned previously, an XCCDF profile is essentially a policy that is applied to the target system or
compared to the configuration of the target system. Figure 3 shows an example of some of the XML code
that comprises a profile. Because profiles can specify the rules and groups of rules that should be used,
profiles are often hundreds or even thousands of lines long. This excerpt shows only a sampling of the
code for brevity. The following briefly explains what the excerpt contains:

 The first line assigns a profile ID and the second line gives a title for the profile.

 The next set of lines specifies that several groups (e.g., AC-9, AC-10, AC-15) be deselected for this
profile. By default, all groups are selected,14 so these settings override the defaults and ensure that
the rules in those groups will not be used.

 After the Password Policy Settings comment, the next set of lines specifies which rules are selected or
deselected for this profile. For example, the PasswordHistoryEnforcement rule will be used, but the
MinimumPasswordLength-12 rule will not be used.

 The next-to-last line defines a value that will be used by one of the rules. In this case, it is defining
the account lockout duration time as 30 minutes. This value happens to be used by the rule called in
the preceding line, AccountLockoutDuration.

14 The definition of a group can include a different default setting, so a particular group could be deselected by default.

However, in most cases this is not done because it is much clearer to have all the group selected/deselected settings in one
place—the profile—instead of scattering them throughout a long XCCDF document. Also, if the XCCDF document has
multiple profiles, it is extremely helpful to have all of the selected/deselected settings in a single place to facilitate
comparisons of the profiles.

 23

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

 The last line indicates the end of the profile definition.

<cdf:Profile id="Enterprise-Moderate">

 <cdf:title>Enterprise-Moderate</cdf:title>

 <cdf:select idref="AC-9" selected="0" />

 <cdf:select idref="AC-10" selected="0" />

 <cdf:select idref="AC-15" selected="0" />

 <cdf:select idref="AC-16" selected="0" />

 <cdf:select idref="AT-5" selected="0" />

 <cdf:select idref="AU-10" selected="0" />

 <cdf:select idref="PE-4" selected="0" />

 <!-- ***************************** -->

 <!-- Password Policy Settings -->

 <!-- ***************************** -->

 <cdf:select idref="PasswordHistoryEnforcement" selected="1" />

 <cdf:select idref="MaximumPasswordAge" selected="1" />

 <cdf:select idref="MinimumPasswordAge" selected="1" />

 <cdf:select idref="MinimumPasswordLength-8" selected="1" />

 <cdf:select idref="MinimumPasswordLength-12" selected="0" />

 <cdf:select idref="PasswordComplexity" selected="1" />

 <cdf:select idref="AccountLockoutDuration" selected="1" />

 <cdf:set-value idref="AccountLockoutDurationTime">30</cdf:set-value>

</cdf:Profile>

Figure 3: Example of XCCDF Profile Definition

This profile example could be customized in a few ways, as follows:

 Changing which groups are selected and deselected. To deselect a group, add a line modeled after
those above. To select a group that is currently deselected, either delete its deselection line from the
profile, or change the selected value from 0 to 1.

 Changing which rules are selected and deselected. To deselect a rule, change its selected value
from 1 to 0; to select it, change its selected value from 0 to 1. In the example above, if an
organization had a more stringent minimum password length requirement than the Enterprise
Moderate profile specifies, then the checklist user could deselect the MinimumPasswordLength-8 rule
and select the MinimumPasswordLength-12 rule.

 Adding new groups or rules. Checklist users may need to add new groups or rules; for example, if
an organization has a minimum password length requirement of 10, and there is no existing rule that
can check for that specific requirement, then a new rule would need to be created. Once the rule was
created, the checklist user could then add a line to the profile, based on the existing lines, that
referenced the rule’s ID and set it to be selected or deselected.

 24

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

4.1.2 XCCDF Groups

An XCCDF group is a collection of rules and/or other groups. Groups can be defined in one of two ways:
the group definition can include the definitions for all the rules and/or groups that belong to it, or the rules
and/or groups that belong to the group can explicitly state in their individual definitions to which group
they belong. The latter is a more modular approach that allows all rules to be defined within a single area
of an XCCDF document. Figure 4 shows an example that uses both approaches. It is the definition of the
group named IdentificationAndAuthentication, which is composed of seven other groups. Those seven
groups are defined within the IdentificationAndAuthentication definition. However, notice that each of
the additional group definitions is empty—no rules or other groups are listed.

<cdf:Group id="IdentificationAndAuthentication" weight="2">

 <cdf:title>Applicable 800-53 Identification and Authentication</cdf:title>

 <cdf:Group id="IA-1">

 <cdf:title>Identification and Authentication Policy and
Procedures</cdf:title>

 </cdf:Group>

 <cdf:Group id="IA-2">

 <cdf:title>User Identification and Authentication</cdf:title>

 </cdf:Group>

 <cdf:Group id="IA-3">

 <cdf:title>Device Identification and Authentication</cdf:title>

 </cdf:Group>

 <cdf:Group id="IA-4">

 <cdf:title>Identifier Management</cdf:title>

 </cdf:Group>

 <cdf:Group id="IA-5">

 <cdf:title>Authenticator Management</cdf:title>

 </cdf:Group>

 <cdf:Group id="IA-6">

 <cdf:title>Authenticator Feedback</cdf:title>

 </cdf:Group>

 <cdf:Group id="IA-7">

 <cdf:title>Cryptographic Module Authentication</cdf:title>

 </cdf:Group>

</cdf:Group>

Figure 4: Example of XCCDF Group Definition

 25

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Figure 5 shows an example of a rule, MinimumPasswordLength-8, that includes a group membership
declaration. The line <requires idref="IA-5" /> indicates that the rule is part of the IA-5 group.
Alternately, group membership could have been indicated by defining the MinimumPasswordLength-8
rule as part of the IA-5 group definition.

Groups are used for both management purposes (e.g., selecting or deselecting multiple rules at once) and
for scoring purposes (e.g., using the default scoring model, scores are reported by group), so there are
many reasons why they might need to be customized. Still, most customization involves adding groups
or rules to a group, or removing groups or rules from a group. This can be done in two ways. One is to
add group or rule definitions to the group definition or remove existing definitions from it. The other is to
alter individual group or rule definitions to declare which groups and rules are part of the group; this is
done by adding, removing, or altering the “requires idref” lines in the group and rule definitions.

Another reason to customize a group is to alter its weighting, which (if not the default) is specified in the
first line of the group definition. Changing the weighing simply involves altering the weight number.

4.1.3 XCCDF Rules

An XCCDF rule is a high-level definition of a technical check on a system. Figure 5 shows an example
of the code for a rule definition. The following briefly explains what the example contains:

 The first line assigns a rule ID and a weight.

 The second line gives a title for the rule.

 The third line (“description”) describes the intent of the rule.

 The fourth line (“reference”) provides a reference for more information about the requirement to
which this rule maps.

 The fifth line (“requires”) specifies the group to which this rule belongs. In this case, the rule belongs
to the IA-5 group.

 The next few lines (“check”) specify which low-level technical check should be performed (in this
case, “oval:gov.nist.1:def:20”) and what XML file and XML should be used to perform that check.

 The last line indicates the end of the rule definition.

 26

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

<Rule id="MinimumPasswordLength-8" weight="4">

 <title>Minimum Password Length = 8</title>

 <description>This setting specifies the minimum length of a password in
characters. The rationale behind this setting is that longer passwords
are more difficult to guess and crack than shorter passwords. The
downside is that longer passwords are often more difficult for users to
remember. Organizations that want to set a relatively large minimum
password length should encourage their users to use passphrases, which
may be easier to remember than conventional passwords.</description>

 <reference href="http://csrc.nist.gov/publications/nistpubs/800-53/SP800-
53.pdf">IA-5</reference>

 <requires idref="IA-5" />

 <check system="http://oval.mitre.org/OVAL/XMLSchema/oval">

 <check-content-ref href="WindowsXP-SP800-68.xml"
 name="oval:gov.nist.1:def:20" />

 </check>

</Rule>

Figure 5: Example of XCCDF Rule Definition

This rule example could be customized in several ways, including the following:

 Changing which technical checks the rule uses. If the desired check is in the same XML file,
simply alter the check’s name in the “name” field. If the desired check is in a different XML file,
update the check name, filename, and/or schema fields as needed, as shown in the “check” fields in
the example.

 Adding or removing technical checks. A rule can perform more than one check; each check has its
own “check” definition, like the one shown in Figure 5. So, adding a check simply involves adding
another “check” definition, and removing a check is done by deleting the unwanted “check”
definition.

 Changing its weight. This can be done by altering the weight number in the first line of the
definition. However, profiles that use the rule can override the weight by specifying their own values,
so altering the value in the definition might not necessarily cause the actual weighing to change. In
such a case, it would be necessary to instead alter the profile definitions to use the desired weight for
the rule.

 Changing its group membership. This is explained in Section 4.1.2.

 Updating the reference. If the reference needs updated (e.g., mapping the rule to a new
requirement), simply edit the “reference” line.

4.1.4 XCCDF Values

An XCCDF value is a user-definable value that is referenced by a rule. Figure 6 shows an example of a
definition for a value, AccountLockoutDurationTime. Users that need to change the value have two
options. They can adjust what is assigned in the value statement (in this case, 15), which will affect all
rules that use this value. Alternatively, they can leave the value code unchanged and instead alter the
profiles that use this rule. For example, suppose that the AccountLockoutDurationTime value is
referenced by eight profiles within an XCCDF document. To comply with the different policy

 27

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

requirements of each profile, the user might set the number in the value definition to the organization’s
standard value, and then alter the references to the value in the profiles that need to set it to something
other than the standard value. The next-to-last line of Figure 3 shows an example of how such a value is
set in a profile.

<cdf:value id="AccountLockoutDurationTime" type="number" operator="greater
than or equal">

 <cdf:title>Account Lockout Duration Time</cdf:title>

 <cdf:description> This value specifies how long the user account should be
locked out. This is often set to a low but substantial value (e.g., 15
minutes), for two reasons. First, a legitimate user that is
accidentally locked out only has to wait 15 minutes to regain access,
instead of asking an administrator to unlock the account. Second, an
attacker who is guessing passwords using brute force methods will only
be able to try a small number of passwords at a time, then wait 15
minutes before trying any more. This greatly reduces the chances that
the brute force attack will be successful.</cdf:description>

 <cdf:question>Account lockout duration time (in minutes)</cdf:question>

 <cdf:value>15</cdf:value>

 <cdf:default>15</cdf:default>

 <cdf:lower-bound>10</cdf:lower-bound>

 <cdf:upper-bound>30</cdf:upper-bound>

</value>

Figure 6: Example of XCCDF Value Definition

 28

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

4.2 OVAL Customization

The official OVAL Web site includes an OVAL definition repository, where anyone can download
accepted (approved) definitions.15 Anyone may create their own definitions and submit them to the
repository for consideration and approval, which is conducted through a formal review process.
Typically, individual users do not need to customize existing OVAL definitions; instead, it is much more
likely that users will write their own definitions. This section will present an example of an OVAL
definition and its components—tests, objects, states, and variables—as a model for creating simple
OVAL definitions. The OVAL Web site (http://oval.mitre.org/) contains extensive information on
creating more complex and powerful OVAL definitions.

4.2.1

OVAL Definitions

As mentioned in Section 3.2, there are four types of OVAL definitions: vulnerability, patch, inventory,
and compliance. All of these types of definitions are widely used in checklists. Because their
construction is rather similar, this section will only review an example of a compliance definition, which
is shown in Figure 7. The following briefly explains what the example contains:

 The first line assigns a definition ID, provides a version number for the definition, and designates the
definition as a compliance definition.

 The group of lines tagged with “metadata” is, as the name implies, metadata for the definition. This
includes the definition title, target platform, references, description, and NIST SP 800-53 control
mapping.

 The next group of lines, tagged with “criteria”, lists the conditions to be checked when evaluating the
system. The first criterion calls another definition, oval:gov.nist.1:def:9, that checks which platform
the target system is using. The second criterion calls a test, oval:gov.nist.1:tst:16, that checks the
minimum password length on the target system. The definition of this test is shown in Figure 8.

 The last line indicates the end of the definition.

15 The repository is located at http://oval.mitre.org/repository/index.html.

 29

http://oval.mitre.org/
http://oval.mitre.org/repository/index.html

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

<definition id="oval:gov.nist.1:def:20" version="1" class="compliance">

 <metadata>

 <title>Minimum Password Length of 8 Characters</title>

 <affected family="windows">

 <platform>Microsoft Windows XP</platform>

 <product>Windows XP, SP2, 32 bit</product>

 </affected>

 <reference source="NIST SP800-68 Appendix A" ref_id="1.4b"
ref_url="http://csrc.nist.gov/itsec/download_WinXP.html" />

 <reference source="DISA FSO Checklist" ref_id="5.4.1.3" />

 <reference source="DISA VMS 6XID" ref_id="V0001106" />

 <reference source="DISA PDI ID" ref_id="1740" />

 <description>Minimum password length is 8 characters</description>

 <NIST>

 <SP800-53>IA-5</SP800-53>

 </NIST>

 <Additional_Reference>NSA NT Guide: Chap 5, p. 30; NSA WIN2K Guide,
Group Policy: Security Configuration Toolset: Chap. 3, p. 22; NSA XP
Guide: Chap. 4, p. 21; DODD 8500.1 Para 4.18; DODI 8500.2 DCCS-2,
DCSC-1; CJCSM 6510.01 App. A, Enclosure A, Para. 5.b
(8)</Additional_Reference>

 </metadata>

 <criteria>

 <extend_definition definition_ref="oval:gov.nist.1:def:9"
comment="Precondition 9: Windows family, Windows XP, SP2, 32 bit" />

 <criterion test_ref="oval:gov.nist.1:tst:16" comment="Minimum password
length is 8 characters" />

 </criteria>

</definition>

Figure 7: Example of OVAL Definition

 30

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

4.2.2 OVAL Tests, Objects, States, and Variables

Section 4.2.1 mentions that OVAL tests are called as criteria within compliance definitions. Figure 8
shows an example of an OVAL test. The first line specifies the test’s name (in this case,
oval:gov.nist.1:tst:16), version, and XML schema reference, along with providing a comment describing
the purpose of the test. The second line specifies the object to be accessed, and the third line specifies the
state to be checked for that object.

<passwordpolicy_test id="oval:gov.nist.1:tst:16" version="1" check="all"
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows"
comment="Minimum password length is 8 characters">

 <object object_ref="oval:gov.nist.1:obj:8" />

 <state state_ref="oval:gov.nist.1:ste:21" />

</passwordpolicy_test>

Figure 8: Example of OVAL Test

An OVAL object specifies what aspect of the system will be checked. Figure 9 shows examples of three
OVAL object definitions. The second object definition (which starts with “passwordpolicy”) is for the
object referenced in Figure 8. This object is the target system’s password policy. In this case, the state
definition (which was called in the Figure 8 example along with the object definition) specifies which
portion of the password policy is to be evaluated. This is a different approach from the first object
definition example in Figure 9, which references a specific value in the Windows registry.

<registry_object id="oval:gov.nist.1:obj:7" version="1"
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows">

 <hive>HKEY_LOCAL_MACHINE</hive>

 <key>SYSTEM\CurrentControlSet\Control\Session Manager\Environment</key>

 <name>PROCESSOR_ARCHITECTURE</name>

</registry_object>

<passwordpolicy_object id="oval:gov.nist.1:obj:8" version="1"
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows" />

<lockoutpolicy_object id="oval:gov.nist.1:obj:9" version="1"
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows" />

Figure 9: Examples of OVAL Objects

As mentioned previously, a state definition gives the details of how a check will be performed. Figure 10
contains two examples of state definitions; the first one corresponds to the definition example presented
throughout this section. The first line assigns a state ID and version number, as well as an XML schema
reference. The second line specifies that the minimum password length value for the target system should
be tested to see if it is greater than or equal to the value assigned to the variable named
oval:gov.nist.1:var:8. The definition for that variable is shown in Figure 11.

 31

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

<passwordpolicy_state id="oval:gov.nist.1:ste:21" version="1"
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows">

 <min_passwd_len operation="greater than or equal"
var_ref="oval:gov.nist.1:var:8" />

</passwordpolicy_state>

<passwordpolicy_state id="oval:gov.nist.1:ste:22" version="1"
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows">

 <password_complexity operation="equals">1</password_complexity>

</passwordpolicy_state>

Figure 10: Examples of OVAL States

Of all the OVAL components discussed in this section—compliance definitions, tests, objects, states, and
variables—variables are the most likely to be customized by end users. Typically this is to take into
account organization-specific policies or environment-specific conditions. The first line of the example in
Figure 11 shows the variable ID, version, data type (in this case, integer), and an explanatory comment.
The second line (“value”) assigns the value to the variable. This shows a value of 8 for the minimum
password length. Changing this number would alter the value used by all states that reference this
particular variable.

<constant_variable id="oval:gov.nist.1:var:8" version="1" datatype="int"
comment="Minimum password length">

 <value>8</value>

 <!--

 Title and description for oval:gov.nist.1:def:20 (Minimum Password Length
of 8 Characters) must be changed if value is changed

 -->

</constant_variable>

Figure 11: Example of OVAL Variable

 32

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Appendix A—Glossary
Selected terms used in the publication are defined below.

Automated Checklist: A checklist that is applied through one or more tools that automatically alter or
verify settings based on the contents of the checklist.

Checklist: See “Security Checklist”.

Custom Environment: An environment that contains systems in which the functionality and degree of
security do not fit the other environments, Enterprise and Small Office/Home Office.

Enterprise Environment: An environment typically composed of large organizational systems with
defined, organized suites of hardware and software configurations, usually consisting of centrally-
managed workstations and servers protected from the Internet by firewalls and other network security
devices.

Extensible Configuration Checklist Description Format (XCCDF): A language used to define
structured collections of security configuration rules for sets of target systems.

Legacy Environment: A custom environment that contains older systems or applications that may use
older, less-secure communication mechanisms.

Non-Automated Checklist: A checklist that is designed to be implemented manually, such as English
prose instructions that describe the steps that an administrator should perform to secure a system or verify
its security settings.

Open Vulnerability and Assessment Language (OVAL): A language used by security experts to
exchange technical details about how to check for the presence of vulnerabilities and configuration issues
on computer systems.

OVAL Definition: A set of OVAL instructions used to check a system for a security problem, such as an
incorrect minimum password length setting.

OVAL Definition File: A file containing one or more OVAL definitions.

OVAL Object: A logical construct for a portion of a target system, such as a password policy, file, or
Windows registry key.

OVAL State: A particular check of a specified OVAL object, such as verifying the existence of a file or
the minimum password length required by a password policy.

OVAL Test: A specific system check that can act as a criterion for an OVAL definition.

Security Checklist: A document that contains instructions or procedures for securely configuring an IT
product to an operational environment or verifying that an IT product has already been securely
configured.

 33

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Security Content Automation: The process of using tools, scripts, and other technologies to automate
the application or verification of security-related configuration settings for operating systems and
applications.

Small Office/Home Office Environment: An environment that encompasses small, informal computer
installations that are used for home or business purposes.

Specialized Security-Limited Functionality: A custom environment that contains systems and
networks at high risk of attack or data exposure, with security taking precedence over functionality.

XCCDF Group: A logical construct in XCCDF that encompasses one or more XCCDF rules and/or one
or more other XCCDF groups.

XCCDF Profile: A policy in XCCDF format that specifies which rules should be used to check a
particular type of system.

XCCDF Rule: A high-level definition in XCCDF format of a technical check on a system. An XCCDF
rule does not directly specify how a check should be performed, but instead points to other XML
documents that contain the actual instructions for performing the check.

XCCDF Value: A user-definable value that can be used by one or more XCCDF rules.

 34

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Appendix B—Acronyms
Selected acronyms used in the publication are defined below.

C&A Certification and Accreditation
CCE Common Configuration Enumeration
CIS Center for Internet Security
COTS Commercial Off-the-Shelf
CVE Common Vulnerabilities and Exposures

DHCP Dynamic Host Configuration Protocol
DISA Defense Information Systems Agency
DNS Domain Name System
DOD Department of Defense

FIPS Federal Information Processing Standard
FISMA Federal Information Security Management Act
FTP File Transfer Protocol

GOTS Government Off-the-Shelf

HIPAA Health Information Portability and Accountability Act

IDS Intrusion Detection System
IR Interagency Report
IT Information Technology
ITL Information Technology Laboratory

MAC Mission Assurance Category

NCP National Checklist Program
NIST National Institute of Standards and Technology
NSA National Security Agency
NVD National Vulnerability Database

OMB Office of Management and Budget
OVAL Open Vulnerability and Assessment Language

SCAP Security Content Automation Program
SMTP Simple Mail Transfer Protocol
SOHO Small Office/Home Office
SOX Sarbanes-Oxley
SP Special Publication
SSLF Specialized Security-Limited Functionality
STIG Security Technical Implementation Guide

URL Uniform Resource Locator
US-CERT United States Computer Emergency Readiness Team

 35

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

VPN Virtual Private Network

XCCDF Extensible Configuration Checklist Description Format
XML Extensible Markup Language

 36

THE SECURITY CONTENT AUTOMATION PROGRAM (SCAP) (DRAFT)

Appendix C—Resources
The lists below provide examples of additional resources that may be helpful in better understanding the
Security Content Automation Program and security checklists in general.

Checklist Resources

Resource URL
Center for Internet Security (CIS) http://cisecurity.org/
Common Vulnerabilities and Exposures (CVE) http://cve.mitre.org/
Defense Information Systems Agency (DISA) http://iase.disa.mil/stigs/checklist
FIPS PUB 199, Standards for Security Categorization of
Federal Information and Information Systems

http://csrc.nist.gov/publications/fips/index.html

National Security Agency (NSA) http://www.nsa.gov/snac/
National Vulnerability Database (NVD) http://nvd.nist.gov/
NIST IR 7275, Specification for the Extensible Configuration
Checklist Description Format (XCCDF)

http://checklists.nist.gov/docs/xccdf-spec-1.1.pdf

NIST Security Configuration Checklists Repository beta http://checklists.nist.gov/
NIST SP 800-53, Recommended Security Controls for
Federal Information Systems

http://csrc.nist.gov/publications/nistpubs/index.html

NIST SP 800-70, Security Configuration Checklists Program
for IT Products—Guidance for Checklists Users and
Developers

http://csrc.nist.gov/publications/nistpubs/index.html

Open Vulnerability and Assessment Language (OVAL) http://oval.mitre.org/
XCCDF http://checklists.nist.gov/xccdf.html

 37

http://cisecurity.org/
http://cve.mitre.org/
http://iase.disa.mil/stigs/checklist
http://csrc.nist.gov/publications/fips/index.html
http://www.nsa.gov/snac/
http://nvd.nist.gov/
http://checklists.nist.gov/docs/xccdf-spec-1.1.pdf
http://checklists.nist.gov/
http://csrc.nist.gov/publications/nistpubs/index.html
http://csrc.nist.gov/publications/nistpubs/index.html
http://oval.mitre.org/
http://checklists.nist.gov/xccdf.html

	1. Introduction to Security Checklists
	1.1 Existing Efforts
	1.1.1 Checklist Creation
	1.1.2 Checklist Repository Programs
	1.1.3 Vulnerability Identification and Classification
	1.1.4 Vulnerability and Checklist Languages

	1.2 The Need for Automated Checklists
	2. The Security Content Automation Program
	2.1 Program Benefits
	2.1.1 Streamlining Compliance to Policies
	2.1.2 Combining and Customizing Checklists
	2.1.3 Quickly Distributing Assessment Instructions

	2.2 Checklist Categorization
	2.3 Checklist Development Process
	2.4 Checklist Usage Process

	3. Understanding SCAP-Provided XML Content
	3.1 The Basics of XCCDF
	3.2 The Basics of OVAL
	3.3 Using XCCDF and OVAL for FISMA Compliance
	3.4 Comparing FISMA and DOD 8500.2/8510 Compliance

	4. Customizing SCAP-Provided XML Content
	4.1 XCCDF Customization
	4.1.1 XCCDF Profiles
	4.1.2 XCCDF Groups
	4.1.3 XCCDF Rules
	4.1.4 XCCDF Values

	4.2 OVAL Customization
	4.2.1 OVAL Definitions
	4.2.2 OVAL Tests, Objects, States, and Variables
	Appendix A— Glossary
	Appendix B— Acronyms
	Appendix C— Resources

