

Overview (30 m)

- a. Brief history, aerosol exposures
- b. Equipment/animals
- c. Class III cabinets
- d. Procedural video
- I. Aerosol generation (15 m)
 - a. Overview of generation technologies
 - b. Collison nebulizer
 - c. Viability
- III. Sampling & characterization (15 m)
 - a. Methods of sampling (impinger, filter, etc.)
 - b. Particle sizing
 - c. Deposition and retention

IV. Dose (15 m)

- a. Definition of dose
- b. Calculation
- c. Importance of the 'spray factor'

BREAK

V. Emerging Technology (30 m)

- a. Genesis of the automated technology
- b. Application
- VI. Examples: aerosol exp. of animals (30 m)
 - a. Yersinia pestis
 - b. Bacillus anthracis
 - c. Staphyloccocal enterotoxin B

Meaning of Dose

- Inhalation toxicology
 - Term "dose" not used
 - Exposure concentration (Lct50)
- Medicine
 - "Lung dose" defined as mass delivered to lung
 - Only a fraction of "inhaled" mass
- Chemical defense
 - Mass of agent deposited per unit body weight
 - Dose response scales with weight
- Biological defense
 - "Presented dose" at stated size
 - Dose in mass per unit body weight for toxins (μ g/kg)
 - Dose in colony or plaque forming units for bacterial or viral agents

Challenge "Dose"

Respiratory Function Deposition Fraction Aerosol Concentration Challenge Exposure Duration Dose Dose Exposure Duration

Discrete Respiration:
$$D = \sum_{n=1}^{m} R_n \times C_n \times f_n$$

Rate Approximation: $D(t_{exp}) = \int_0^{t_{exp}} R(t)C(t)f(t)dt$

Meeting the Challenge

Assay	Plethysmogr Function		namber Iperature	
System Flow Rate	Anesthet		ebulizer	Chamber
Nebulizer Function	Animal Mo	del	Inction	Volume
Starting Solution Preparation	n Time of Measurem	Γ. Γ.	/lodel	System Flow Rate
Agent Growth	Animal Si	Ch	namber umidity	Concentration
Sampler		stan. Dan		Concentration Decay
Function	Respir Func	. .	osition action	
	Aerosol	Challenge	Exposure	
	Concentration	Dose	Duration	

Aerosol Challenge Technology and Applications in Biodefense, December 3-4, 2003

RIID Presented Dose Calculation

$$D(t_{\exp}) = \int_0^{t_{\exp}} R(t)C(t)f(t)dt$$

- *f*(*t*): assumed 100 % deposition (presented dose)
- *R*(*t*): assumed constant minute volume (MV)
 - Plethysmograph: point measurement of MV
 - Guyton's Formula: $MV[ml] = 2.1 \times (Wt)^{0.75}$
- *C(t)*: assumed constant concentration
 - Aerosol sampling and assay
 - All glass impinger, impactor, filter, etc.
- t_{exp} : fixed at time of exposure

$$D = R \times C \times t_{exp}$$

Presented Dose Calculation $D = R \times C \times t_{exp}$

- *R* = MV measurement or estimate
- C = integrated air sample determined concentration

- Eg: All glass impinger aerosol sampling

$$C = \frac{C_{agi} \times V_{agi}}{Q_{agi} \times t_{exp}}$$

• Presented dose calculated:

$$D = MV \times \frac{C_{agi} \times V_{agi}}{Q_{agi} \times t_{exp}} \times t_{exp} = \left(C_{agi} \times V_{agi}\right) \times \frac{MV}{Q_{agi}}$$

Dose Calculation vs. Control

- Calculation
 - Retrospective
 - What dose was delivered?
 - Measurement of relevant parameters
 - Assay for aerosol concentration
 - Plethysmography for respiratory function
 - Length of exposure

- Control
 - Prospective
 - How to deliver a desired dose?
 - Measurement and control of relevant parameters
 - Real-time aerosol concentration
 - Real-time respiratory function
 - When to terminate exposure?

 $D(t_{\exp}) = \int_0^{t_{\exp}} R(t)C(t)dt$

Constraints on Controlling Dose

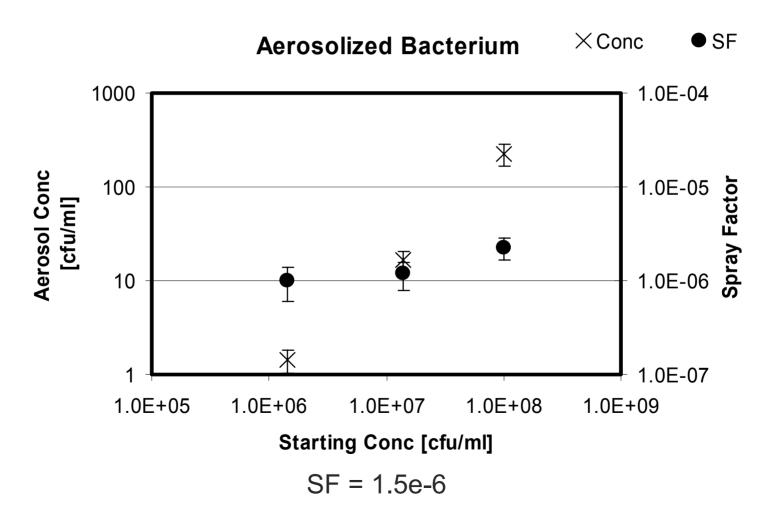
$$D(t_{\exp}) = \int_0^{t_{\exp}} R(t)C(t)dt$$

- Respiratory function
 - Individual animal dependent (size, metabolism, anesthesia, age)
 - Beyond *control* of aerosol system
 - Can be *measured* in real-time during exposure
- Exposure time
 - Exquisite *control* and *measurement* during exposure
 - Constraints anesthetic, nebulizer, sampling device
- Aerosol concentration
 - Equipment dependent (nebulizer, chamber, flow)
 - Starting concentration dependent
 - Limited control during exposure
 - Limited real-time measurement during exposure

Aerosol Concentration

- 'Spray Factor' defined as ratio of aerosol concentration to starting concentration
- Used to predict aerosol concentration for a given starting solution
- Unitless
- Function of:
 - Nebulizer
 - Agent
 - System flow

Spray Factor Determination


- Run sham exposure with agent, strain, chamber, nebulizer, and flows used in aerosol challenge
- Use a range of starting concentrations
- Calculate SF

$$SF = \frac{C_{aero}}{C_{neb}} = \frac{\left\{ \frac{C_{agi} \times V_{agi}}{Q_{agi} \times t_{exp}} \right\}}{C_{neb}}$$

Example of SF Determination

Aerosol Challenge Technology and Applications in Biodefense, December 3-4, 2003

Controlling Dose

 $D = R \times C \times t_{exp}$

- Use SF to project aerosol concentration
 - Determine starting concentration
 - Determine exposure time

$$D = MV \times (C_{neb} \times SF) \times t_{exp}$$

Controlling Dose

 $D = R \times C \times t_{exp}$

Use SF to project aerosol concentration

Determine starting concentration

- Determine exposure time

$$D = MV \times (C_{neb} \times SF) \times t_{exp}$$

• SF affects dose *control* but not dose *calculation*

$$D = \sum_{n=1}^{m} R_n \times C_n \qquad D(t_{exp}) = \int_0^{t_{exp}} R(t)C(t)dt$$

Controlling Dose

 $D = R \times C \times t_{exp}$

- Use SF to project aerosol concentration
 - Determine starting concentration
 - Determine exposure time

$$D = MV \times (C_{neb} \times SF) \times t_{exp}$$

- SF affects dose *control* but not dose *calculation*
- Can be used as an excellent quality management tool

Dose Conclusions

- Aerosol system must be well characterized by agent, strain, nebulizer, flow, etc.
- Precision and accuracy of dose calculation is different from precision and accuracy of dose control
- Dose *calculation* requires measurement and documentation of what *occurred* during exposure
- Dose *control* requires real-time measurement and control of what *is occurring* during exposure
- Goal is to achieve real-time measurement and control of all parameters to determine dose during exposure

$$D(t_{exp}) = \int_0^{t_{exp}} R(t)C(t)dt$$