

Overview (30 m)

- a. Brief history, aerosol exposures
- b. Equipment/animals
- c. Class III cabinets
- d. Procedural video
- II. Aerosol generation (15 m)
 - a. Overview of generation technologies
 - b. Collison nebulizer
 - c. Viability

III. Sampling & characterization (15 m)

- a. Methods of sampling (impinger, filter, etc.)
- b. Particle sizing
- c. Deposition and retention
- IV. Dose (15 m)
 - a. Definition of dose
 - b. Calculation
 - c. Importance of the 'spray factor'

BREAK

- V. Emerging Technology (30 m)
 - a. Genesis of the automated technology
 - b. Application
- VI. Examples: aerosol exp. of animals (30 m)
 - a. Yersinia pestis
 - b. Bacillus anthracis
 - c. Staphyloccocal enterotoxin B

Sampling

- why sample during exposures
 - characterize experimental atmosphere
 - physical parameters
 - particle size
 - number
 - concentration
 - » viability, total organisms
- considerations
 - type & time of sample
 - method of sample analysis
 - precision and accuracy of method
 - efficiency of sampling method
 - effect on viability of captured bioaerosol
 - sensitivity of assay
 - least detectable quantity

bioaerosol sampling

- Samplers
 - Impingers; AGI (a1); biosampler (a2)
 - Slit-style impactors (b)
 - Various filters (c2)
 - Cascade impactors; single-stage 'N6'(d);
 Seven stage cascade impactor (d2)

I ABLE J-2.	Outline for	Selecting a Sal	Aerosol Concen- tration*	Slit-to- agar (1)‡	Sieve Impactors				Centri-	Impingers				
Sampling Location	Collection Separation of Viable of Particles Particles or Cells by Size	Separation of Particles by Size			1-Stage Portable (2a)	1-Stage N-6 (2b)	2-Stage (2c)	4- or 6-Stage (2d)	Personal 8-Stage (2e)	fugal Impactor (3)	AGI-30 (4a)	AGI-4 (4b)	Personal (4c)	Multi- stage (4d)
Indoors	Particles	No size separation	Low Interm. High	H/S H/S H/S	H/S H/S	H/S H/S H/S	H/S H/S H/S	H/S H/S H/S	A/A' A/A' A/A'/H/S	H/S H/S	A' A'	A' A'	— — A'	A' A'
		Size separation	Low Interm. High	- E			H/S H/S H/S	H/S H/S H/S	A/A' A/A' A/A'/H/S		— A'† A'†	— A'† A'†		A' A'
	Cells	No size separation	Low Interm. High	H/S§ H/S§ H/S§	H/S§ H/S§	H/S§ H/S§ H/S§	H/S§ H/S§ H/S§	H/S§ H/S§ H/S§	A/A' A/A' A/A'/H/S§	I I		A'/H A'/H		A'/H/S A'/H/S A'/H/S
		Size separation	Low Interm. High		I.		H/S§ H/S§ H/S§	H/S§ H/S§ H/S§	A/A' A/A' A/A'/H/S§	11	A'/H/S† A'/H/S†	A'/H† A'/H†		A'/H/S A'/H/S A'/H/S
Outdoors	Particles	No size separation	Low Interm. High	H/S H/S H/S	H/S H/S	H/S H/S H/S	H/S H/S H/S	H/S H/S H/S	A/A' A/A' A/A'/H/S	H/S H/S	A' A'	A' A'	$\frac{-}{A}$	A' A'
		Size separation	Low Interm. High				H/S H/S H/S	H/S H/S H/S	A/A' A/A' A/A'/H/S	1		— A'† A'†		A' A'
	Cells	No size separation	Low Interm. High	H/S§ H/S§ H/S§	H/S§ H/S§	H/S§ H/S§ H/S§	H/S§ H/S§ H/S§	H/S§ H/S§ H/S§	A/A' A/A' A/A'/H/S§	-	A'/H/S A'/H/S	A'/H A'/H	 A'/H/S	A'/H/S A'/H/S A'/H/S
		Size separation	Low Interm. High	14			H/S§ H/S§ H/S§	H/S§ H/S§ H/S§	A/A' A/A' A/A'/H/S§	Ξ		A'/H† A'/H†		A'/H/S A'/H/S

6.1. *C* 1.-

A = aeroallergens (microscopic identification)

H = hardy microorganisms, e.g., spore-forming bacteria and fungi

S = sensitive microorganisms, e.g., vegetative cells

A' = aeroallergens (immunoassay)

*Low concentration: $< 100 \text{ CFU/m}^3$; e.g., clean rooms and operating rooms; collect $> 0.5 \text{ m}^3$ (500 L) air.

Intermediate concentration: 100 to 1000 CFU/m³; e.g., general indoor and outdoor concentrations; collect 0.25 to 1 m³ (250-1000 L) air.

High concentration: $> 1000 \text{ CFU/m}^3$; e.g., animal and plant handling areas, outdoor construction and excavation; collect $< 0.25 \text{ m}^3$ (250 L) air.

‡Numbers refer to sampler listing in first column of Table J-1.

†Used with a pre-impinger or cyclone (as appropriate); see text.

§Particles washed from surface, or glycerol/gelatin or other soluble medium used; see text.

From: Chatigny, M.A. et al. Chapter J: Sampling Airborne Microorganisms and Aeroallergans. In: Air sampling Instruments, ACGIH, Cincinnati,OH.

Sampler ^C	Operation	Sampling Rate (L/min)	Recommended Sampling Time for Viable Recovery (min)	Manufacturer/ Supplier ^A Descriptions ^B in Other Chapters	Applications and Remarks
 Slit or slit-to agar impactor (a, b — some models) 	Impaction onto agar in a 10-cm or a 15-cm plate on a rotating surface	30-700	1–60, depending on model and sampling situation	NBR ^A (P–50) ^B CAS (P–49)	Provides information on aerosol concentration over time. Available with a single or with multiple slits and variable rotation speeds. Bulky; AC operation.
 Sieve impactors: a. single-stage, portable impactor (b) 	Impaction onto agar in a "rodac" plate	90 or 180	0.5-5	SPR (P-53)	Portable, useful for making preliminary estimates of aerosol concentrations. Flow rate is not easily checked. Approximately 40% as efficient as the slit impactor.
b. single stage (N-6)	Impaction onto agar in	28	1-30	AND (P-46)	Approximately as efficient as the slit impactor. Bulky: AC operation.
c. two-stage impactors	See 2b above	28	1-30	AND (P-47)	See 2b above. Divides samples into respirable and nonrespirable fractions.
d. four-stage and six-stage	See 2b above	28	1-30	AND (P-48)	See 2b above. Provides information on particle size distribution.
e. personal cascade impactor (a)	Impaction onto filters or onto media in a special tray; see text	2	\leq 60 with filters, 5–30	AND (P-15)	Eight stages available. For viable recovery, sampler is useful only in highly contaminated environments.
3. Centrifugal sampler (b)	Impaction onto agar in plastic strips	40±	0.5	BDC (P-54)	Sampler is small, portable, and useful for making preliminary estimates of aerosol concentration. Flow rate is not easily checked. Does not collect particle below 3 µm efficiently.
4. Impingers: a. All-glass impinger/ AGI-30 (a, c)	Impingement into liquid, jet 30 mm above	12.5	1-30	AGI (P-55)	Cells on or in larger particles are broken apart. Suitable for viral particle collection.
b. All-glass impinger/	impaction surface See 4a above; jet 4 mm	12.5	1-30	AGI (P-55)	See 4a above. More vigorous impaction than 4a
c. Personal impinger (a)	See 4a above	1.5	5-15	DAC (P-43)	See 4a above. Provides information on personal exposures. Useful in highly contaminated areas.
d. Multistage impinger (a)	See 4a above	55	1-30	DIX	Provides information on particle size distribution. Three stages with cut points of $\geq 7, \geq 3$, and $\geq 1 \ \mu$ m. Limited availability.
5 Filters					
a. Cassette filters (a)	Filtration	1-2	5-60	GEL, MFC, NUC; also	Some viable loss of microorganisms due to dessica- tion. Samplers are easily portable, inexpensive, and
b. High-volume filters (a)	Filtration	140-1400	5-60	see Table OI-1 and Chap.	can be used for personal monitoring. Useful for collecting large amounts of aeroallergens.

TABLE J-1. Samplers Recommended for Collecting Viable Microbiological Aerosols and Aeroallergens (see Chapter P and Q for further details)

From: Chatigny, M.A. et al. Chapter J: Sampling Airborne Microorganisms and Aeroallergans. In: Air sampling Instruments, ACGIH, Cincinnati,OH.

All glass impinger

- Impingers
 - Operate similar to impactors
 - V can reach 60 m/s
 - Originally designed for dust counting; now standard in collection of microbial aerosols
 - Collects by both wetted bottom surface in collection vessel and bubbling action caused by flow
 - Effective for particles between 1 and 20 μm
 - Lower size dependant on stokes number
 - Upper size (greater than 20 μm) cannot follow air stream into impinger

Experimental set-up – modified impinger with whole-body exposure chamber

establishing aerosol concentration

Calculating aerosol concentration From liquid impinger sample

	nebulizer		AGI					
	C _A	SC	VS	Cs	Ts	Fs	AC	
Group #	nebulizer conc	nebulizer conc	AGI volume	AGI conc.	sample time	AGI flow	aerosol conc	
	(cfu/ml)	(cfu/l)	(ml)	(cfu/ml)	(min)	(l/min)	(cfu/l)	
	D11*C11	E11*1000	∨S=10 ¹	G11*H11	= T _E = 10 ¹	= 61	(I11*J11)/ (K11*L11)	
ILV1BR1	1.1E+10	1.10E+13	8.5	5.10E+06	10	6	7.23 E+ 05	
IL¥1BR2	1.1E+10	1.10E+13	8.5	1.00E+07	10	6	1.42E+06	
A23344C10LD50	2.0E+08	2.00E+11	8.5	4.50E+03	10	6	6.38E+02	
A23344C50LD50	1.0E+09	1.00E+12	8.5	3.00E+04	10	6	4.25E+03	
A23344C100LD50	2.0E+09	2.00E+12	8.5	1.50E+05	10	6	2.13E+04	
10266C10LD50	3.5E+06	3.50E+09	8.5	3.30E+04	10	6	4.68E+03	
10266C50LD50	6.9E+06	6.90E+09	8.5	1.40E+05	10	6	1.98E+04	
10266C100LD50	3.5E+07	3.50E+10	8.5	4.30E+05	10	6	6.09E+04	

...

Aerosol Challenge Technology and Applications in Biodefense, December 3-4, 2003

- Rationale
 - In animal aerosol challenge, is an "inhaled dose" the true dose?
 - · How does aerosolization effect
 - viability
 - infectivity
- Objective
 - assess the impact of nebulization comparing using two different nebulizers
- Aerosols
 - Pseudomonas aeruginosa (ATCC, Rockville, MD)
- Nebulizers: Collison v. BANG
- Characterization & sampling
 - particle sizing (APS Model 3320; APS 3375 (UV/APS))
 - Continuous sampling of chamber by AGI
 - Culture/TSA
 - analysis by flow cytometry
 - bacterial counting kit (Molecular Probes)
 - Live/dead viability kit (MP)

Counts of total and culturable bacteria. Data collected by flow cytometry and cultured bacteria from the AGI samples collected during the spray show that there is no significant difference between the BANG and 3 jet collison.

Dot plot graphs showing the changes in bacteria total counts in the 3 jet collison and BANG. The AGI samples were analyzed by the bacteria counting kit. The six dot plots above show the increase in total bacteria counted as the starting concentration increases. The 3 jet collison and BANG show similar counts.

Percentage of bacteria sampled shows the live/dead of the BANG and 3 Jet collison. Comparison of the live/dead to the concentration of starting solution show that there is a slight increase in live bacteria when a more concentrated spray agent is used.

Particle Size

- In most cases size cannot be directly measured
- Particle size must be determined from measurement of a behavior or property that is a function of size
- Equivalent diameter: diameter of a sphere having the same value of a physical property as the particle being measured

Particle Size

- In most cases size cannot be directly measured
- Particle size must be determined from measurement of a behavior or property that is a function of size
- Equivalent diameter: diameter of a sphere having the same value of a physical property as the particle being measured

Property or Behavior	Equivalent Diameter			
Brownian Motion	Diffusion			
Gravity	Aerodynamic			
Inertia	Aerodynamic			
Light Scattering	Optical			

Biological Aerosol Size

- Use equivalent diameter that derives from particle property relevant to bioaerosol exposures
 - Mechanism of deposition
 - Particle size
- Aerodynamic diameter: diameter of a unit-density sphere having the same gravitational settling velocity as the particle being measured

Aerosol Challenge Technology and Applications in Biodefense, December 3-4, 2003

Size Distribution

Figure from Warren H. Finlay, The Mechanics of Inhaled Pharmaceutical Aerosols, Academic Press, 2001

MMAD

- Mass median aerodynamic diameter: aerodynamic diameter such that half the cumulative mass of all particles is contained in particles with smaller (or larger) diameters
- M_{Normalized}(MMAD)=1/2
- Most directly measured with cascade impactor
- Geometric standard deviation for log-normal distributions:

 $- \sigma_g = MMAD/d_{16} = d_{84}/MMAD$

- MMAD and σ_{g} describe aerosol distribution for bioaerosol studies

Example

d [um]	Cum %
0.4	0.0
0.7	1.9
1.1	6.7
2.1	40.6
3.3	84.1
4.7	96.2
5.8	98.1
9.0	98.8

Experimentally determined cumulative mass distribution for a salbutamol metered dose inhaler.

MMAD = 2.4 μm

 $\sigma_g = d_{84}/MMAD = 3.3\mu m/2.4\mu m = 1.4$

Data from Warren H. Finlay, The Mechanics of Inhaled Pharmaceutical Aerosols, Academic Press, 2001

bioaerosols Inhalants Particles Gases Size Various Deposition and Clearance Models Stable/ **Reactive Gases** Metabolizeable Gases Reactivity Flow Pattern-Rate-Diffusion-Perfusion-Controlled Controlled Controlled Controlled Uptake Solubility Reaction Uptake Uptake Uptake Rate Super Diffusion/ Diffusion/ PBPK Computer Reaction Perfusion Models Models Models Models

From Scheslinger, R. In: Inhalation Toxicology

Factors Affecting Particle Deposition

- Five important mechanisms
 - 1) Inertial impaction
 - 2) Sedimentation
 - 3) Diffusion
 - 4) electrical charge
 - 5) Interception
- Particle characteristics

- Aerodynamics (size, shape, distribution, hydroscopicity, charge)
- Respiratory anatomy
 - Ventilation
 - Breathing pattern (modality,flow rate/velocities)
- Other
 - Airway reactivity, preexisting disease, age, gender

What do we really know about D&R of threat agents?

Respiratory deposition is well-defined for particles; but not for infectious agents.

Available comparative path. data with respect to aerosol size?

- Comparison of ± 1 μ m v. 12 μ m aerosols in guinea pigs (Druett et al., 1954)
 - Yersinia pestis
 - LCt₅₀ 2.5 X less infectious
 - Bacillus anthracis
 - LCt₅₀ 17X less infectious
- Ongoing (comparison of $1\mu m v. > 3 \mu m$) (Roy et al., 2003)
 - Toxin
 - Diff. LD₅₀ at diff. aerosol sizes
 - Differences in deposition in respiratory tract
 - impact on pathogenesis
 - Virus
 - No major differences in $\mathrm{LD}_{\mathrm{50}}$ and MTD regardless of aerosol size
 - Across two species

Aerodynamic size characterization of ricin aerosols generated by the collison nebulizer (circles) and the STAG (triangles) at a corresponding estimated inhaled dose of 55 and $36 \mu g/kg$, respectively.

The bimodal distribution of the STAG is attributed to satellite aerosol formation (first peak of the STAG) in the primary generation process, which composes 85% of the cumulative mass of the output from this device.

(Roy et al., 2003)

Agent in selected tissues of mice as a percentage of total body dose.

Values are group means; error bars represent standard error

Significantly different values at p<0.01 are denoted by an asterisk

horizontal brackets indicate the comparative groups

Roy et al., 2003

Figure 5 (A and B). Nasal turbinates (A) and olfactory epithelium (B) of a mouse exposed to 5 μ m aerosols by whole-body chamber configuration. Epifluorescent particles localized to the olfactory epithelium in the turbinates (A; 40X) whereas particles are localized to all levels of the olfactory epithelium (B; 100X).

В

Roy et al., 2003

Spacias		Particle	LD ₅₀	95% fidu	MTD ^c	
Species	Strain	(µm)	(PFU)	lower	upper	(days)
guinea	Х	1	5.21E+03	2.93E+03	2.35E+05	5.0
pig Hartley		>3 ^b	5.90E+04	8.70E+03	4.65E+11	5.0
	Y	1	1.08E+04	3.5E+03	8.93E+05	5.0
		>3	9.57E+03	_a	-	5.0
mouse	Х	1	4.61E+02	1.86E+02	1.66E+03	4.8
<i>B</i> , (2 <i>B</i> , 0		>3	1.60E+04	-	-	4.6
	Y	1	6.16E+02	-	-	4.7
		>3	2.85E+03	1.07E+03	1.11E+04	5.0

Table 1. Particle size and viral strain specific 50% lethal dose determination, by species

^a the confidence limits were not determined due to lack of mortality in selected groups

^b considered 'larger' particle distribution due to bimodal size distribution

^c mean time to death

AeroBiology

Viral loading in selected tissues when exposed to representative strains aerosolized at different particle size distributions. (A) and (B) graphs represent results from larger particle (<3 μ m) exposures with Strain X and Y, respectively; (C) and (D) graphs represent results from respirable particles (\approx 1 μ m) exposures with Strain X and Y, respectively. Bars represent group means; error bars represent standard deviation.

nse, December 3-4, 2003

Guinea pig olfactory neuroepithelium (a), bulb (b) and nerve (c) 24 hours post exposure to aerosolized virus. Arrowheads indicate antigen reactivity.