About DOE Button Organization Button News Button Contact Us Button
Search  
US Department of Energy Seal and Header Photo
Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button
_DOE Office of Fossil Energy Web Site

Fossil Energy

-

Educational Activities

-

Mickey Leland Energy Fellowships

-

Technical Career Intern Program

-

Energy Lessons

-

University Research

-

IN YOUR STATE

OFFICES & FACILITIES

EMAIL UPDATES

Register to receive Fossil Energy NEWSALERTS by e-mail.

GO to Link

QUICK REFERENCE

You are here:  Educational Activities > Energy Lessons > Coal-Introduction > 4-Bed for Burning Coal

An Energy Lesson

Cleaning Up Coal

A "Bed" for Burning Coal?

It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors.

It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world.

-

A Fluidized Bed Boiler

- Fluidized Bed Combustor
-
In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

It was called a "fluidized bed boiler." In a typical coal boiler, coal would be crushed into very fine particles, blown into the boiler, and ignited to form a long, lazy flame. Or in other types of boilers, the burning coal would rest on grates. But in a "fluidized bed boiler," crushed coal particles float inside the boiler, suspended on upward-blowing jets of air. The red-hot mass of floating coal — called the "bed" — would bubble and tumble around like boiling lava inside a volcano. Scientists call this being "fluidized." That's how the name "fluidized bed boiler" came about.

Why does a "fluidized bed boiler" burn coal cleaner?

There are two major reasons. One, the tumbling action allows limestone to be mixed in with the coal. Remember limestone from a couple of pages ago (> go back)? Limestone is a sulfur sponge — it absorbs sulfur pollutants. As coal burns in a fluidized bed boiler, it releases sulfur. But just as rapidly, the limestone tumbling around beside the coal captures the sulfur. A chemical reaction occurs, and the sulfur gases are changed into a dry powder that can be removed from the boiler. (This dry powder — called calcium sulfate — can be processed into the wallboard we use for building walls inside our houses.)

The second reason a fluidized bed boiler burns cleaner is that it burns "cooler." Now, cooler in this sense is still pretty hot — about 1400 degrees F. But older coal boilers operate at temperatures nearly twice that (almost 3000 degrees F). Remember NOx from the page before (> go back)? NOx forms when a fuel burns hot enough to break apart nitrogen molecules in the air and cause the nitrogen atoms to join with oxygen atoms. But 1400 degrees isn't hot enough for that to happen, so very little NOx forms in a fluidized bed boiler.

The result is that a fluidized bed boiler can burn very dirty coal and remove 90% or more of the sulfur and nitrogen pollutants while the coal is burning. Fluidized bed boilers can also burn just about anything else — wood, ground-up railroad ties, even soggy coffee grounds.

Today, fluidized bed boilers are operating or being built that are 10 to 20 times larger than the small unit built almost 20 years ago at Georgetown University. There are more than 300 of these boilers around this country and the world. The Clean Coal Technology Program helped test these boilers in Colorado, in Ohio and most recently, in Florida.

Ohio Power Company's Tidd Fluidized Bed Boiler -
The Ohio Power Company built this advanced pressurized fluidized bed boiler near the town of Brilliant, OH, as part of a joint project with the U.S. Department of Energy.

-

A new type of fluidized bed boiler makes a major improvement in the basic system. It encases the entire boiler inside a large pressure vessel, much like the pressure cooker used in homes for canning fruits and vegetables — except the ones used in power plants are the size of a small house!

Burning coal in a "pressurized fluidized bed boiler" produces a high-pressure stream of combustion gases that can spin a gas turbine to make electricity, then boil water for a steam turbine — two sources of electricity from the same fuel!

A "pressurized fluidized bed boiler" is a more efficient way to burn coal. In fact, future boilers using this system will be able to generate 50% more electricity from coal than a regular power plant from the same amount of coal.  That's like getting 3 units of power when you used to get only 2.

Because it uses less fuel to produce the same amount of power, a more efficient "pressurized fluidized bed boiler" will reduce the amount of carbon dioxide (a greenhouse gas) released from coal-burning power plants.

"Pressurized fluidized bed boilers" are one of the newest ways to burn coal cleanly. But there is another new way that doesn't actually burn the coal at all.

BACK  GO BACK

READ ON  FORWARD

 

Dr. H. Carbon asks:  Which U.S. city now gets much of its electricity from a fluidized bed power plant?
CHICAGO

Chicago, IL

SEATTLE

Seattle, WA

JACKSONVILLE FLORIDA

Jacksonville, FL

Click on your choice

 

 Page owner:  Fossil Energy Office of Communications
Page updated on: March 25, 2008 

The White House USA.gov E-gov IQ FOIA
U.S. Department of Energy | 1000 Independence Ave., SW | Washington, DC 20585
1-800-dial-DOE | f/202-586-4403 | e/General Contact

Web Policies | No Fear Act | Site Map | Privacy | Phone Book | Employment