OCCUPATIONAL SAFETY AND HEALTH GUIDELINE FOR TETRAMETHYL SUCCINONITRILE

INTRODUCTION

This guideline summarizes pertinent information about tetramethyl succinonitrile (TMSN) for workers, employers, and occupational safety and health professionals who may need such information to conduct effective occupational safety and health programs. Recommendations may be superseded by new developments in these fields; therefore, readers are advised to regard these recommendations as general guidelines.

SUBSTANCE IDENTIFICATION

• Formula: C₈H₁₂N₂

• Structure:

• Synonyms: Succinonitrile tetramethyl, TMSN, TSN, tetramethyl-butanedinitrile

• Identifiers: CAS 3333-52-6; RTECS WN4025000; DOT Not assigned

• Appearance and odor: Colorless and odorless solid

CHEMICAL AND PHYSICAL PROPERTIES

Physical data

1. Molecular weight: 136.22

2. Specific gravity (water = 1): 1.07

3. Melting point: 170°C (338°F), sublimes

4. Insoluble in water

Reactivity

- 1. Incompatibilities: Strong oxidizers may cause fires and explosions.
- 2. Hazardous decomposition products: Toxic vapors and gases (e.g., cyanides, oxides of nitrogen, and carbon monoxide) may be released in a fire involving TMSN.

Flammability

- 1. Extinguishant: Water, dry chemical, or carbon dioxide.
- 2. Caution: TMSN is a combustible solid. All ignition sources must be controlled when TMSN is used, handled, or stored so as not to create a potential fire or explosion hazard.

• Warning properties

Evaluation of warning properties for respirator selection: Based on lack of information on odor threshold and eye irritation levels, TMSN should be considered to have poor warning properties.

EXPOSURE LIMITS

The current Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for TMSN is 0.5 parts of TMSN per million parts of air (ppm) [3.0 milligrams of TMSN per cubic meter of air (mg/m³)] as a time-weighted average (TWA) concentration over an 8-hour workshift (Skin). The notation "Skin" refers to the potential contribution to overall exposure by the cutaneous route including the mucous membranes and eyes. The National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (REL) is 1 ppm (6 mg/m³) as a ceiling concentration determined in any 15-minute sampling period. The American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV®) is 0.5 ppm (3 mg/m³) (Skin) as a TWA for a normal 8-hour workday and a 40-hour workweek (Table 1).

Table 1.—Occupational exposure limits for tetramethyl succinonitrile

	Exposure limits	
	ppm	mg/m³
OSHA PEL TWA (Skin)*	0.5	3
NIOSH REL ceiling (15 min)	1	6
ACGIH TLV® TWA (Skin)	0.5	3

* (Skin): Potential contribution to overall exposure by the cutaneous route including mucous membranes and eyes.

HEALTH HAZARD INFORMATION

• Routes of exposure

TMSN may cause adverse health effects following exposure via inhalation, ingestion, or dermal or eye contact.

Summary of toxicology

Effects on animals: Acute inhalation, subcutaneous injection, or oral administration of TMSN to rats, mice, or hamsters

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health Division of Standards Development and Technology Transfer produced severe convulsions and death within several hours of exposure.

Signs and symptoms of exposure

Short-term (acute): Exposure to TMSN can cause headache, sensation of pressure within the head, dizziness, nausea, vomiting, peculiar taste, respiratory distress, fatigue, convulsions, and unconsciousness.

RECOMMENDED MEDICAL PRACTICES

Medical surveillance program

Workers with potential exposures to chemical hazards should be monitored in a systematic program of medical surveillance intended to prevent or control occupational injury and disease. The program should include education of employers and workers about work-related hazards, placement of workers in jobs that do not jeopardize their safety and health, earliest possible detection of adverse health effects, and referral of workers for diagnostic confirmation and treatment. The occurrence of disease (a "sentinel health event," SHE) or other work-related adverse health effects should prompt immediate evaluation of primary preventive measures (e.g., industrial hygiene monitoring, engineering controls, and personal protective equipment). A medical surveillance program is intended to supplement, not replace, such measures.

A medical surveillance program should include systematic collection and epidemiologic analysis of relevant environmental and biologic monitoring, medical screening, morbidity, and mortality data. This analysis may provide information about the relatedness of adverse health effects and occupational exposure that cannot be discerned from results in individual workers. Sensitivity, specificity, and predictive values of biologic monitoring and medical screening tests should be evaluated on an industry-wide basis prior to application in any given worker group. Intrinsic to a surveillance program is the dissemination of summary data to those who need to know, including employers, occupational health professionals, potentially exposed workers, and regulatory and public health agencies.

• Preplacement medical evaluation

Prior to placing a worker in a job with a potential for exposure to TMSN, the physician should evaluate and document the worker's baseline health status with thorough medical, environmental, and occupational histories, a physical examination, and physiologic and laboratory tests appropriate for the anticipated occupational risks. These should concentrate on the function and integrity of the central nervous system.

A preplacement medical evaluation is recommended in order to detect and assess preexisting or concurrent conditions which may be aggravated or result in increased risk when a worker is exposed to TMSN at or below the NIOSH REL.

The examining physician should consider the probable frequency, intensity, and duration of exposure, as well as the nature and degree of the condition, in placing such a worker. Such conditions, which should not be regarded as absolute contraindications to job placement, include a history and physical findings consistent with a convulsant disorder.

• Periodic medical screening and/or biologic monitoring Occupational health interviews and physical examinations should be performed at regular intervals. Additional examinations may be necessary should a worker develop symptoms that may be attributed to exposure to TMSN. The interviews, examinations, and appropriate medical screening and/or biologic monitoring tests should be directed at identifying an excessive decrease or adverse trend in the physiologic function of the central nervous system as compared to the baseline status of the individual worker or to expected values for a suitable reference population.

• Medical practices recommended at the time of job transfer or termination

The medical, environmental, and occupational history interviews, the physical examination, and selected physiologic and laboratory tests which were conducted at the time of placement should be repeated at the time of job transfer or termination. Any changes in the worker's health status should be compared to those expected for a suitable reference population.

MONITORING AND MEASUREMENT PROCEDURES

• Ceiling concentration evaluation

Measurements to determine worker exposure should be taken during periods of maximum expected airborne concentrations of TMSN. Each measurement to determine the NIOSH REL (ceiling exposure) in the worker's breathing zone (air that most nearly represents that inhaled by the worker) should consist of a 15-minute sample or a series of consecutive samples that total 15 minutes. A minimum of three measurements should be taken during one workshift, and the highest of all measurements taken is an estimate of the worker's exposure. If the periods of maximum exposure are not clearly defined, a statistical procedure which can be used as a peak exposure detection strategy is given in the Occupational Exposure Sampling Strategy Manual.

Method

Sampling and analysis may be performed by collecting TMSN vapors with charcoal tubes followed by desorption with carbon disulfide and analysis by gas chromatography. Detector tubes or other direct-reading devices calibrated to measure TMSN may also be used if available. A detailed sampling and analytical method for TMSN may be found in the *NIOSH Manual of Analytical Methods* (method number S155).

PERSONAL PROTECTIVE EQUIPMENT

Chemical protective clothing (CPC) should be selected after utilizing available performance data, consulting with the manufacturer, and then evaluating the clothing under actual use conditions.

Workers should be provided with and required to use CPC, gloves, face shields (8-inch minimum), and other appropriate protective clothing necessary to prevent skin contact with solid TMSN or liquids containing TMSN.

Workers should be provided with and required to use dust- and splash-proof safety goggles where TMSN may come in contact with the eyes.

SANITATION

Clothing which is contaminated with TMSN should be removed immediately and placed in closed containers for storage until it can be discarded or until provision is made for the removal of TMSN from the clothing. If the clothing is to be laundered or cleaned, the person performing the operation should be informed of TMSN's hazardous properties.

Change and shower rooms should be provided with separate locker facilities for street and work clothes.

Skin that becomes contaminated with TMSN should be promptly washed with soap and water.

The storage, preparation, dispensing, or consumption of food or beverages, the storage or application of cosmetics, the storage or smoking of tobacco or other smoking materials, or the storage or use of products for chewing should be prohibited in work areas.

Workers who handle TMSN should wash their faces, hands, and forearms thoroughly with soap and water before eating, smoking, or using toilet facilities.

COMMON OPERATIONS AND CONTROLS

Common operations in which exposure to TMSN may occur and control methods which may be effective in each case are listed in Table 2.

Table 2.—Operations and methods of control for tetramethyl succinonitrile

Operations	Controls	
During the manufacture of polymers initiated by azobisisobutyronitrile; during the processing of products expanded with azobisisobutyronitrile	Local exhaust ventilation	
During the manufacture of expanded polyvinyl chlo- ride and polystyrene when azobisisobutyronitrile is used as a blowing agent	Local exhaust ventilation	

EMERGENCY FIRST AID PROCEDURES

In the event of an emergency, remove the victim from further exposure, send for medical assistance, and initiate emergency procedures.

• Eye exposure

Where there is any possibility of a worker's eyes being exposed to TMSN, an eye-wash fountain should be provided within the immediate work area for emergency use.

If TMSN gets into the eyes, flush them immediately with large amounts of water for 15 minutes, lifting the lower and upper lids occasionally. Get medical attention as soon as possible. Contact lenses should not be worn when working with this chemical.

• Skin exposure

Where there is any possibility of a worker's body being exposed to TMSN, facilities for quick drenching of the body should be provided within the immediate work area for emergency use.

If TMSN gets on the skin, wash it immediately with soap and water. If TMSN penetrates the clothing, remove the clothing immediately and wash the skin with soap and water. Get medical attention promptly.

Rescue

If a worker has been incapacitated, move the affected worker from the hazardous exposure. Put into effect the established emergency rescue procedures. Do not become a casualty. Understand the facility's emergency rescue procedures and know the locations of rescue equipment before the need arises.

SPILLS AND LEAKS

Workers not wearing protective equipment and clothing should be restricted from areas of spills or leaks until cleanup has been completed.

If TMSN is spilled or leaked, the following steps should be taken:

- 1. Remove all ignition sources.
- 2. Ventilate area of spill or leak.
- 3. For small quantities of liquids containing TMSN, absorb on paper towels and place in an appropriate container. Place towels in a safe place such as a fume hood for evaporation. Allow sufficient time for evaporation of the vapors so that the hood ductwork is free from TMSN vapors. Burn the paper in a suitable location away from combustible materials.
- 4. Large quantities of liquids containing TMSN may be absorbed in vermiculite, dry sand, earth, or a similar material and placed in an appropriate container. TMSN should not be allowed to enter a confined space such as a sewer because of the possibility of an explosion.
- 5. If in the solid form, TMSN may be collected and placed in an appropriate container.
- 6. TMSN solid or liquid may be collected by vacuuming with an appropriate system. If a vacuum system is used, there should be no sources of ignition in the vicinity of the spill, and flash-back prevention devices should be provided.

WASTE REMOVAL AND DISPOSAL

U.S. Environmental Protection Agency, Department of Transportation, and/or state and local regulations shall be followed to assure that removal, transport, and disposal are in accordance with existing regulations.

RESPIRATORY PROTECTION

It must be stressed that the use of respirators is the least preferred method of controlling worker exposure and should not normally be used as the only means of preventing or minimizing exposure during routine operations. However, there are some exceptions for which respirators may be used to control exposure: when engineering and work practice controls are not technically feasible, when engineering controls are in the process of being installed, or during emergencies and certain maintenance operations including those requiring confined-space entry (Table 3).

In addition to respirator selection, a complete respiratory protection program should be instituted which as a minimum complies with the requirements found in the OSHA Safety and Health Standards 29 CFR 1910.134. A respiratory protection program should include as a minimum an evaluation of the worker's ability to perform the work while wearing a respirator, the regular training of personnel, fit testing, periodic environmental monitoring, maintenance, inspection, and cleaning. The implementation of an adequate respiratory protection program, including selection of the correct respirators, requires that a knowledgeable person be in charge of the program and that the program be evaluated regularly.

Only respirators that have been approved by the Mine Safety and Health Administration (MSHA, formerly Mining Enforcement and Safety Administration) and by NIOSH should be used. Remember! Air-purifying respirators will not protect from oxygen-deficient atmospheres.

For each level of respirator protection, only those respirators that have the minimum required protection factor and meet other use restrictions are listed. All respirators that have higher protection factors may also be used.

BIBLIOGRAPHY

- American Conference of Governmental Industrial Hygienists: "Tetramethyl Succinonitrile," *Documentation of the Threshold Limit Values and Biological Exposure Indices* (5th ed.), Cincinnati, 1987.
- American Conference of Governmental Industrial Hygienists: TLVs® Threshold Limit Values and Biological Exposure Indices for 1987-88, Cincinnati, 1986.
- American Lung Association of San Diego and Imperial Counties: "Taking the Occupational History," *Annals of Internal Medicine*, 99:641-651, November 1983.
- Baskin, A.D. (ed.): Handling Guide for Potentially Hazardous Materials, Material Management and Safety, Inc., Niles, Illinois, 1975.
- Code of Federal Regulations, U.S. Department of Labor, Occupational Safety and Health Administration, 29 CFR 1910.134, 1910.1000, OSHA 2206, revised July 1, 1986.
- Considine, D.M. (ed.): Van Nostrand's Scientific Encyclopedia (5th ed.), Van Nostrand Reinhold Company, New York, 1976.
- Doherty, P.A., Smith, R.P., and Ferm, V.H.: "Comparison of the Teratogenic Potential of Two Aliphatic Nitriles in Hamsters: Succinonitrile and Tetramethylsuccinonitrile," *Fundaments of Applied Toxicology*, 3(1):41-48, 1983.
- Goldman, R.H., and Peters, J.M.: "The Occupational and Environmental Health History," *Journal of the American Medical Association*, 246:2831-2836, 1981.
- Grant, W.M.: *Toxicology of the Eye* (2nd ed.), Charles C. Thomas, Springfield, Illinois, 1974.

- Halperin, W.E., Ratcliffe, J., Frazier, T.M., Wilson, L., Becker, S.P., and Shulte, P.A.: "Medical Screening in the Workplace: Proposed Principles," *Journal of Occupational Medicine*, 28(8): 547-552, 1986.
- Hample, C.A., and Hawley, G.G. (eds.): *The Encyclopedia of Chemistry* (3rd ed.), Van Nostrand Reinhold Company, New York, 1973.
- Hankinson, J.L.: "Pulmonary Function Testing in the Screening of Workers: Guidelines for Instrumentation, Performance, and Interpretation," *Journal of Occupational Medicine*, 28(10):1081-1092, 1986.
- Leidel, N.A., Busch, K.A., and Lynch, J.R.: Occupational Exposure Sampling Strategy Manual, U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, DHEW (NIOSH) Publication No. 77-173, Cincinnati, 1977.
- Levy, B.S., and Wegman, D.H. (eds.): Occupational Health: Recognizing and Preventing Work-Related Disease, Little, Brown and Company, Boston, 1983.
- Manufacturing Chemists Association, Inc.: Guide for Safety in the Chemical Laboratory (2nd ed.), Van Nostrand Reinhold Company, New York, 1972.
- Mark, H.F., Othmer, D.F., Overberger, C.G., Seaborg, G.T., Grayson, M., and Eckroth, D. (eds.): *Kirk-Othmer Encyclopedia of Chemical Technology* (3rd ed.), John Wiley & Sons, Inc., New York, 1981.
- National Institute for Occupational Safety and Health, U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control: Criteria for a Recommended Standard...Occupational Exposure to Nitriles, DHEW (NIOSH) Publication No. 78-212, Cincinnati, 1978.
- National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control: *Registry of Toxic Effects of Chemical Substances* (Microfiche Edition), Sweet, D.V., and Lewis, R.J. (eds.), Cincinnati, April 1985.
- National Institute for Occupational Safety and Health, U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control: "Tetramethyl Succinonitrile," *NIOSH Manual of Analytical Methods* (2nd ed., Vol. 3), Taylor, D.G. (ed.), DHEW (NIOSH) Publication No. 77-157-C, Cincinnati, 1977.
- Proctor, N.H., and Hughes, J.P.: Chemical Hazards of the Workplace, J.B. Lippincott Company, Philadelphia, 1978.
- Rom, W.N. (ed.): Environmental and Occupational Medicine, Little, Brown and Company, Boston, 1983.
- Rothstein, M.A.: *Medical Screening of Workers*, Bureau of National Affairs, Washington, DC, 1984.
- Rutstein, D.D., Mullan, R.J., Frazier, T.M., Halperin, W.E., Melius, J.M., and Sestito, J.P.: "Sentinel Health Events (Occupational): A Basis for Physician Recognition and Public Health Surveillance," *American Journal of Public Health*, 73:1054-1062, 1983.
- Sax, N.I. (ed.): Dangerous Properties of Industrial Materials (6th ed.), Van Nostrand Reinhold Company, New York, 1984.
- Scientific Assembly on Environmental and Occupational Health: "Evaluation of Impairment/Disability Secondary to

Respiratory Disease," American Review of Respiratory Diseases, 126:945-951, 1982.

• Scientific Assembly on Environmental and Occupational

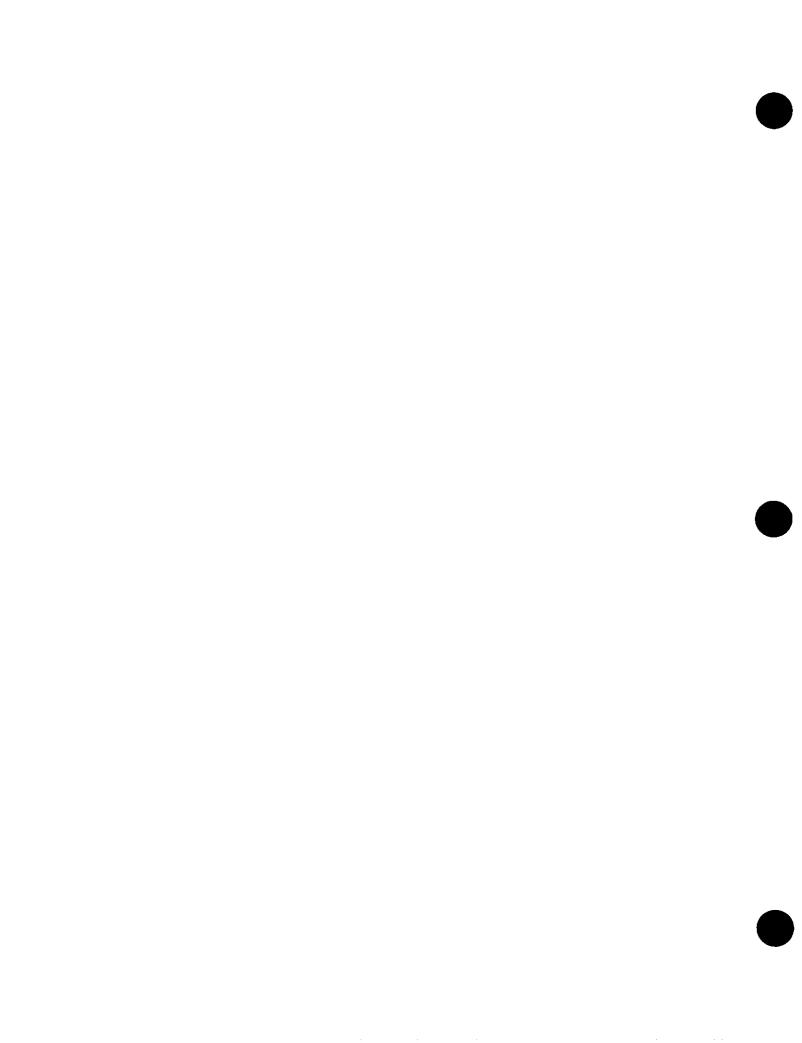

Health: "Surveillance for Respiratory Hazards in the Occupational Setting," *American Review of Respiratory Diseases*, 126:952-956, 1982.

Table 3.—Respiratory protection for tetramethyl succinonitrile

Condition	Minimum respiratory protection*†
Concentration: Less than or equal to 5 ppm	Any supplied-air respirator
	Any self-contained breathing apparatus
Planned or emergency entry into environments containing unknown concentrations or levels above 5 ppm	Any self-contained breathing apparatus with a full facepiece and operated in a pressure- demand or other positive pressure mode
	Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode
Firefighting	Any self-contained breathing apparatus with a full facepiece and operated in a pressure- demand or other positive pressure mode
Escape only	Any air-purifying full facepiece respirator (gas mask) with a chin-style or front- or back-mounted organic vapor canister having a high-efficiency particulate filter
	Any appropriate escape-type self-contained breathing apparatus

^{*} Only NIOSH/MSHA-approved equipment should be used.

[†] The respiratory protection listed for any given condition is the minimum required to meet the NIOSH REL of 1 ppm (6 mg/m³) (ceiling).

