Genetic Improvement of Fruits and Vegetables Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Autumn Olive
Strawberry - Inbred Diploid Lines
Blueberry Research
Cranberry Research
Strawberry - Sustainabaility Cost Conparison
 

Research Project: GENETIC ENHANCEMENT OF QUALITY CONSTITUENTS IN SOLANACEOUS VEGETABLES

Location: Genetic Improvement of Fruits and Vegetables

Project Number: 1275-21000-195-00
Project Type: Appropriated

Start Date: Jul 24, 2008
End Date: Jul 23, 2013

Objective:
The objectives of this project focus on determining the underlying genetic bases of quality attributes and nutritive value of Solanaceous vegetables in order to facilitate their deployment in improved germplasm. Diverse Solanaceous germplasm resources exist for enhancement of cultivated forms of tomato, pepper and eggplant. Genes that may be valuable for crop improvement are often not well characterized or they may be associated with undesirable traits. Over the next 5 years we will focus on the following objectives: 1) Develop tomato germplasm with enhanced fresh- and processing-market quality. Research will focus on identification of QTL and candidate genes that contribute to fruit quality, principally fruit firmness attributes. Breeding lines and genetic stocks will be released by ARS for development of germplasm with improved firmness attributes. 2) Develop new Capsicum germplasm with improved culinary and/or ornamental quality. Genetic mechanisms underlying tissue-specific anthocyanin accumulation and fruit flavor will be characterized. Germplasm with unique tissue specificity for anthocyanin/carotenoid pigmentation in foliage, flowers and fruit will be introgressed into genotypes with novel plant habits and fruit shape, size, configuration and flavor. The inheritance of morphological characters will be determined. New novel germplasm will be released. 3) Determine the inheritance of eggplant antioxidant content, principally phenolic acids that influence postharvest quality, in populations developed from crosses of diverse accessions in the eggplant core subset.

Approach:
(Objective 1) QTL and candidate genes that contribute to fruit quality, principally fruit firmness attributes, will be identified in an inbred backcross line population developed from parental lines originating from interspecific Solanum lycopersicum x S. galapagense crosses. These lines exhibit divergent combining ability for fruit compression, puncture resistance and fruit fresh weight. A growing database of mapped SNP markers is available and will be utilized to identify and map firmness QTL. (Objective 2; Sub-objective 2.A) Utilizing divergent genotypes and environmental treatments, we have previously demonstrated differential expression of Capsicum anthocyanin-related structural and regulatory genes in tissues that vary in anthocyanin pigmentation. A dual approach using environmental and genetic mediated modification of anthocyanin pigmentation, combined with TEV-induced silencing will provide multiple avenues to characterize regulation of tissue-specific pigmentation in Capsicum. The effect of light treatment and silencing induced by TEV infection on anthocyanin structural and regulatory gene expression will be characterized. The siRNA/miRNA populations of anthocyanin pigmented and non-pigmented tissue will be compared to evaluate the contribution of small RNAs to regulatory gene expression. Gene expression and small RNA populations will be similarly assessed in a small series of recombinant inbred lines that we have developed which vary in tissue specific anthocyanin pigmentation. (Sub-objective 2.B) Germplasm with unique specificity for anthocyanin/carotenoid pigmentation in foliage, flowers and fruit will be introgressed into genotypes with novel plant habits and fruit shape, size, configuration and flavor. Novel flavor attributes identified in exotic Capsicum germplasm will be characterized and introgressed into C. annuum. Backcross, pedigree and inbred backcross breeding will be utilized. Inheritance of morphological traits will be determined. Analyses will be performed using segregating F2, F3 and backcross populations that we have developed. QTL for flavor attributes will be identified using the principles described in Objective 1 for tomato fruit firmness. (Objective 3) Eggplant accessions with divergent fruit phenolic acid constituents and total phenolic acid content have been selected to determine the inheritance of individual classes of phenolic acid compounds and total phenolic acid content. Segregating F2 backcross populations to respective high and low phenolic acid parents will be developed and utilized to determine the inheritance of total phenolic acid content and individual classes of phenolic acids. Gene action, genetic factors and heritability estimates will be derived.

   

 
Project Team
Stommel, John
Jones, Richard
 
Related National Programs
  Plant Genetic Resources, Genomics and Genetic Improvement (301)
 
 
Last Modified: 10/19/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House