Plant, Soil and Nutrition Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Research Projects
Research Infrastructure
Interesting Links
Ithaca, NY Location
 

Research Project: GENOMIC APPROACHES TO IMPROVING TRANSPORT AND DETOXIFICATION OF SELECTED MINERAL ELEMENTS IN CROP PLANTS

Location: Plant, Soil and Nutrition Research

Project Number: 1907-21000-024-00
Project Type: Appropriated

Start Date: Apr 10, 2006
End Date: Apr 09, 2011

Objective:
1) Identify genes and associated physiological mechanisms for aluminum tolerance in the important cereal crop species, maize and sorghum, with the long-term goal of improving crop production on acid soils. 2) Describe molecular and physiological mechanisms of heavy metal/micronutrient tolerance and transport in the metal hyperaccumulator, Thlaspi caerulescens, and evaluate how these gene systems can be used for phytoremediation of metal-contaminated soils and for enhancing micronutrient nutrition of food crops.

Approach:
1) Sorghum represents plant species where Al tolerance is a simple trait. We have recently cloned the major sorghum Al tolerance gene, AltSB, and found it is a novel solute transporter. The function of AltSB will be studied using a multifaceted approach including the effect of increased/decreased AltSB expression on the physiology of Al tolerance, association analysis correlating sequence and phenotypic variation of multiple AltSB alleles, and analysis of AltSB transporter properties when expressed in heterologous systems. 2) Maize represents a plant species where Al tolerance is a complex, quantitative trait. We have identified a number of Al tolerance QTL in maize, and will work towards cloning these QTL via a combination of gene and protein expression analysis, high resolution mapping, and analysis of candidate tolerance genes based on homology to Al tolerance genes recently cloned in sorghum and wheat. 3) An investigation of the role of hyperexpression of a suite of micronutrient and heavy metal-related genes in heavy metal hyperaccumulation in Thlaspi caerulescens will involve investigation of cis and trans factors that control micronutrient (Zn) homeostasis in the related non-accumulator, Arabidopsis thaliana, and how these elements are altered in T. caerulescens to contribute to the enhanced metal accumulation and tolerance. 4) We have recently identified several genes that play important roles in the hyperaccumulation phenotype in T. caerulescens, including a heavy metal ATPase and a protein kinase, and the functioning of these genes in heavy metal hyperaccumulation, as well as in micronutrient nutrition will be studied.

   

 
Project Team
Kochian, Leon
Thannhauser, Theodore - Ted
Yang, Yong
 
Project Annual Reports
  FY 2007
  FY 2006
 
Publications
   Publications
 
Related National Programs
  Plant Biological and Molecular Processes (302)
  Plant Genetic Resources, Genomics and Genetic Improvement (301)
 
Related Projects
   IMPROVING THE ABIOTIC STRESS TOLERANCE, PHYTOREMEDIATION POTENTIAL, AND NUTRITIONAL QUALITY OF PLANTS
   ALTSB: THE MAJOR AL TOLERANCE GENE IN SORGHUM: MOLECULAR/BIOCHEMICAL CHARACTERIZATION AND APPLICATION TO IMPROVING CEREAL AL TOLERANCE
   IMPROVING PHOSPHORUS ACQUISITION AND ALUMINUM TOLERANCE OF PLANTS ON MARGINAL SOILS
   STRUCTURAL-FUNCTIONAL ANALYSIS OF ALMT-TYPE TRANSPORTERS: IDENTIFICATION OF PROTEIN MOTIFS CONFERRING ROLES IN ALUMINUM TOLERANCE
   TAILORING SUPERIOR ALLELES OF ALTSB, A MAJOR SORGHUM ALUMINUM TOLERANCE GENE, FOR DEPLOYMENT INTO CROP BREEDING PROGRAMS
 
 
Last Modified: 10/20/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House