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Magnetic Resonance Spectroscopy For Brain Tumors 

 
 
Introduction 
Diagnosing and treating space-occupying tumors of the brain 

presents special challenges due to the similarities of tumors to other 

pathologic entities on conventional imaging, the similarities of individual 

tumor cell types on conventional imaging, the inaccessibility of these 

lesions, and their proximity to complex brain structures. A non-invasive 

technique that could provide information about the chemical and histologic 

composition of brain tissue could greatly aid diagnosis and treatment of 

brain tumors by helping to avoid unnecessary biopsies, by helping to guide 

biopsies, and by providing additional information for improving treatment. 

The Centers for Medicare & Medicaid Services (CMS) requested a 

technology assessment by the Agency for Healthcare Research and 

Quality (AHRQ) to assess the value of Magnetic Resonance Spectroscopy 

(MRS) for diagnostic evaluation, surgical planning, and patient 

management of space-occupying brain tumors. The Tufts-New England 

Medical Center Evidence-based Practice Center was asked to conduct an 

assessment of this technology.   
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An OVID search of the MEDLINE®  database was conducted on 

November 6, 2002.  Filters and limitations were used to eliminate 

inappropriate publications, with inclusion and exclusion criteria developed  

to identify articles to be reviewed. The search used applicable MeSH 

headings and textwords with appropriate Boolean operators. After filtering 

irrelevant publication types (such as publications not containing original 

clinical data), the search resulted in 959 citations for download and 

screening. Hand screening of the abstracts resulted in accepting 137 

citations for complete article retrieval. All abstracts were reviewed to 

identify full articles that met the criteria. In addition, abstracts from the 

following relevant professional society proceedings for the years 2001 and 

2002 were reviewed and included in the analyses: American Society of 

Neuroradiology (ASNR), Radiological Society of North America (RSNA), 

and the International Society for Magnetic Resonance in Medicine 

(ISMRM). 

 
Results 

 
Ninety-six articles met our inclusion criteria for evaluation, and 85 of 

these only provided information about technical feasibility. Eleven of the 
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articles provided information beyond the level of technical feasibility. Eight 

articles evaluated the test performance of MRS in various settings. Three 

articles addressed the impact of MRS on diagnostic thinking and 

therapeutic decision making. No article was found that addressed 

improvement of patient outcome. 
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  Cho/Cr (choline/creatine) is the only metabolite ratio that has been 

found to be useful in differentiating neoplasm and non-neoplasm and 

supported by several studies. Among all the full articles examined in this 

technology assessment only one provided the most complete reporting of 

the metabolite signal intensities and ratios for each type of tumor found in 

their study population. However, no single metabolite or ratio, other than 

perhaps a very high Cho/Cr ratio to diagnose peripheral neuroectodermal 

tumors (PNET), by itself could differentiate among different neoplasms, 

among different tumor grades, or between neoplastic and non-neoplastic 

lesions.  

 The only study that addressed the incremental gain in the proportion 

of diagnostic tissue obtained demonstrated that MRS added to 

conventional MRI improved the number of correct diagnoses and reduced 

the number of incorrect or equivocal diagnoses. 
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Three studies addressed the potential impact of MRS results on 

diagnostic thinking or therapeutic decision making. Conclusions that can be 

drawn from these studies are severely limited due to the fact that the two 

prospective studies had only 15 and 17 patients, respectively, and the only 

large study was a retrospective analysis of medical records to identify 

potential opportunities of MRS to influence diagnostic thinking.  No study 

explicitly evaluated the impact of voxel position on the accuracy of MRS.  

No study commented on the potential impact of operator error in placement 

of the voxel. 
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Conclusion 
 

Human studies conducted on the use of MRS for brain tumors 

demonstrate that this non-invasive method is technically feasible and 

suggest potential benefits for some of the proposed indications. However, 

there is a paucity of high quality direct evidence demonstrating the impact 

on diagnostic thinking and therapeutic decision making. In addition, the 

techniques of acquiring the MRS spectra and interpreting the results are  

not well standardized.  In summary, while there are a large number of 

studies that confirm MRS’ technical feasibility, there are very few published 

studies to evaluate its diagnostic accuracy and whether it can positively 

affect diagnostic thinking and therapeutic choice. Those studies that do 
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address these areas often have significant design flaws including 

inadequate sample size, retrospective design and other limitations that 

could bias the results. 
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1. INTRODUCTION 

1.1 Background 

Diagnosing and treating space-occupying tumors of the brain 

presents special challenges due to the similarities of tumors to other 

pathologic entities on conventional imaging, the similarities of individual 

tumor cell types on conventional imaging, the inaccessibility of these 

lesions and their proximity to complex brain structures.  Standard imaging 

diagnostic procedures include computerized tomography (CT), magnetic 

resonance imaging (MRI), single photon emission computed tomography 

(SPECT), and positron emission tomography (PET) imaging.  Following is a 

summary of invasive and non-invasive means of diagnosing brain tumors:   

Tech-
nique 

Degree of 
Invasiveness 

Description 

Biopsy Invasive 
 

Extraction of tissue for histopathological 
diagnosis. The reference standard. 

CT  Noninvasive 
Uses ionizing 
radiation 

Computed 2-dimensional map of the 
attenuation voxels of tissue using externally 
generated x-rays delivered in a circular 
fashion. 

MRI Noninvasive 
No ionizing 
radiation 

Spatial localization of tissue properties that 
relate to alignment of protons in strong 
magnetic fields. 

SPECT Noninvasive 
Uses radio-
isotopes 

Spatially localizes emitted photons (gamma 
rays) after administration of radioactive agent. 

PET Noninvasive 
Uses radio-

Spatially localizes emitted positrons after 
administration of radioactive agent. 
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Tech-
nique 

Degree of Description 
Invasiveness 
isotopes  

MRS Noninvasive 
No ionizing 
radiation 

Spatial localization of tissue chemical 
properties that relate to alignment of protons 
in strong magnetic fields. Proton (hydrogen) 
MRS uses the frequency response of 
hydrogen, while other versions examine the 
frequency response of other elements 
(phosphorus and sodium). 
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Confirming the preliminary diagnosis requires tissue biopsy to assess 

the histologic composition of the brain tissue in question. A non-invasive 

technique that could provide information about the chemical and histologic 

composition of brain tissue could greatly aid diagnosis and treatment of 

brain tumors by helping to avoid unnecessary biopsies, by helping to guide 

biopsies, and by providing additional information for improving treatment.  

Magnetic Resonance Spectroscopy is a technique related to 

magnetic resonance imaging (MRI). Both techniques rely on the tendencies 

of some proportion of protons to align with or against a strong magnetic 

field.  MRI refers to localizing the total tissue signal produced by a small, 

localized collection of tissue (voxel). The tissue signal  is produced by the 

rates of magnetic alignment (or decay) of the protons in two planes as well 

as the overall proton density.  T1 relaxation refers to alignment with the 

magnetic field, and T2 relaxation refers to alignment perpendicular to the 
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magnetic field). This phenomenon is produced by stimulating the blocks of 

tissue with a broad-spectrum signal that disrupts the magnetic alignment.  

The signal is eventually produced, after electromagnetic manipulation, as 

the protons re-align themselves to their original configurations.  
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MRS, on the other hand, relies on a very different phenomenon of 

proton alignment with the magnet that is based on frequency.  The ability of 

the alignment of protons to be disrupted is frequency dependent.  The 

exact frequency that disrupts the alignment depends on the chemical 

structures containing the protons.  In MRS, tissue blocks (or voxels) are 

stimulated with very narrow bandwidth frequencies, and a graph is made of 

the signal strength vs. the frequency of stimulation.  This produces 

characteristic peaks related to the amount of certain chemical compounds 

present in the tissue.  MRS, therefore, has the potential to provide 

information about specific metabolites in brain tissue that can indicate the 

presence of tumor, necrotic tissue, and other pathologic entities.  It should 

be noted that MRS has been evaluated as a diagnostic tool for a variety of 

diagnostic applications including not only CNS tumors but other non-CNS 

conditions. In this report, we exclusively examine MRS for brain tumors.   

Finally, the majority of brain tumor studies focus on proton (hydrogen) 

MRS, but other elements (i.e. phosphorus and sodium) are used.  This 
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report  deals with proton hydrogen MRS (to be referred herein simply as  

“MRS”).   
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1.2 Requests by the Centers for Medicare and Medicaid Services 

The Centers for Medicare & Medicaid Services (CMS) requested a 

technology assessment by the Agency for Healthcare Research and 

Quality (AHRQ) to assess the value of MRS for diagnostic evaluation, 

surgical planning, and patient management of space-occupying brain 

tumors. Also requested was a review of factors that may affect the 

performance of MRS.   The Tufts-New England Medical Center Evidence-

based Practice Center was asked to conduct an assessment of this 

technology.  For patients presenting with signs or symptoms of a space-

occupying brain lesion, the key questions to be addressed were:  

1. For what metabolic profiles does the yield of MRS provide 

equivalent, complementary, or more accurate diagnostic information 

for (i) initial diagnosis, (ii) recurrence, or (iii) assessing therapy than 

• Brain biopsy 

• Conventional anatomic imaging studies 

• MRS + conventional anatomic imaging studies vs. brain biopsy 

2. Does the use of MRS lead to an improved net health outcome by 
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• Avoiding unnecessary biopsy 198 

199 

200 

201 

202 
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204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

• Obtaining appropriate biopsy, from appropriate location 

• Directing biopsy to an appropriate location 

• Receiving appropriate treatment 

• Avoiding an inappropriate treatment 

3. Are voxel positions and operator error important factors in 

obtaining diagnostic images? If so, how do they impact MRS 

accuracy?  

 

1.3 Analytic Framework 

To address these issues we developed an analytic framework 

describing each of the potential uses of MRS.  Potential uses of MRS are 

described for patients newly diagnosed with a space-occupying brain mass 

as well as for patients with a previously diagnosed brain tumor undergoing 

treatment. The potential uses include diagnostic evaluation and 

prognostication, patient management and planning for surgery, and 

potential outcome measures for evaluating performance. Factors that might 

affect performance are also included in the framework, which is presented 

in Appendix A.  
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1.3.1 Diagnostic evaluation 218 
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 Experimentation with in-situ Magnetic Resonance Spectroscopy 

(MRS) for tumor assessment has been ongoing since 1985 (Maris et al., 

1985).  It was initially hoped that MRS would provide definitive 

spectrographic signatures of tumor histologic types. Clinical MRS research 

has led to multiple specific applications of MRS for both diagnostic work- 

ups and treatment follow-up of CNS tumor.  Combined with findings from 

conventional anatomic MRI, MRS may have the potential to improve the 

diagnosis and management of brain tumors. 

Primary diagnostic categories where some authors have suggested 

that MRS may present important diagnostic information are: 

 

Distinguishing single metastatic lesions from primary tumors of 

the CNS, such as astrocytomas   

This distinction is important, because single brain metastatic lesions 

would trigger a whole-body diagnostic workup for the source of the tumor, 

whereas primary brain tumors would be staged and treated as such.  The 

treatment regimens for different metastatic types of tumors vary greatly. In 

virtually all cases, metastatic lesions are treated with regimens 
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considerably different than primary brain tumors, so establishing the exact 

nature of the neoplasm is exceedingly important in treatment planning. 
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 In distinguishing abscesses from CNS tumors    

 Diagnosing an abscess quickly is critical. The clinical presentation 

of tumors and CNS abscesses in the Medicare population overlap 

significantly.  Mistaking an abscess for a tumor can lead to a significant 

delay in diagnosis that can be catastrophic, because diagnosing a tumor 

may involve a relatively long workup.  Rapid intervention in the case of an 

abscess can result in minimizing neurologic damage, leaving the patient in 

a high-functioning state.  

 

 Tumor grade 

 In primary CNS tumors, MRS may provide a more accurate means 

of determining tumor grade, and hence prognosis, than conventional 

anatomic MRI imaging with the contrast agent, gadolinium.  Currently, 

tumor grade is estimated by its potential to enhance with gadolinium.  The 

specificity of this diagnostic means is only moderate.  Establishing the 

grade is important in determining treatment protocol.  Low-grade tumors 

are often simply watched, whereas high-grade tumors are often de-bulked, 
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irradiated and sometimes treated with chemotherapy.  If a technique 

produces sufficient specificity for tumor grade, a biopsy could be foregone 

in many instances.  MRS may have an advantage over biopsy in reducing 

sampling error as well. 
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In distinguishing peripheral neuroectodermal tumors (PNET) 

from astrocytic lesions in adults   

The ability to distinguish these tumors reliably could speed treatment 

of PNETs.  These are typically very aggressive tumors that may sometimes 

respond to chemotherapy more readily than astrocytic tumors. Similarly, it 

is important to distinguish “bright spots” on conventional T2-weighted MRI 

imaging, associated with neurofibromatosis type 1 (NF1), from astroglial 

tumors occurring in this same patient population.  Neurofibroma bright 

spots are hamartomas that typically do not expand in size.  Follow-up 

exams are usually not necessary. The astrocytomas associated with NF1 

are low grade, and typically do not progress to high-grade tumors.  

Nonetheless, they can grow in size and are typically followed with imaging 

studies. 
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Biopsies 276 
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MRS has also been recently investigated for use in biopsies. Biopsy 

guidance is an area where MRS may reduce sampling error associated 

with determination of tumor grade (and prognosis) in primary CNS tumors.  

Accurate determination of tumor grade is important in determining 

prognosis and adjuvant therapy. 

 

1.3.3 Patient management and planning for surgery 

The management of CNS tumors depends on tumor type and 

multiplicity.  In primary astrocytomas of the CNS, treatment depends on 

grade.  Low-grade tumors (WHO classification grades 1-2) are usually 

observed, with follow-up, if small, and do not represent an immediate 

neurological crisis.  In cases of neurologic crisis, tumors are either excised 

or debulked.  In high-grade astrocytomas, tumors are debulked surgically, 

followed by whole-brain radiation. 

Single metastatic brain lesions have conventionally been excised 

when in accessible locations.  Excision is often accompanied by 

chemotherapy.  Multiple lesions have conventionally been treated with 

whole brain radiation and chemotherapy. Gamma knife therapy (focused 

stereotactical radiation) has become an important and increasingly used 
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alternative means of treating both single and multiple metastatic lesions.  

Its use in single lesions depends on the primary tumor’s sensitivity to 

radiation. 
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In patients treated for CNS tumors, MRS may provide important 

diagnostic criteria for: 

 

Determining tumor recurrence  

Tumor recurrence changes the prognosis of patients.  Because 

recurring brain tumors are associated with a shortened life span, prognosis 

is important for patients to plan the final stages of their lives.  Prognosis 

can, in some cases, be improved by additional focused radiation.  This 

treatment, either alone or with additional chemotherapy, is usually not 

administered until there is definite evidence of tumor recurrence. 

 

Distinguishing radiation necrosis from tumor recurrence   

The rate of tumor recurrence has prognostic value, as well as 

therapeutic implications.  However, the presence of mixed recurrent tumor 

and radiation necrosis is common. Radiation necrosis would contraindicate 

additional radiation.  While the effects are significant, they are not usually 

related to eventual mortality. Investigators have suggested that MRS could 
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distinguish recurrent tumor from radiation necrosis under some 

circumstances.   
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Determining tumor response to therapy  

Establishing that tumors are responding to the designated treatment 

is imperative, in determining if treatment (with its associated morbidity) 

should be continued, discontinued or changed to a different regimen. 

 

Surgical treatment planning  

Claims have been made that MRS provides important information for 

guidance of gamma knife therapy.  It has been suggested that MRS has 

improved accuracy in determining tumor extent and better delineates the 

area to be treated with focused radiation. 

 

 1.3.4 Factors that may affect performance of MRS 
 

Location of lesion including proximity to bone and sinuses 

The technique of MRS requires careful “shimming” of the magnetic 

fields --- adjusting the magnetic fields around the tissue of interest so that 

these fields are homogeneous.  Variations in the magnetic fields mis-

register the spectral peaks, as the frequency sensitivities of chemical 
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structures are also affected by the external magnetic field strength.  

Sudden dramatic changes in tissue composition, such as adjacent air or 

bone, can result in the inability to correctly shim the magnet field.  This can 

result in distorted and non-usable data.  Therefore, lesions that are small, 

and abut bone or air-filled structures, such as the sinuses, can present 

problems during MRS analysis. 
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Operator issues   

While standard MRI technologists are seldom specifically trained in 

MRS, commercial software has become available that is less sensitive to 

operator error.  Nevertheless, many current uses of MRS for brain tumors 

require precise localization that demands an understanding of MRS 

positioning requirements that with which many technologists are not 

acquainted.  Multivoxel MRS techniques may have reduced these problems 

to some degree.  However, accurate placement to achieve the desired 

results is still necessary. It may therefore be necessary for a trained 

neuroradiologist familiar with MRS to be available for voxel placement. 
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Size/position of voxel   355 
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Current commercial software enables either multivoxel or single voxel 

spectroscopy to be performed.  Manufacturers have pre-set values for slab 

thickness and voxel size in their software.  However, if mandated by 

conditions, these parameters may be changed by the investigator.  

Likewise, in single voxel studies, there are default values for voxel size and 

position.  However, specific conditions, such as tumor size, location and 

relative positioning of the voxels near artifact-producing structures can 

require changes in size.  The investigator must remember that the time of 

acquisition changes with the cube of the volume or square of the area.  

Additionally, the voxels must avoid overlapping with structures containing 

only cerebrospinal fluid, such as the ventricles, Sylvian fissure and 

choroidal fissures.  These regions contain some, but not all, of the chemical 

compounds analyzed in the brain.  Hence they can distort key ratios in the 

compounds used in interpretation. 

 

Concurrent disease 

Concurrent disease can occasionally produce problems when using 

MRS for evaluating tumors.  Tumors lying near areas of old infarcts and 

ischemic changes can distort chemical ratios used in interpretation.  
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Similarly, concurrent demyelinating disease can produce additional 

distortions.  In general, with single voxel technique, careful voxel 

placement, and containing voxels from appropriate control areas can 

alleviate the problem. Alternatively, selecting appropriate voxels from 

control areas in a multivoxel study could accomplish the same objective. 
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Hardware and software 

Hardware and software both affect the application of MRS.  In 

general, studies on magnets with field strengths less than 1.5 tesla (unit of 

magnetic flux) require too much time to be used on a routine basis.  High 

field strength magnets, such as current 3 tesla systems have a time 

advantage (that can be converted into a space localization advantage). 
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2. METHODS 387 
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2.1 Classification of diagnostic studies  
 
The Medicare Coverage Advisory Committee (MCAC) report on 

“Recommendations for Evaluating Effectiveness; Executive Committee 

Working Group Medicare Coverage Policy”  (Executive Committee Working 

Group, 2001) (http://www.cms.hhs.gov/mcac/8b1-i9.asp) developed 

recommendations for evaluating evidence. It pointed out that although 

direct evidence is preferable, few studies directly measure the effect of 

diagnostic tests on health outcomes. Rather, studies typically focus on 

whether diagnostic tests are technically feasible or on effects on accuracy.  

These points apply to MRS. Few well-designed studies evaluate the impact 

of this test on clinical outcomes. 

 

To systematically review the level of assessment of each study, we 

used a model described by Fineberg et al. (1977), Fryback and Thornbury 

(1991), and Adams (1997) to categorize the level of assessment achieved 

by the studies:  
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 406 

407 CATEGORIES OF DIAGNOSTIC ASSESSMENT  

CATEGORY  CATEGORY DESCRIPTION EXAMPLES OF 
MEASURES 

1 Technical feasibility and optimization Ability to produce 
consistent spectra 

2 Diagnostic accuracy Sensitivity and specificity 
3 Diagnostic thinking impact % of times clinicians’ 

subjective assessment of 
diagnostic probabilities 
change 

4 Therapeutic choice impact % of times therapy 
planned prior to MRS 
changed after MRS  

5 Patient outcome impact % of patients who 
improved with MRS 
compared to % without 
MRS 

6 Societal impact Cost-benefit analysis 
 408 

409 

410 

411 

412 

413 

414 

415 
416 
417 

418 

Note that the Institute of Medicine has also described similar criteria for 

evaluating diagnostic tests. 

According to the MCAC assessment criteria, the studies most useful 

for assessing MRS would be Category- 2 or higher.  In consultation with 

AHRQ and CMS, it was decided to review in depth only Category- 2 and 

higher studies. 
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2.2 Literature search  419 

420 

421 

422 

423 
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429 
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431 

432 

433 

434 
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436 

437 

438 

An OVID search of the MEDLINE® database was conducted on 

November 6, 2002.  Filters and limitations were used to eliminate 

inappropriate publications, with inclusion and exclusion criteria developed  

to identify articles to be reviewed. The search used applicable MeSH 

headings and textwords with appropriate Boolean operators. After filtering 

irrelevant publication types, the search resulted in 959 citations for 

download and screening. Hand screening of the abstracts resulted in 

accepting 137 citations for complete article retrieval.  All abstracts were 

reviewed to identify full articles that met the criteria. 

 In addition, abstracts from the following relevant professional society 

proceedings for the years 2001 and 2002 were reviewed and included in 

the analyses: 

• American Society of Neuroradiology (ASNR) 

• Radiological Society of North America (RSNA) 

• International Society for Magnetic Resonance in Medicine (ISMRM) 

 

Note that the information available from abstracts in such proceedings is 

extremely limited in comparison to that available in full articles. Additionally, 

the peer review process is generally not comparable to the process for full 
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articles.  Finally, the International Network of Agencies for Health 

Technology Assessment (INAHTA) (

439 

http://www.inahta.org/) and National 

Guidelines Clearinghouse  (NGC) (

440 

http://www.guideline.gov/index.asp) 

databases were searched for relevant citations. 
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2.3 Inclusion/Exclusion Criteria 

The inclusion criteria for accepting studies included the use of 

hydrogen proton magnetic resonance spectroscopy (hydrogen) MRS on 

patients with suspected or known brain tumors. Only in vivo studies with a 

minimum of six adult human subjects were included. Explicitly excluded 

were studies of only healthy patients or studies of exclusively HIV/AIDS 

patients. In addition, studies of phosphorus or other types of MRS were 

excluded. 

 

2.4  Search Results 

One hundred thirty-seven publications were retrieved. Further review 

of those retrieved publications with application of inclusion criteria yielded 

85 studies for inclusion in the report. The detailed search strategy follows: 
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 457 

458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 

486 

487 

488 

489 

_________________________________________________________ 
MEDLINE <1966 to October Week 4 2002> 
 
# Search History Results 
 
1 exp Magnetic Resonance Spectroscopy/ 92891 
2 limit 1 to human 22632 
3 limit 2 to English language 20499 
4 exp neoplasms/ 1409117 
5       (tumor or cancer$ or neoplasm$ or neoplas$ or  
 lesion$ or mass).tw. 1131920 
6 (brain or cranial or cerebr$).tw. 479504 
7 5 and 6 71583 
8 4 and 6 50293 
9 7 or 8 93338 
10 exp brain neoplasms/ 69674 
11 3 and (9 or 10) 1231 
12     limit 11 to (addresses or bibliography or biography or  
 
 
# Search History Results 
 

dictionary or directory or editorial or festschrift or  
 historical article or interview or lectures or legal cases or  
 legislation or letter or news or newspaper article or  
 patient education handout or periodical index) 24 
13 Case Report/ 1059907 
14 11 not (12 or 13)        959 

_________________________________________________________ 

 

Two hundred forty-one abstracts were identified in the search of the 

three professional society proceedings and fifty-one met the inclusion 
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criteria and are included in this report.  No relevant material was identified 

in either the INAHTA or NGC databases. 
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2.5 Data Extraction  

As described above, our review entailed classifying each study into 

five categories. For those studies in Category- 1 we extracted data 

summarizing the following aspects of each study for later use in an 

evidence table: study characteristics (design, enrollment, patient 

characteristics), MRS technical aspects (number and volume of voxels), 

and study objectives (differential diagnosis and treatment planning).    

 
For the studies in Category- 2 and above, narrative analyses were 

provided for each study.  Studies in these categories were also evaluated 

with respect to their methodological adequacy. 
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3. RESULTS: Full Published Studies 506 
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The following table shows the number of studies in each of the 

categories. After reviewing the 959 abstracts and 137 retrieved articles, 75 

studies were classified as Category-1 Technical feasibility studies. Ten 

studies were identified as providing information beyond that of the technical 

feasibility category. An additional 10 studies were added to Category- 1 

and 1 study added to Category- 2 from references given by peer reviewers 

of the draft version of this report. In this section we report on the 96 

published full-length studies classified using the approach described above. 

There were eight articles for Category-2, two articles for Category-3 (one 

study also qualify for Category-4), two articles for Category- 4 (one article 

shared with Category-3), and none for Category- 5 or Category- 6. Nearly 

all the studies identified were in Categories- 1 and 2, with the vast majority 

in Category- 1. The following table summarizes these results: 

 

CATEGORY DESCRIPTION # 
1 Technical feasibility and optimization 85 
2 Diagnostic accuracy 8 
3 Diagnostic thinking impact 2* 
4 Therapeutic choice impact 2* 
5 Patient outcome impact 0 
6 Societal impact 0 

*One study overlapped Category- 3 and Category- 4.  522 
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3.1 Category- 1 studies: Technical Feasibility 523 
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Evidence Table 1 shows selected characteristics of the technical 

feasibility (Category- 1) studies. Included in this table are the year of 

publication, country in which the research was conducted, study 

characteristics including number of diseased (case) and non-diseased 

(control) patients, method of patient enrollment, diagnostic status, and age.  

The table also shows the size of the volume of tissue (voxel) of interest as 

well as whether single or multiple voxel sampling was used. Finally, the 

table indicates the principal clinical study objectives: tumor differentiation, 

tumor grading, distinguishing primary tumor tissue from recurrent tumor 

and from metastases, and identifying necrotic tissue. 

We reviewed 85 Category- 1 studies published from 1988 through 

2003 involving approximately 2434 patients; fifty (59%) of the studies were 

published before 2000.  There was extensive international representation in 

these studies. Twenty-four (28%) were from the US, 15 (18%) were from 

Japan, and 19 other countries were represented. The ages of patients 

included in the studies varied considerably; the range was from 1- 88 

years, but we excluded studies that consisted predominantly of pediatric 

patients. 
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 Almost all of the studies were prospective, with several retrospective 

and several of unknown design.  The largest study included 120 cases.  

Many of the studies did not include control patients; for those studies that 

did, however, the maximum number of healthy controls was 151.  One 

study reported approximately 300 diagnostic studies of controls. The 

mechanism used to enroll patients was generally not reported. In almost all 

of the studies, the disease status of the participants was ascertained via 

biopsy, although in a few instances the ascertainment was via clinical 

assessment only.   
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Single voxel sampling was the predominant methodology, although 

multiple sampling was also often used, and a combination of the two 

approaches was sometimes employed.  In some articles the technique was 

not reported. Voxel volumes ranged widely.  

Tumor differentiation (36 studies) and grading (30 studies) were the 

most frequently cited clinical objectives. Identifying necrotic tissue (15 

studies) was also a frequent objective. Distinguishing metastases from 

primary tumors (5 studies) and recurrent from primary tumors (four studies) 

were less frequent objectives.  
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While not shown in the table, nearly all of these studies reported that 

metabolite peaks were obtained and metabolite ratios calculated. The 

authors analyzed spectral patterns using these measures. 
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3.2 Category-2: Studies that Evaluate Test Performance 

Eleven studies were identified as providing information beyond the 

technical feasibility category. There were eight articles for Category-2, two 

articles for Category-3 (one study also qualify for Category-4), two articles 

for Category-4 (one article shared with Category-3), and none for Category-

5 or Category-6. 

A total of eight studies provided data for  Category-2. Studies in this 

category could be further grouped into studies with the main purpose of 

differentiating tumors from non-tumors (three), grading of tumors (two), 

differentiating intracranial cystic lesions (one), and assessing the 

incremental value of MRS added to MRI (one). The purposes of the studies 

within the same group were sufficiently different so that combining or 

comparing studies within the same group was infeasible. 

One group of investigators from the Medical College of Wisconsin 

published three articles (Rand et al., 1997; Adamson et al., 1998; Butzen et 

al., 2000) using overlapping patient samples but addressing different 
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research issues. Fifty-five MRS spectra belonging to 53 patients in the 

1997 article were included in the 99 MRS spectra evaluated in the 2000 

article. The study by Adamson et al. (1998) was a retrospective analysis of 

78 patients from the same study population and is discussed under the 

Category-4 section. 
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3.2.1 Studies Differentiating Neoplasm from Non-neoplasm 
 

Rand et al. (1997) evaluated 55 brain lesions in a consecutive series 

of 53 patients between September 1994 and December 1995. The patients 

included 31 males and 22 females between the ages of 14 and 81 years 

(mean 45 years), and they had suspected brain neoplasm or recurrent 

neoplasia. The purpose of the study was to measure the accuracy of 

single-voxel, image-guided proton MRS in distinguishing normal from 

abnormal brain tissue and neoplastic from non-neoplastic brain disease. 

Using voxel sizes of 1 to 3 cm3, MRS spectra were obtained using a 

clinical 0.5 Tesla MR system (manufacturer not stated) with a prototype 

head coil or a receive-only conformal surface coil.  The voxel was centered 

over solid portions of the lesion and avoided necrotic debris or edema. 

Spectra were interpreted by visual inspection. At the time of MRS, 

one of the four neuroradiologists and one MR spectroscopist prospectively 

 32



wrote a formal report using available clinical data and imaging studies. The 

unblinded readers interpreted the spectra as diagnostic or not, and if 

diagnostic, as neoplasia or non-neoplasia. Four neuroradiologists blinded 

to the clinical data and MRI results interpreted spectra retrospectively. The 

blinded readers classified the spectra as diagnostic or not, if diagnostic as 

normal or abnormal, and when abnormal as neoplasia or non-neoplasia. 
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For blinded interpretations, control and patient spectra were 

presented in random order. Blinded readers interpreted the results 

independently. Additional measures were taken to minimize biases in the 

interpretation of results. 

The blinded readers rated the spectra from one to 100 as normal or 

abnormal, and as neoplastic or non-neoplastic, respectively. For the 

purpose of estimating test performance, a score of less than 50 was 

defined as negative (normal or non-neoplastic), a score of 50 and above 

was defined as positive (abnormal or neoplastic). The full range of the 

scores from each reader was used to create receiver operating 

characteristic (ROC) curves. 

Sensitivity, specificity, positive predictive value, negative predictive 

value, and accuracy were calculated for the unblinded reader and each 

blinded reader for untreated patients and treated patients separately. 

 33



Spectra from 55 brain lesions in 53 patients were included in the 

analysis. In two patients, two lesions were studied. Fourteen patients (15 

lesions) had received treatments for brain neoplasia before undergoing 

MRS. Histological diagnoses were available for 50 lesions. Diagnoses were 

established in three cases of infarcts by clinical follow-up and serial 

radiologic studies (CT, MRI, MR angiography, catheter angiography, or a 

combination) in which the lesions diminished in size. Diagnoses were 

established in two cases of acute demyelinating disease by clinical follow-

up and reduction of lesion size on serial MRI. 
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The distribution of 42 neoplasia final diagnoses included: one 

astrocytoma-not otherwise specified, four astrocytoma grade I, four 

astrocytoma grade II, two astrocytoma grade III, 10 astrocytoma grade IV – 

one glioblastoma multiforme, one giant cell astrocytoma, one 

oligodendroglioma, four mixed glioma, one ganglioglioma, one 

ependymoma, six meningioma, four metastases, and two dysembryoblastic 

neuroepithelial tumor. The distribution of 13 non-neoplasia final diagnoses 

included: one Rathke’s pouch cyst, three infarct, one parasitic infection, 

one sarcoidosis, one acute inflammation and gliosis, two demyelinating 

disease, one radiation necrosis without neoplasm, one vasculitis, one 
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arteriovenous malformation with old hemorrhage, and one neuroglial (gyral) 

dysplasia. 

641 

642 

643 

644 

645 

646 

647 

648 

649 

650 

651 

652 

653 

654 

655 

656 

657 

658 

659 

660 

Blinded readers disqualified 20 (9%) of 213 patient spectra as non-

diagnostic because of unacceptably low signal to noise ratios, ambiguous 

resonance assignments, unacceptably broad resonances, lack of 

detectable metabolite resonance, equivocal findings of neoplasm versus 

non-neoplasm, or a combination of the above. 

Unblinded readers produced 40 true-positive, 12 true-negative, no 

false-positive, and two false-negative diagnoses. One spectrum was 

interpreted as nondiagnostic. Compared to the reference standard, the 

sensitivity, specificity, PPV, NPV, and accuracy of MRS to distinguish 

between neoplastic and non-neoplastic spectra for the unblinded readers 

were 0.95, 1.00, 1.00, 0.86, and 0.96, respectively. 

Compared to the reference standard, the four blinded readers 

accumulated 12 false-positive interpretations on eight spectra and 22 false-

negative interpretations on 13 spectra. The sensitivity, specificity, PPV, 

NPV, and accuracy of MRS to distinguish between neoplastic and non-

neoplastic spectra for the four blinded readers averaged 0.85, 0.74, 0.92, 

0.61, and 0.83, respectively. The test performance showed better results 

when only untreated patients were analyzed. 
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 This study was exemplary for many aspects in this category. This 

was a prospective study and included a variety of diagnoses, used ROC 

analysis and multiple blinded readers to interpret the spectra results, and 

used well-defined reference standards and methods to minimize bias. The 

number of patients with and without neoplasm and the number of 

diagnoses was relatively small,  however. The lack of a quantitative 

analysis of the MRS spectra profile also diminishes the ability to compare 

their results with other studies. 

661 

662 

663 

664 

665 

666 

667 

668 

669 

670 

671 

672 

673 

674 

675 

676 

677 

678 

679 

 The population studied by Butzen et al. (2000) from the Medical 

College of Wisconsin is a superset of the patient population studied by 

Rand et al. in 1997. The purpose of this study was to compare a logistic 

regression (LR) model with blinded and unblinded qualitative MRS 

interpretations for the discrimination of neoplastic from non-neoplastic brain 

lesions using MRI-guided single voxel proton MRS data. The MR system 

and technique used were described in the paper by Rand et al. Ninety-nine 

consecutive patient spectra (the number of patients was not reported) with 

suspected brain neoplasms or recurrent neoplasia referred for MRS were 

evaluated by the LR model, of which 55 were evaluated by Rand et al. in 

the earlier study. 
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 The LR model computed the probability of neoplasm ranging from 

zero to one. A cutoff probability of 0.8 for a positive MRS examination for 

neoplasia was determined by adjusting the cutoff to obtain equal rates of 

false-negative and false-positive results. Qualitative interpretations were 

made by two blinded neurologists and by one of five unblinded staff 

neuroradiologists and one staff spectroscopist. 
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The LR model was applied to 99 spectra with a sensitivity of 87% and 

a specificity of 85%. One blinded reader evaluated 86 spectra with a 

sensitivity of 75% and a specificity of 90%. The second blinded reader 

evaluated 90 spectra with a sensitivity of 88% and a specificity of 58%. The 

unblinded reader evaluated 95 spectra with a sensitivity of 89% and a 

specificity of 92%. The results of the blinded and unblinded readers were 

similar to those in the earlier study. Using a threshold of greater than one 

for the metabolite ratio Cho/NAA (NAA = N-acetylated compounds) to 

classify tumors, the sensitivity for 99 spectra was 79% and the specificity 

was 77%. 

McKnight et al. (2002) tested a statistical index derived from a linear 

model of choline vs. NAA for discriminating neoplastic from non-neoplastic 

brain lesions.  A subset of 26 patients in this study with high grade tumors 

were also reported on by Pirzkall et al. in a Category-1 study. Multi-voxel (1 
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cm3) 3D-MRSI was performed with a 1.5 Tesla General Electric Medical 

Systems Signa scanner (General Electric Medical Systems, Signa; 

Milwaukee, WI) on 68 patients (ages unknown) with suspected gliomas.  

The statistical model yielded an MRS-derived score (Cho-NAA Index—the  

“CNI”) summarizing the degree of difference between relative Cho and 

NAA levels in a specific voxel and that of a population of control voxels for 

each patient.  
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Of the original 68 patients, biopsies revealed that 26 had Grade II 

gliomas, 26 had Grade III gliomas, and 16 had Grade IV gliomas.  Only 44 

patients gave consent for their surgeons to be guided during the biopsy by 

MRS-guided instructions to sample four voxels --- one each with a high CNI 

score, one with a low score and two with intermediate values.  (The 

remaining 24 patients’ MR images and CNI scores were used in another 

analysis of the distribution of metabolic abnormality with hyper intense 

lesions on T2-weighted MR images and contrast-enhancing lesions.)  

The one hundred biopsy samples from the 44 patients yielded the 

following histological classification of gliomas:  Grade II: 36; Grade III: 34;  

and Grade IV: 23. Seven of the samples were nontumorous. The patient-

level distribution of gliomas was:  Grade II: 12; Grade III: 21;  and Grade IV: 

11.  None of the patients were tumor-free. 
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The difference between CNIs of tumor and non-tumorous samples 

was highly significant. An analysis to assess the ability of the CNI to 

differentiate between tumor and non-tumorous samples yielded an ROC 

area of .94.  With a CNI cutoff of 2.5, the sensitivity of this test was 90% 

and the specificity was 86%.  The 95% bootstrap confidence interval for the 

sensitivity was 84 -96% and for specificity was 56-100%.  These 

sensitivities were tumor-level, not patient-level.  
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 This study also used the MRS CNI methodology to examine the 

proportion of patients of all 66 patients with evidence of tumor outside the 

area of contrast enhancement.  Regardless of tumor grade, 41-45% of 

hyperintense lesions showed metabolic evidence of tumor (CNI >2.5), and 

36-45% of non-enhancing lesions also showed such evidence.  

Finally, a sub-analysis analyzed grade. There were 7 tumors with 

heterogeneous histological findings; in three of these cases, the CNIs did 

not correlate with the histological grade.  

This study had several limitations. The authors do not describe how 

patients were enrolled in the study, nor was the analysis of MRS results  

blinded to final diagnosis.  The small number of non-tumorous samples 

limited statistical power, and the restriction of tumors to gliomas limited 

generalizability. There may have been bias due to the number of dropouts.  
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Kimura et al. (2001) retrospectively evaluated the accuracy of single-

voxel MRS spectra in patients with ring-like enhanced lesion using 

gadolinium-enhanced MRI. Forty-five patients including 29 men and 16 

women between the ages of 26 to 75 years with various brain lesions were 

studied. The diagnoses included 19 metastases, 10 glioblastoma,seven 

radiation necrosis, five brain abscesses, and four cerebral infarctions. 
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 MRS was performed with a 1.5 Tesla Signa Horizon System (GE 

Medical System, Milwaukee, WI). The investigators evaluated two types of 

volume of interest (VOI). One VOI was selected to include the whole ring-

like enhanced rim and the central region of the lesion (whole lesion). The 

second type of VOI was selected to include only the non-enhanced inner 

region. The size of the voxel was not reported in the article. Quantitative 

analyses of spectra were performed on Cho, Cr, NAA, Lac, and Lip signals 

(Cho = choline; Cr = total creatine; NAA = N-acetylated compounds; 

Lac=lactate; Lip = lipids, protein, and lactate). Three metabolite ratios 

(Cho/Cr, Lac/Cr, NAA/Cr) were calculated and used for analyses. 

 For the whole lesions, the mean Cho/Cr ratio of metastases was 4.56 

and 4.12 for glioblastoma. The mean Cho/Cr ratio for radiation necrosis 

was 2.33 and 1.48 for cerebral infarction. Significant differences were found 

for: metastases and radiation necrosis, metastases and cerebral infarction, 

 40



and glioblastoma and cerebral infarction. Significant differences in the 

Cho/Cr ratios between the whole lesion and inner region were found in the 

spectra of metastases and glioblastoma. There were no significant 

differences among the lesion types for the Cho/Cr ratios in the inner region. 
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The investigators found that using a Cho/Cr ratio of 2.48 for the whole 

lesion, the lowest rate of misdiagnosis was achieved in differentiating 

neoplasm from non-neoplasm. The positive predictive value using this 

threshold for metastatic brain tumors and glioblastoma was 89% (95% CI, 

65 - 99%) and 60% (95% CI, 26 - 88%), respectively. The positive 

predictive value of a Cho/Cr ratio of less than 2.48 for diagnosing radiation 

necrosis and cerebral infarction were 71% (95% CI, 29 - 96%) and 100% 

(95% CI, 40 - 100%), respectively. 

The lowest rate of misdiagnosis in differentiating metastases and 

radiation necrosis was achieved using a Cho/(Lip or Lac) ratio of 0.3 for the 

whole lesion. The positive predictive value of using a threshold value of 

greater than 0.3 to diagnose metastases was 94% (95% CI, 73 - 99%). The 

positive predictive value of using a threshold value of less than 0.3 to 

diagnose radiation necrosis was 100% (95% CI, 59 - 100%). 
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 The relatively small sample size, narrow spectrum of brain lesions, 

and retrospective nature of this study limited the generalizability of this 

study. In addition, abscesses were excluded from the analyses. 
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3.2.2 Clinical Utility of MRS added to MRI 
 

Moller-Hartman et al. (2002) evaluated the clinical utility of MRS 

added to MRI for the differentiation of intracranial neoplastic and non-

neoplastic mass lesions. The study population consisted of a consecutive 

series of 176 patients presented to the neuroradiology department with 

focal intracranial mass lesions following MRI and/or CT imaging. 

Spectroscopic studies were performed using a 1.5 Tesla whole-body MR 

scanner (Magnetom Vision, Siemens). All patients underwent a single voxel 

MRS with a mean voxel volume of 8 cm3 (range 4 - 12 cm3). The voxel was 

placed in the solid part of the lesion excluding necrotic or cystic tumor parts 

or adjacent edematous areas.  An acceptable voxel had to contain at least 

an estimated 70 percent tumor tissue. Whenever feasible, a reference 

spectrum of the same voxel size was acquired in the homologous region in 

the contralateral brain.  

Within 10 days of MRS, histological diagnosis was obtained by 

stereotactic biopsy or craniotomy and open biopsy, except in nine (of 25) 
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cases of brain abscesses or focal inflammatory brain disease and nine (of 

nine) cases of cerebral infarction. Features on MRI or CT, clinical course, 

cerebrospinal fluid findings, and blood tests made the final diagnoses of the 

non-biopsied cases. Twelve out of the 176 spectra were of poor quality and 

were excluded from further evaluation. Final diagnoses for the remaining 

164 interpretable spectra included 23 low-grade astrocytomas, 28 

anaplastic astrocytomas, 39 glioblastomas, four PNETs or 

medulloblastomas, 18 metastases,nine meningiomas, nine neurinomas, 25 

cerebral abscesses and nine brain infarctions. 
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Two neuroradiologists independently reviewed the combined MRI 

and MRS results blinded to the final diagnoses and two other 

neuroradiologists independently reviewed only the MRI results blinded to 

the final diagnoses. A diagnosis was classified as “correct” if the reader 

correctly assigned the case to the type of intracranial mass lesion and the 

tumor grade, according to the WHO classification of the final diagnoses. A 

“no evidence diagnosis” was assigned if the neuroradiologist could not 

decide between several diagnoses. The article did not report whether the 

two neuroradiologists read all the images or spectra in the same group or 

how discrepancies between the readers were resolved. 
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Tumor metabolite signal intensities were expressed as the 

percentage of the corresponding metabolites of the reference spectrum 

using measurements of the peak area signal intensity of each metabolite 

(NAA, Cr, and Cho) in the lesion. Two metabolite ratios (Cho/Cr and 

NAA/Cr) were also calculated. 
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Compared with the reference spectrum on the contralateral side of 

the brain, the Cr level was about 75-80% among the gliomas and there 

were no significant differences between the different tumor grades. The 

levels of Cr in the metastases, abscesses, and infarctions were about 40-

50%, compared to the reference. The Cho levels decreased to 70-80% in 

infarctions and abscesses, and increased in metastases, PNET, and 

gliomas. The Cho level progressively increased with the tumor grade. The 

Cho/Cr ratios were: infarction = 1.45; astrocytoma I = 1.33; astrocytoma II = 

2.13; astrocytoma IV = 3.93; PNET = 18.4; metastases = 3.97; abscesses 

= 1.52; meningioma = 4.81; neurinoma = 3.08. 

Of the 176 spectra, conventional MRI alone made 97 (55.1%) correct 

diagnoses, 27 (15.3%) incorrect diagnoses, 52 (29.6%) no evidence 

diagnoses, and no examinations without diagnostic value. MRS added to 

MRI produced 124 (70.5%) correct diagnoses, 16 (9.1%) incorrect 

diagnoses, 24 (13.6%) no evidence diagnoses, and 12 (6.8%) 
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examinations without diagnostic value. There was no case in which a 

correct diagnosis made by MRI alone was interpreted incorrectly by the 

combination of MRI and MRS. 
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3.2.3 Studies on Tumor Grading 
 

Roser et al. (1997) prospectively evaluated 35 MRS spectra in 17 

patients with suspected glial brain tumors. The purpose of the study was “to 

apply the metabolic features found in a previous study of 21 healthy 

controls and humans with gliomas to a new cohort of patients with a 

suspected glial brain tumor and other healthy volunteers.” The age and sex 

of the patient population were not reported. None of the patients had 

received stereotactic biopsy, open surgery, or radiation therapy before 

MRS. Sterotactic biopsy or open surgery was performed within a few days 

after MRS. 

MRS spectra of single-voxel size 8 cm3 were acquired using a 1.5 

Tesla MR system (Siemens Magnetom SP 400, Siemens Medical Systems, 

Erlangen, Germany). The VOI was placed as close as possible to the tumor 

center and covered at least 75% of the tumor tissue. 

 Using “training” data from an earlier study of 21 healthy controls and 

patients with gliomas, the investigators calculated five ratios (NAA/Cr, 
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MGG/Cr, Cho/Cr, GI/Cr, Lip/Cr) using 6 metabolite resonance 

measurements (NAA = N-acetylated compounds; Cr = total creatine; MGG 

= macromolecules, glutamine, and glutamate;  Cho = choline; GI = glycine 

and myo-inositol; Lip = lipids, protein, and lactate). These five metabolite 

ratios were used in an orthonormal discriminant vector (ODV) analysis 

(Kauppinen et al., 1993) to construct a graph of two-dimensional metabolite 

space. The two axes were the ODV results based on a linear combination 

of the five metabolite ratios. By plotting the two ODV results of the 

metabolite ratios of individual patients from the training data, different tumor 

grades and healthy controls occupy distinct regions in the graph that could 

be classified as high grade, low grade and healthy volunteers. 
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 In the validation study, the correlation of superimposing new patients’ 

data onto the classification derived from the training data was noted. 

Histological diagnoses of the new patients included ten glioblastoma 

multiforme, two astrocytoma grade III, and five astrocytoma grade II. All ten 

cases of glioblastoma multiforme were in the proximity of the high grade 

region defined by the training data. Four of five astrocytoma grade II were 

classified as low grade gliomas, and one was classified as high grade. One 

of the two astrocytoma grade III was classified as high grade and the other 

as low grade. In addition, the contralateral normal-appearing matter of 
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tumor patients was assigned as normal in six cases and low grade in two 

cases. 
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The results of this study cannot readily be generalized. Only 21 

healthy subjects and patients with glial brain tumor were selected in the 

development of the ODV equations. In the prospective validation study, all 

17 patients also had glial brain tumors; thus the results of this study cannot 

be generalized to populations with a broader spectrum of brain lesions. A 

much larger number of patients with a broader spectrum of brain lesions is 

needed to develop the diagnostic criteria and to verify the results. 

 Tedeschi et al. (1997) prospectively studied 27 patients with known 

brain gliomas to test the hypothesis that MRS can help detect malignant 

degeneration and/or recurrence (progressions). The 27 patients received 

from two to five MRS studies, a total of 72 MRS imaging studies were 

performed over 3.5 years. Repeated MRS studies were not based on a 

fixed time interval and the reasons for the repeated studies were not 

explicitly stated. 

 A 1.5 Tesla MR imager (manufacturer not stated) was used to 

acquire multi-voxel spectra. Nominal voxel size was 0.83 cm3. At the time 

of each MRS study, a combination of clinical examination, MRI, positron 

emission tomography with 18F-fluorodeoxyglucose, and biopsy findings 

 47



(when available) were used to categorize each patient as having either 

stable or progressive disease.    
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 The signal amplitude of each metabolite (Cho, NAA, Cr, Lac) in the 

tumor region of interest was normalized to the corresponding amplitude in  

a matching region of interest from a normal area of the contralateral brain 

in order to calibrate the signal intensities from different imaging studies and 

individuals to a common scale. The investigators used the percentage 

changes in the normalized Cho signal intensity between two consecutive 

studies to categorize patients into stable and progressive groups. They 

found that all progressive cases could be correctly classified using a Cho 

signal increase of more than 45% and all stable cases had increases of 

less than 35%. Thus, using a threshold of 40% Cho signal increase 

between visits, the sensitivity was 100% and specificity was 100%. 

 In addition to the normalized Cho measurements, the investigators 

also analyzed normalized NAA, Cr, and Lac, as well as the within-voxel 

metabolite ratios (NAA/Cho, NAA/Cr, Cho/Cr). Other than the normalized 

Cho measurement, they found no association of the other measurements 

with disease progression. 
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3.2.4 Differentiating Intracranial Cystic Lesions 918 
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 Shukla-Dave et al. (2001) prospectively evaluated the accuracy of 

MRS in the differentiation of intracranial cystic lesions. Fifty-one patients 

including 23 men and 28 women between the ages of eight and 50 years 

(mean 33 years) with intracranial cystic lesions on conventional MRI were 

studied. Single-voxel MRS was performed using a 1.5 Tesla MR system 

(Magnetom, Siemens) on lesions greater than 8 cm3.  A VOI of 4 to 8 cm3 

within the confines (sometimes including the rim) of the lesion was selected 

for MRS. 

The criteria used to establish the diagnosis of cystic lesions were: 

• Abscesses: lipid/lactate at 1.3 and amino acids at 0.9 ppm in all 

with/without additional resonances of succinate, acetate, alanine 

and glycine 

• Glioma: lipid and/or lactate with choline 

• Arachnoid cyst: presence of small resonance of lactate with very 

low signal to noise spectrum 

• Hydatid cyst: very large succinate peak with lactate, alanine, 

acetate with absence of amino acids 

 Two investigators who did not know the MRI results, except that the 

lesions were cystic, interpreted the MRS spectra independently. However, 
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the rate of discrepancies and the method of resolution of discrepancies in 

the interpretation of the spectra results between the two investigators were 

not reported. The pre-operative diagnosis was based solely on the MRS 

results. All patients presumably underwent surgery for the intracranial 

cystic lesions. The final diagnosis was based on the results of 

histopathology, aspiration and culture of the contents. Fifty MRS spectra 

out of 51 were interpretable. Data for one case of acoustic neuroma was of 

poor quality and not included in the analysis. 
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 Of the 51 cases, MRS correctly identified all 21 cases of abscess, all 

19 cases of glioma, all three cases of arachnoid cyst, and all three cases of 

hydatid cyst. MRS incorrectly diagnosed one case of xanthogranuloma and 

one case of infarct as glioma. A total of three inconclusive MRS diagnoses 

were later found to be glioblastoma multiforme, glioependymal cyst, and 

acoustic neuroma. Thus, MRS correctly diagnosed the pathology of 

intracranial cystic lesions in 46 of 51 (90%) cases, did not contribute to the 

diagnosis in three cases (6%) and falsely diagnosed benign lesions as 

malignant in two cases (4%). 

 50



 956 

957 

958 

959 

960 

961 

962 

963 

964 

965 

966 

967 

968 

969 

970 

971 

972 

973 

974 

975 

3.3 Category-3: Studies Conducted to Evaluate Diagnostic 

Thinking Impact 

Two small prospective studies qualified for this category. The 

purpose of the study by Hall et al. (2001) was “to determine the utility of 

intraoperative MRS for targeting during brain biopsy using a skull-mounted 

trajectory guide.” The trajectory guide is commercially available and has 

been approved by the Food and Drug Administration (FDA) for the 

placement of deep brain stimulators, drug delivery catheters, and brain 

biopsies (Hall et al., 2001). The successful use of intraoperative MRS-

guided brain biopsy might replace the conventional frame-based or 

frameless stereotactic techniques guided by either computed tomography 

(CT) or magnetic resonance imaging (MRI). In this setting, the CT or MRI 

are typically performed immediately or a few days before the biopsy. 

However, the opening of the dura mater and with the loss of cerebrospinal 

fluid may result in shifting the position of the lesion identified in the imaging 

studies (brain shift), which in turn might result in non-diagnostic stereotactic 

biopsy. A review of stereotactic brain biopsies found a diagnostic yield 

(proportion of biopsies containing useable diagnostic tissue) of 91% (Hall, 

1999). 
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A total of 17 patients including 13 men and four women between the 

ages of 16 and 80 years suspected of brain tumors were evaluated in Hall’s 

2001 prospective study. All patients had “turbo spectroscopic imaging 

(TSI)” (a multi-voxel MRS method) and seven patients had single-voxel 

spectroscopy in addition, for purposes of comparison. MRS spectra were 

obtained using 1.5 Tesla MR system (ACS-NT; Philips Medical Systems, 

Best, Netherlands) located within an intraoperative MRI suite. The VOI in 

the single voxel spectroscopy was 1.5x1.5x1.5 cm
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3 and the TSI used a 

32x32 grid of spectra in a single plane with a spatial resolution of 

0.66x0.66x2.0 cm3. 

 Turbo spectroscopic imaging was successfully obtained in all 17 

patients. The investigators noted that the TSI spectra in one case of 

radiation necrosis did not correlate well with the single voxel spectra. The 

TSI spectra in general had lower spectroscopic resolution and often 

contained lipid signals that were not evident on single voxel spectra. Three 

lesions did not demonstrate regions of elevated choline on the TSI images, 

which were later histologically confirmed to be brain tumors. 

All 17 biopsies guided by MRS yielded diagnostic tissues, which 

included six glioblastoma multiforme, three anaplastic astrocytoma, three 

anaplastic oligodendroglioma, two radiation necrosis, one germinoma, one 
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ganglioglioma, and one astrocytoma. No radiographically or clinically 

significant hemorrhage associated with MRS guided brain biopsies using 

the trajectory guide was reported among the 17 patients. 
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 The authors concluded that “intraoperative MRS-guided brain biopsy 

using a trajectory guide is a simple, safe, and accurate technique for 

accessing areas of the brain of diagnostic interest.” They further 

commented that with the development of intraoperative MRS, it is now 

possible to biopsy lesions located in the brain without the use of rigidly 

fixed head frames (traditional stereotaxy) and in near real-time, thus 

improving the accuracy and diagnostic yield. The use of the trajectory guide 

with MRS may also reduce intracerebral hemorrhage complications by 

minimizing the number of needed passages of the biopsy needle. 

 While the combination of trajectory guide and intraoperative MRS in 

this study appears promising in achieving high yield in brain biopsies, the 

number of patients studied was small. The need for an intraoperative MRI 

suite limits the generalizability. It should also be noted that three of the four 

authors of this study disclosed a financial interest in the company that 

produces the trajectory guide. 

Lin et al. (1999) prospectively evaluated the utility of single voxel 

MRS when used as an alternative or adjunct to brain biopsy in patients with 
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lesions suggestive of brain tumors initially identified by MRI. This study 

provided information for diagnostic thinking impact (Category- 3) as well as 

for therapeutic choice impact (Category- 4). 
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 Fifteen patients between the ages of seven and 58 (there was only 

one child of age 7) were studied. Among the diagnoses based on histology 

were six anaplastic astrocytoma, one astrocytoma, one oligodendroglioma 

grade II, one oilgodendroglioma grade III, one glioblastoma multiforme, and 

one abscess. Three additional patients did not have biopsy and the lesions 

resolved on serial scans. One patient with a history of treated brain stem 

mass subsequently died from progressive disease on follow-up. A 

neurosurgeon defined a treatment plan that would be carried out in the 

absence of a diagnostic MRS study prior to the MRS examination, to 

determine whether MRS directly impacted upon and altered clinical 

decision-making. MRS interpretations were directly incorporated into the 

clinical decision-making and a treatment plan was determined. Patients 

were then followed to determine if subsequent treatment and outcomes 

were in accordance or discordance with the MRS findings. 

Single-voxel MRS was performed on a 1.5 Tesla Signa Scanner (GE 

Medical Systems, Milwaukee, WI). The VOI was determined by the 

neurosurgeon based on MRI results prior to the MRS exam. The voxel size 
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was adjusted to optimize the amount of homogeneous abnormal tissues 

within the voxel, while minimizing the amount of necrotic tissue. Voxel size 

varied between 2.35 to 9.68 cm
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3. 

The MRS spectra were quantified with an external standard although 

it was not described. NAA/Cr ratios were consistently and significantly 

elevated in non-neoplastic spectra whereas Cho/Cr demonstrated the 

opposite trend. Lipid and lactate were only observed in abscesses and one-

half of neoplastic spectra. They could not reliably differentiate necrotic 

tumor from radiation necrosis or abscess. Myoinositol/creatine ratios were 

not significantly different between groups. 

Forty-one VOI from 15 patients were analyzed. Thirty-five (85%) of 

the spectra were considered to be of good or excellent quality,four (9%) of 

poor but interpretable quality, and two (4%) non-interpretable. For 10 

patients with previously documented tumors, MRS was interpreted as 

consistent with recurrent tumors in seven cases and consistent with 

radiation necrosis in three cases. 

 In one patient with two regions of interest on MRI, MRS suggested 

tumor in one lesion, but interpreted another lesion as edematous white 

matter without tumor. Disease progression occurred in the edematous 

white matter lesion 9 months after initial surgery, indicating that MRS was 
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unsuccessful in identifying infiltrating tumor in this instance. A retrospective 

review of the spectra in that region suggested that the effect of averaging 

over a large volume might have resulted in the misinterpretation. The 

authors suggested that a multi-voxel MRS might have been able to provide 

a more accurate diagnosis. 

1056 

1057 

1058 

1059 

1060 

1061 

1062 

1063 

1064 

1065 

1066 

1067 

1068 

1069 

1070 

1071 

1072 

1073 

In the absence of MRS, the neurosurgeon would have recommended 

stereotactic biopsy in eight cases, serial MRI at six week intervals in three 

cases, repeat craniotomy in three cases, and empiric chemotherapy in one 

case. MRS was used in place of biopsy in seven cases, and correlated with 

clinical course in six of these cases. Overall, MRS was found to directly 

alter clinical management in 12 of 15 patients and provided greater support 

for clinical management in 14 of 15 patients. Had MRS been relied upon in 

every case, it might have avoided biopsy in nine cases, and influenced 

clinical management in 13 of 15 patients. 

 The small number of patients, narrow spectrum of diagnoses, and the 

inclusion of only one neurosurgeon’s decision limit the generalizability of 

this study. 
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3.4 Category-4: Studies Conducted to Evaluate Therapeutic 

Choice Impact 
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Prospective studies 

The prospective study by Lin et al. (1999) also provided limited 

information on the use of the test on therapeutic choice impact. See the 

discussion under Category-3 above. 

 

Retrospective study 

Adamson et al., (1998) conducted a retrospective review of medical 

records to assess the influence of single-voxel MRS findings on the 

treatment of patients suspected of having a brain tumor. This publication 

appears to be based on the same overlapping patient population from the 

Medical College of Wisconsin that had been used in two other Category-2 

publications. 

 The medical records of 90 patients who had MRS between May and 

December of 1995 were examined. Seventy-eight met the inclusion criteria 

and provided sufficient data for analysis. The patients were categorized into 

two groups based on the interpretation of the MRS findings:  

• Group 1, MRS findings positive for neoplasm 

• Group 2, MRS findings negative for neoplasm 
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The investigators examined all available medical records, including 

discharge summaries, progress notes, and outpatient reports to determine 

the outcome and treatment subsequent to the MRS examination. The 

patients were further categorized on the basis of whether they underwent 

biopsy before treatment. Pathology records in those patients who 

underwent surgical intervention or biopsy were reviewed. 
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 MRS was classified as having a potential positive influence on 

treatment if no biopsy was needed before the initiation of treatment. If MRS 

results did not agree with the subsequent clinical diagnosis, the results 

were considered to have a potential negative influence on patient 

treatment. In all other cases, the effect of MRS was presumed to be 

negligible or indeterminate. 

 Neuroradiologists interpreted MRS spectra on the basis of the relative 

amplitudes for lactate, lipids, NAA, creatine and phosphocreatine, choline-

containing compounds, and myo-inositol. A Cho/NAA ratio greater than 1.0 

was considered to be positive for neoplasm. Smaller increases in the 

choline concentration were not considered diagnostic for neoplasm. The 

presence of lactic acid or lipid was consistent with relatively high-grade 

neoplasia if the choline concentration was elevated. Elevation of lactic acid 
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without elevation of the choline concentration was considered more 

consistent with infarct than with tumor. 
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 MRS was positive for neoplasm in 49 of the 78 patients. In eight of 

these 49 patients, MRS was classified as having a potential positive 

influence. These eight patients received radiation therapy, chemotherapy, 

or both, for a presumed neoplasm without a biopsy to confirm the presence 

of a tumor. MRS was negative for neoplasm in 29 of 78 patients. In 15 of 

these 29 patients, MRS was classified as having a potential positive 

influence. 

 MRS was classified as having a potential negative influence on 

patient treatment in two of the 49 patients diagnosed as having neoplasm 

by MRS. One of these two patients underwent biopsy, which showed 

inflammatory reaction as probably being secondary to demyelination. The 

other patient underwent surgery and was found to have arteriovenous 

malformation. MRS had no influence on patient treatment in 37 patients 

diagnosed with brain tumor by MRS. 

Because of the nature of retrospective medical record review, there 

were several problems with this study. Fourteen of the 78 patients had 

incomplete follow-up information, two from the MRS- diagnosed “tumor” 

group and 12 from the MRS “non-tumor” group. The patients study were 
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highly selected. The decision to perform MRS was based on CT and MRI 

results in which a neoplasm was considered to be the prime candidate in 

the differential diagnosis. 
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3.5 Category- 5: Studies Conducted to Evaluate the Impact of 

Test on Health Outcomes 

No study was identified for this category. 

 

3.6 Category 6: Studies Conducted to Evaluate the Use of Test 

on Societal impact 

No study was identified for this category. 

 

The following table summarizes our assessment of the Category-2 and 

above studies described above.  
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 Author Objective Sample 
N/gender/
mean age 

Design Assessment 
of accuracy 
or 
usefulness 
of MRS 

Limitations 

CATEGORY 2: TEST PERFORMANCE 
• Differentiating neoplasm from non-neoplasm 

 Rand et al. (1997) Normal vs. non-
normal; 
neoplasm vs. 
non-neoplasm 

31 ♂ 22♀ 
age=41 

Prospective 
series of 
patients. with 
suspected or 
recurrent 
neoplasm  

Moderate small sample 
size 

 Butzen et al. 
(2000) 

Neoplasm vs. 
non-neoplasm 

99 
spectra 
31 ♂ 22♀ 
age=41 

Logistic 
regression 
analysis  

Moderate Only study to 
use Cho/NAA 
ratio 

 McKnight et 
al.(2002) 

Neoplasm vs. 
non-neoplasm 

100 
biopsies 

Prospective 
Linear model 

Moderate Unclear 
enrollment, 
unblinded, 
limited 
generalize-
ability 

 Kimura et al. 
(2001) 

Neoplasm vs. 
non-neoplasm 

29 ♂ 16♀ 
age 26-75 

Retrospective 
patients with 
lesions 

Moderate Selection bias, 
small sample, 
homogeneous 
lesions 

• Clinical utility of MRS added to MRI 
 Moller-Hartman et 

al. (2002) 
Neoplasm vs. 
non-neoplasm 

176 Consecutive 
series of 
patients with 
lesions 

High Did not report 
how reading 
discrepancies 
resolved 

• Grading of tumors 
 Roser et. al. (1997) Grading glial 

tumors  
17 Suspected 

glial tumors  
Moderate Small sample; 

homogeneity of 
lesion type 

 Tedeschi et al. 
(1997) 

Malignant 
degeneration 
and recurrence 

27 Prospective 3 
yr. follow-up of 
patients 
w/known 
tumors  

High Small sample 

• Differentiate intracranial cystic lesions 
 Shukla-Dave et al, 

(2001) 
Differentiating 
Intracranial 
cystic lesions 

23 ♂ 28♀ 
age=33 

Prospective 
patients 
w/intracranial 
lesions dx. by 
MRI 

High Possible 
observer bias 
due to non 
reporting of 
method for 
resolving 
difference in 
interpreting 
spectra; 
sample size? 
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1147  
Category Author Objective Sample Design Assessment 

of accuracy 
or 
usefulness 
of MRS 

Limitations 

CATEGORY 3: DIAGNOSTIC THINKING IMPACT 
 Hall et al. 

(2001) 
Utility of MRS 
for targeting 
biopsies 

13 ♂ 4♀ 
age 16-80

Prospective 
patients 
w/suspected 
tumors 

High Small sample; 
need for intra-
operative MRI 
suite 

 Lin et al. 
(1999) 
(also 
Category- 
4) 

Supporting  
brain biopsy for 
MRI-identified 
lesions 

15 
Age 7-58 

Prospective High Small sample, 
homogeneous 
group of 
diagnoses, 
limited observer 
verification 

CATEGORY 4. THERAPEUTIC CHOICE IMPACT 
 Adamson 

et al. 
(1998) 
 

Evaluation of 
impact of MRS 
on biopsy 
decision  

90 initial; 
78 final 

Retrospective 
patients 
w/suspected 
neoplasms dx. 
By CT or MRI 
See Rand et 
al.; same data. 

Low Retrospective, 
losses to follow-
up; medical 
record reviews 

 Lin et al.  
(1999) 
(also 
Category-
3) 

Supporting  
brain biopsy for 
MRI-identified 
lesions; some 
patients were 
treated based 
on MRI findings 

15 
Age 7-58 

Prospective High Small sample, 
homogeneous 
group of 
diagnoses, 
limited observer 
verification 
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4. RESULTS: Abstracts 

As described above, abstracts and proceedings from following 

professional societies for the years 2001 and 2002 were reviewed: 

• ASNR-American Society of Neuroradiology 

• RSNA-Radiological Society of North American 

• ISMRM-International Society for Magnetic Resonance in Medicine 

 

Because these were abstracts and not full papers, data on basic study 

design information such as patient gender and means of enrolling patients 

were frequently unavailable.  Of the 241 proceedings-generated abstracts 

reviewed, 44 were provided information beyond the technical feasibility 

category.  The following table summarizes the distribution of abstracts by 

category: 

CATE-
GORY 

DESCRIPTION (#/%) 

 1 Technical feasibility and 
optimization 

44 

 2 Diagnostic accuracy 8* 
 3  Diagnostic thinking impact 1 
 4  Therapeutic choice impact 0 
 5  Patient outcome impact 0 
 6 Societal impact 0 
*One study shown in this category could also be considered a Category-3 
study. 
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4.1 Category-1 Abstracts: Technical Feasibility 

Evidence Table 2 shows selected characteristics of the 44 technical 

feasibility (Category 1) abstracts. Similar to Evidence Table 1 containing 

technical feasibility studies, it summarizes: year of publication, country in 

which the research was conducted, study characteristics including number 

of diseased (cases) and non-diseased (control) patients, method of patient 

enrollment, diagnostic status, and age.  The table also shows the size of 

the volume of tissue (voxel) of interest as well as whether single or multiple 

voxel sampling was used. Finally, the table indicates the principal clinical 

study objectives: tumor differentiation, tumor grading, distinguishing 

primary tumor tissue from recurrent tumor and from metastases, and 

identifying necrotic tissue. In addition, there were two instances where 

there were duplicate abstracts for the same studies from different 

proceedings.  

 
There were forty-seven abstracts reviewed for Category 1 from 3 

different proceedings for 2001 and 2002. Forty-four unique studies 

remained after removing four duplicate studies. In addition, there were a 

minimum of four instances of overlapping population represented in the 

abstracts. The abstracts reported on 1,445 patients.  One study reported on 
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174 diagnostic ‘studies’ without mentioning the number of patients and one 

reported the results of 14 ‘studies’.  Twenty studies (42.5%) were from the 

US. The ages of patients described in eight of the abstracts varied 

considerably; ranging was from 8 to 84 years. As in the complete studies 

reviewed, we excluded abstracts that were predominantly pediatric. 
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Five studies were reported as prospective and five were 

retrospective. The remaining abstracts reported no data on study design. 

The largest sample reported in an abstract was 130 patients.  Most 

abstracts did not include controls. Single voxel and multiple voxel sampling 

were used approximately equally.  In six studies no voxel data were 

reported and in four a combination of both approaches were employed.  

Tumor differentiation (14 studies) and grading (10 studies) were the 

most frequently cited clinical objectives. Other clinical objectives varied 

widely such as characterization of metabolite ratios (six abstracts), 

prognosis (two abstracts), measure of lipid levels (two abstracts), and 

tumor response to treatment (two abstracts). 

 
 
          4.2 Category-2: Studies that Evaluate Test Performance 

 
The proceedings abstracts described eight studies in this category. 

Studies in this category could be further grouped into studies with the main 
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purpose of differentiating tumors from non-tumors, grading of tumors, 

differentiating intracranial cystic lesions, and to assess the incremental 

value of MRS added to MRI.  
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  4.2.1 Abstracts of Category-2 Studies Differentiating Neoplasm    

 from Non-neoplasm 

 
 Yin et al. (2002) evaluated 40 lesions in 35 patients with suspected 

brain neoplasms or recurrent neoplasm. The purpose of this study was to 

measure the accuracy of multivoxel 3D MRS proton MRS in distinguishing 

neoplastic from non-neoplastic brain lesions (blinded vs. unblinded).  Final 

diagnoses were assessed by clinical examination, biopsy and serial MRI. 

The specificity for distinguishing between neoplastic and non-

neoplastic lesions was 88.6%. Of the 35 cases, 21 had neoplasms and 19 

had non-neoplastic lesions. Of 16 glioma, 14 were correctly identified 

through increased Cho and decreased NAA for the gliomas.  The metabolic 

profiles of the following types of tissue were studied: abscess (increased 

Lac), metastasis (increased Cho and Lac and no NAA peak), demyelinating 

lesion (decreased NAA and normal Cho), lymphoma (high Cho and lipids), 

and necrosis (high Cho and decreased metabolism).  There was also little 

diversity of lesions, no information about patient ages, no statistical 

 66



analysis, and no comparative data. The study did, however, report a form 

of blinding, but no detail was provided.  
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Herminghaus et al. (2002a) evaluated 293 consecutive patients 

diagnosed with focal brain lesions.  The purpose of this study was to 

assess the potential of single voxel MRS (1.5 T Siemens Magnetom Vision) 

to differentiate between neoplastic and non-neoplastic lesions, between 

high grade tumors and metastases or lymphomas, and between different 

types of tumors.  The authors studied 25 types of lesions. 

Discriminant analysis was used to “confirm significance” of 

differences between clusters formed by the authors. The analysis yelded 

five clusters: one containing glioblastoma  (unknown grade), gliosarcoma, 

and embryonal tumors (IV WHO). A second cluster included anaplastic 

astrocytomas, anaplastic oligoastrocytomas, anaplastic 

oligodendrogliomas, anaplastic meningeoma (WHO III), and lymphomas. 

The third cluster included glial low grade tumors, gangliogliomas, 

gangliocytomas, neurominomas, and glioses and abscesses. The fourth 

cluster contained tumor necrosis, tumor cysts, infectious cysts, and 

meningeomas. The fifth cluster contained metastasis, glioblastoma, 

gliosarcoma, and embryonal tumor grade IV WHO. The authors concluded 

that MRS can be helpful in differentiating: 
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• 1253 

• 1254 

• 1255 

• 1256 

• 1257 
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Low grade from high grade tumors 

Metastasis and lymphomas from benign or low grade tumors 

Abscesses from gliobastoma and meastasis 

Silent infarct from low grade tumors 

Tumor cysts, infectious cysts, and necrotic tissue from each other and  

     from other lesions 

WHO I/II meningeomas from metastasis 

 

The authors concluded MRS could not distinguish: 

• Between different tumor types of the same grade.   

• Lymphomas from grade III tumors 

• Metastasis from glioblastoma 

• Low grade brain tumors from gliosis 

 

“Success rates” were reported for the above classifications, but the 

level of detail provided in the abstract is insufficient for meaningful 

interpretation of these statistics. Finally, the fact that this study did not 

describe the standard against which the focal brain tumors were 

diagnosed, makes its difficult to interpret its conclusions.  
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4.2.2. Abstracts of Category-2 Studies Detecting Tumor 

Recurrence 

Kovanlikaya et al. (2002) prospectively examined 16 lesions in seven 

men and seven women (mean age 50 yrs) to determine the value of multi-

voxel MRS (1.5 T; 1 cm3 spatial resolution) of glial neoplasms in detecting 

tumor recurrence after treatment with surgical excision, radiotherapy, and 

chemotherapy. The neoplasms included 12 astrocytomas, one 

oligodendroglioma and three mixed tumors of Grade II (5), Grade III (5) and 

Grade IV (6).    Voxels showing the highest choline levels were analyzed for 

levels of  NAA, creatine  and lactate/lipid values and compared to the 

matched contralateral normal side of the brain. The  results were assessed 

pathologically (6 lesions) and clinically (10 lesions). 

Tumor recurrence was observed in eight of the 14 patients.  Choline 

levels were much higher (114% elevation) in the recurrent lesions, with 

much lower levels in stable patients (7% depression). Choline elevation 

had a high sensitivity for detecting tumor recurrence (100%; positive 

predictive value = 82%). The specificity of choline depression for detecting 

stability was 72% (negative predictive value = 100%.) The authors, despite 

the small numbers, also suggested that the lactate/lipid peak in three 
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patients was highly specific for detecting necrosis but not sensitive for 

detecting recurrence. There was no independent verification of the results. 
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Lefkowitz et al. (2002) prospectively examined 27 lesions in 22 

patients whose brain tumors had been surgically excised and/or irradiated 

to evaluate MRS’ usefulness for diagnosing recurrent neoplasms.  Single 

and multivoxel  MRS was used to obtain maps of NAA and Cho 

concentration, ratio maps of Cho/Cr peak areas and heights, and tables of 

Cho/Cr ratios to identify potential tumor-containing voxels. A Cho/Cr ratio 

greater than or equal to 2.0, behavior of control voxels, and other spectral 

features were considered for tumor/non-tumor designations.  Biopsy or 

follow-up imaging was used to confirm tumor status. 

For the 27 MRS results, there were 19 gliomas, five metastases, two 

lymphomas, and one medulloblastoma. Sensitivity for detecting tumor 

recurrence was 89% (positive predictive value = 73%). Specificity was 33% 

(negative predictive value = 60%). Overall accuracy was 70%.  Tests of 

statistical significance and confidence intervals were not reported. There 

was no independent verification of results. 

Shah et al. (2002) assessed how well MRS performed in identifying 

tumor recurrence compared to SPECT and CT/MRI. These authors studied 

nine patients who had undergone surgery and radiotherapy or radiotherapy 
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alone for an average of 28 months with tumors suspected of recurrence. 

The tumors comprised: oligodendroglioma II (two); oligodendroglioma III 

(one); anaplastic astrocytoma (two); malignant mixed glioma (one); 

astrocytoma II (two); and glioblastoma multiforme (one). Choline spectra 

derived from MRS (1.5 T Siemens) sequence voxels ranging from 1.3 ml to 

3.8 ml were used as markers for recurrence and were compared with 

radiological and SPECT results. 
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The kappa (k) measure of agreement was calculated between MRS 

and each of the other two tests. The results were: MRS vs. SPECT 

(k=0.72), MRS vs. CT/MRI (k=0.57) and CT/MRI vs. SPECT (k=0.37). 

There was no biopsy confirmation of tumor recurrence and therefore no 

‘reference standard’. In addition, the sample size was small, and no tests of 

statistical significance or confidence intervals were reported. 

Lichy et al. (2002) examined the value of MRS, FDG-PET, and IMT-

SPECT in evaluating suspicious brain lesions detected by MRI follow-up of 

24 patients with irradiated gliomas. Multivoxel  2D MRS (1.5 T; voxel size = 

8.8 x 8.8 x15 mm3) was used to obtain relative signal intensity ratios of 

Cho, Cr, and NAA.  Eighty-six voxels from suspicious lesions and 147 from 

‘normal’ areas were analyzed. Clinical and MRI/CT follow-up, not biopsy, 

was used to  classify lesions as neoplastic or non-neoplastic. 
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This study reported that the true positive rate (it is assumed that 

surgery was the standard of comparison) for identifying neoplastic tissue 

was 88% for  MRS, 73% for FDG-PET, and 100% for IMT-SPECT.  The 

true positive rate for identifying non-neoplastic tissue was 89% for MRS, 

100% for FDG-PET and 75% for IMT-SPECT. Cho and Cho/NAA were 

present in significantly higher levels in neoplastic tissue.  Additional 

information about sensitivity and specificity were reported, but the 

performance outcomes being evaluated were unclear. In this study three 

diagnostic techniques were compared only to each other and not to either 

biopsy or surgical results. In addition, there was no independent verification 

of results, and no confidence intervals for diagnostic test performance  

were reported. 

 

4.2.3 Abstracts Of Category-2 Studies Distinguishing 

Homogeneity, Proliferation, And Grade Of Lesions 

Herminghaus et al. (2001a) prior to biopsy evaluated 29 consecutive 

patients with MRI results and history suggestive of neuroepithelial brain 

tumors. The purpose of the study was to evaluate MRI’s ability to 

distinguish low from high-grade tumors.  Single voxel MRS (1.5 T) was 
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used to evaluate tumor tissues as well as normal appearing brain tissue in 

the contralateral hemisphere.  NAA, total creatine, Cho, Lip, and Lac were 

analyzed. Tumor spectroscopic data were classified (“observer-

independently”) as grade I/II or III/IV according to the World Health 

Organization system. Biopsies were performed and confirmed by following 

patients for three years. Tumors showing at least 6 months of stability were 

defined as low-grade; those tumors showing progression were classified as 

high-grade. 
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While the authors reported sensitivity (100%), specificity (86%), and 

overall accuracy (96%), it is not clear what the reference standard was. 

Since the authors also report sensitivity (95%), specificity (86%), and 

overall accuracy (93%) for biopsy, it may be inferred that biopsy was not 

the reference standard. It is possible that surgery was the reference 

standard, but the study does not mention whether or how frequently 

surgery was performed. This ambiguity makes it difficult to assess the 

meaning of these findings. In addition, there was no independent 

verification of results. (This study might also be classified as Category 3).  
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4.3.1 Abstracts of Category-3: Studies Conducted to Evaluate 

Diagnostic Thinking Impact 
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Mao et al., (2002) evaluated the utility of single voxel MRS (1.5 T 

Phillips NT scanner) to guide selection of biopsy target areas in eight 

patients with a previous biopsy yielding equivocal results.  This study might 

be considered as providing information for thinking about diagnostic impact. 

Areas of decreased NAA and elevated Cho and Lac were identified so that 

NAA and Cho maps could be used to target these areas as potential biopsy 

sites. The maps were superimposed on the stereotactic anatomical image 

to develop coordinates for the sites. Biopsies were then performed, 

followed by either CT or MRI. 

MRS results showed abnormal metabolite maps for all eight patients, 

with seven showing decreased NAA and increased CHO. Biopsy sites were 

chosen from areas showing the most elevated CHO levels, and the 

biopsies were positive for seven of the eight patients. Tumor types 

included: two anaplastic astrocytomas (III); glioblastoma multiforme (IV); 

two infiltrative astrocytomas (II); oligodendroglioma (II). 

 

While the study described in this abstract shows the technical 

feasibility of using MRI to help select the site of biopsy, the sample size of 
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eight was small, with no statistical analysis (it mentions a ‘significant’ 

decrease in NAA and increased CHO, but no quantitative data to support 

this is presented in the abstract). In addition, there was no comparison 

group of patients with non-MRS guided biopsy  and there was no 

independent verification of the results. 
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5. SUMMARY 

 Ninety-six articles met our inclusion criteria for evaluation, with 

11 providing information beyond the level of technical feasibility. Eight 

articles evaluated the test performance of MRS in various settings. Three 

articles addressed the impact of MRS on diagnostic thinking and 

therapeutic decision making. No article was found that addressed 

improvement of patient outcome. 

 

5.1 For what metabolite profiles does MRS provide equivalent, 

complementary, or more accurate diagnostic information? 

 The following table summarizes the peak intensities and ratios of 

metabolites evaluated in Category-2 and higher studies. 
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1410 Category 2 and higher studies that reported metabolite profiles 

 
Quantitative measurements 
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Rand 2 x                 

Butzen 2 x x x x x x     x       

Shukla-
Dave 

2 x                 

Kimura 2  x x x x x   x x   x x x   

Moller-
Hartmann 

2  x x x x x   x x        

Tedeschi 2  x x x x    x x  x      

Roser 2  x x x  x x x x x    x  x x 

Lin (1999) 3,4  x x x x x x  x x      x  
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These profiles represent a very heterogeneous mix of signals and 

ratios, study populations, study purpose, and results. Some of the signals 

and ratios were unique for a particular study. For example, Butzen et al. 

used a Cho/NAA ratio of greater than 1.0 to classify lesions as tumors for 

initial diagnosis and reported a sensitivity of 79% and specificity of 77%. No 

other study used this metabolite ratio; therefore their results could not be 
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verified. The most common ratios evaluated were Cho/Cr and NAA/Cr, 

which were reported in five studies. With so little data and many questions, 

the above question could be answered only to a very limited extent. 
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  Cho/Cr is the only metabolite ratio that has been found to be useful 

in differentiating neoplasm and non-neoplasm and supported by several 

studies. Among all the full articles examined in this technology assessment, 

Moller-Hartmann et al. provided the most complete reporting of the 

metabolite signal intensities and ratios for each type of tumor found in their 

study population. However, no single metabolite or ratio, other than 

perhaps a very high Cho/Cr ratio to diagnose PNET, by itself could 

differentiate among different neoplasms, among different tumor grades, or 

between neoplastic and non-neoplastic lesions. A moderately high Cho/Cr 

ratio of approximately four was observed for astrocytoma grade IV and 

metastases, compared to a value of approximately 1.5 for cerebral 

infarctions and abscesses. Kimura et al. also reported that a Cho/Cr ratio of 

2.48 minimized the rate of misdiagnosis of neoplasm and non-neoplasm. 

Lin et al. reported that the Cho/Cr ratio was the single most accurate 

spectral measurement for differentiating neoplastic from non-neoplastic 

lesions. Unfortunately, the results were presented only as a bar graph. 
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 In the only study that addressed the incremental diagnostic yield, 

Moller-Hartmann et al. demonstrated that MRS added to conventional MRI 

improved the number of correct diagnoses and reduced the number of 

incorrect or equivocal diagnoses. 
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5.2 Does The Use Of MRS Lead To An Improved Net Health 
Outcome? 

 
Three studies addressed the potential impact of MRS results on 

diagnostic thinking or therapeutic decision making. Conclusions that can be 

drawn from these studies are severely limited due to the fact that the two 

prospective studies had only 15 and 17 patients, respectively, and the only 

large study was a retrospective analysis of medical records to identify 

potential opportunities for MRS to influence diagnostic thinking. 

 

5.3 Are Voxel Positions And Operator Error Important Factors In 

Obtaining Diagnostic Images? If So, How Do They Impact MRS 

Accuracy? 

 No study explicitly evaluated the impact of voxel position on the 

accuracy of MRS. The retrospective study by Kimura et al. came closest to 

this objective. This study evaluated the differences of measurements 

between the whole lesion and the inner region of the same tumor. 
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Significant differences between the inner region and the whole lesion were 

found for various types of lesions. Although not specifically reported, the 

voxel sizes of the inner regions obviously were smaller than those of the 

whole lesions. 
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 No study commented on the potential impact of operator error in 

placement of the voxel. 

 

5.4 Strengths And Weaknesses Of The Studies 

Most of the studies on Proton MRS were Category- 1 studies that 

addressed technical feasibility. The stated purpose of some of the studies 

classified as technical feasibility studies was to examine the impact of MRS 

on practice, but limitations of these studies’ designs kept them from 

meeting the criteria necessary to achieve that level. Most of the studies we 

evaluated in categories 2 to 4 concluded that MRS has value for the 

indications studied. One study (Rand et al. 1997), which measured the 

accuracy of single-voxel, image-guided proton MRS in distinguishing 

normal from abnormal brain tissue and neoplastic from non-neoplastic 

brain disease, was an excellent example in some respects of the type of 

study needed to assess diagnostic efficacy. The use of multiple blinded 

readers and ROC analyses should be encouraged. Detailed presentation of 
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quantified spectra intensities and ratios similar to those reported in the 

article by Moller-Hartmann et al. would help the interpretation of results 

across studies. 
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Sample size is also an important limitation.  Sample sizes that might 

be adequate for investigating one type of tumor are not necessarily 

adequate for investigating multiple types of tumors in the same study. This 

applies to tumor grades as well. 

In summary, while there are a large number of studies that confirm 

MRS’ technical feasibility, there are very few published studies to evaluate 

the diagnostic accuracy and whether it can positively affect diagnostic 

thinking and therapeutic choice. Those studies that do address these areas 

often have significant design flaws including inadequate sample size, 

retrospective design and other limitations that could bias the results. 

 

5.5 Implications for future research 

The relative rarity of brain tumors, the relatively low installed base of 

MRS software and the constraints of clinical practice have precluded the 

establishment of large, double-blinded controlled trials that would go 

beyond exploring technical feasibility. Experience with MRS has only 

become available to the general community of radiologists within the past 
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five years. Prior to this time, commercial software for shimming and 

analyzing spectra was not reliable, except in the hands of trained 

specialists. The current commercial software is vastly improved and can be 

mastered with a reasonable amount of additional training. Prior to about 

1995, MRS was available at only a few research-oriented institutions. 

Hence studies were typically single institution feasibility studies or small 

case series. The recent change in the availability of MRS is only now 

reaching enough centers to allow more advanced investigations using the 

technique. MRS is still not available in many community hospitals, and 

even some academic centers. 
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The reason that the research is not more advanced may be that in 

addition to the relatively recent availability of MRS, its use in brain tumor 

evaluation evolved by using techniques that were not straightforward.  

Initially, it was hoped that tumors would have a characteristic “signature” 

that would allow rapid MRS diagnoses. Because the sensitivity of MRS 

allows demonstration of only a limited set of chemical compounds in the 

brain, such signatures have not been found. However, means of using the 

chemical information that is provided by MRS for tumor evaluation has 

progressed as new ideas have evolved for effective use of this information. 
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6. CONCLUSION 1519 
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Human studies conducted on the use of MRS for brain tumors 

demonstrate that this non-invasive method is technically feasible and 

suggest potential benefits for some of the proposed indications. There is a 

paucity of high quality direct evidence demonstrating the impact on 

diagnostic thinking and therapeutic decision making. In addition, the 

techniques of acquiring the MRS spectra and interpreting the results are 

not well standardized. The table below summarizes the current state of 

evidence.  

 
 
CATEGORY 

 
DESCRIPTION 

 
EVIDENCE SUMMARY 

1 Technical feasibility and 
optimization 

Large amount of evidence

2 Diagnostic accuracy 

 Distinguish neoplasm from 
non-neoplasm 

Limited evidence 

 MRS added to MRI Limited evidence 
 Tumor grading Limited evidence 

 Differentiate intracranial cystic 
lesions 

Limited evidence 

3 Diagnostic thinking impact Limited evidence 
4 Therapeutic choice impact Limited evidence 
5 Patient outcome impact No evidence 
6 Societal impact No evidence 

1530  
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APPENDIX A: ANALYTIC FRAMEWORK:  1531 
1532 POTENTIAL USES OF MRS 

Newly Diagnosed Space-Occupying Brain 
Mass* Identified By CT or MRI 

Follow-Up Of Patients with Previously 
Diagnosed Brain Tumor Undergoing 

Treatment 
 
Potential use of MRS in diagnostic evaluation and prognostication 
• Replacement of diagnostic biopsy by 

MRS 
o Outcome measure: same or 

improved accuracy/less 
invasiveness 

• Differentiating masses 
• Distinguishing malignant 

neoplasms from non-malignant 
neoplasms and vascular lesions 
(e.g. ring-enhancing primary tumors 
from abscesses) 
• Distinguishing single metatstatic 

lesions such as gliomas from 
primary tumors 

• Distinguishing among types of 
neoplasm (e.g. PNET from  
astrocytoma or neurofibroma 
bright spots from astroglial 
tumors) 

• Outcome measure: Higher 
sensitivity and specificity in 
differentiating masses  

• MRS-guided biopsy to improve biopsy 
yield 
• Outcome measure: Success rate of 

MRS-guided biopsies 
• Tumor grading: degree of malignancy 

• Outcome measure: % of 
inappropriate biopsies avoided; 
biopsy yield 

• Determining whether tumor has recurred 
• Differentiate recurrence from radiation 

injury (necrosis)  
• Outcome measure: Higher sensitivity and 

specificity in differentiating masses 
• MRS-guided biopsy to improve biopsy 

yield 
• Outcome measure: Success rate of MRS-

guided biopsies 

Potential use of MRS in patient management 
• Planning treatment 

o Choosing among therapies 
o Identifying tumor margin and 

volume for radiosurgery  
planning/surgical resection 

o Identifying tumor margin and 
volume for radiotherapy 
(gamma knife therapy) planning 

o Identifying target volume 
(isolating most active portions 
of tumor) for radiosurgery 

• Re-initiating radiosurgery when 
recurrence differentiated from necrosis 

• Rapidly assessing treatment 
effectiveness to optimize treatment 

o Monitor response to treatment 
• Outcome measures: survival, quality of 

life 
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Newly Diagnosed Space-Occupying Brain Follow-Up Of Patients with Previously 
Mass* Identified By CT or MRI Diagnosed Brain Tumor Undergoing 

Treatment 
planning 

o Tumor grading: timing 
interventions  

• Outcome measures: survival, quality of 
life 

Factors potentially affecting MRS performance 
• Lesion location (e.g. proximity to bone 

and sinuses) and voxel positions 
• Concurrent disease (suspicion of 

known Ca elsewhere, e.g. lung, 
breast); suspicion of HIV 

• Operator error 
• Machine used/software and equation 

version 

• Lesion location (e.g. proximity to bone 
and sinuses) and voxel positions 

• Concurrent disease (suspicion of known 
Ca elsewhere, e.g. lung, breast); 
suspicion of HIV 

• Operator error 
• Machine used/software and equation 

version 
 1533 
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APPENDIX B: Glossary 1534 

1535 

1536 

1537 

1538 
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1540 

1541 
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1550 

1551 
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1553 

Cho – choline 

cm3 – cubic centimeter 

Cr – creatine and phosphocreatine 

CT – computed tomography 

GI – glycine 

Lac – lactate  

Lip – lipid 

MGG – macromolecules, glutamine, and glutamate 

MI – myo-inositol 

MR – magnetic resonance 

MRI – magnetic resonance imaging 

MRS – magnetic resonance spectroscopy 

NAA – N-acetyl-aspartate  

ODV – orthonormal discriminant vector 

PET – positron emission tomography 

PNET – peripheral neuroectodermal tumor 

ROC – receiver operating characteristic  

VOI – volume of interest 

Tesla – unit of magnetic flux 
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Evidence Table 1. Summary of studies examining technical feasibility for magnetic resonance spectroscopy
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Alger 2243962 1990 US p 40 0 u k 42, 18-81 27 s x
Barba 11147898 2001 England p 27 0 u k ND 2x2x2 s x Types of tu
Barbarella 9458376 1998 Italy u 19 20 u k 21-69 2x2x3 s x x
Bruhn 2748837 1989 Germany p 9 0 u k 33-61 3x3x3 s x

Burtscher 10669230 2000 Sweden p 26 0 u k 52, 31-80 1.5x1.5x1.5-2 /
3x4x1.5 - 10x9x1.5 s/m x x

Castillo 11039343 2000 US p 34 5 u k 2-75 3-27 s x
Chang 9541289 1998 Korea p 39 0 u k 43, 26-60 2x2x2 s x x
Chumas 9219744 1997 Scotland p 9 0 u k 54 21 s x
Croteau 11564242 2001 US p 31 0 u k >18 0.8 m x x x
Demaerel 1846155 1991 Belgium p 50 0 u k 53.4, 16-79 8-64 s x
Domingo 10070443 1998 UK p 8 0 u k 58, 41-70 1x1x1.5 s x
Dowling 11290466 2001 US p 29 0 u k 16-68 1 m x
Esteve 9457810 1998 France p 11 0 u k 30-63 1x0.9x2 s
Falini 8923303 1996 Italy p 70 0 u M ND 8 s x x x
Fountas 11251398 2000 US/Greece p 120 0 u k 61.3, 29-76 8 s x x

Frahm 92042946 1991 Germany p 19 ~300 
studies u k ND 2-8 s x

Fulham 1438744 1992 US r 50 0 u k 43, 18-76 0.675-2.0 m x x x x
Furuya 9251112 1997 Japan r 17 0 u k ND 81 m x
Galanaud 12593610 2003 France p 9 9 & 25 u k 52, 15-69 ND / 2.0x2.0x1.5 s/m x
Go 7603595 1995 The Netherlands u 32 0 u k ND 3x3x1, 1 m x
Go 9416313 1997 The Netherlands u 18 0 u u ND 3x3x1, 1 m x

Gotsis 8694527 1996 Greece u 76 
tumors 0 u u ND 2-8 s x x

Graves2 10690720 2000 US p 36 0 u k 45.5, 24-68 1 m x
Graves2 11290467 2001 US p 18 0 u k 24-62 1 m x x
Gupta 10025604 1999 US r 20 0 na k 27-68 1x1x1.2 m x x
Gupta 11263501 2000 US p 18 0 u M 28-62 1x1x1.2 m x
Hagberg 7476084 1995 Switzerland p 32 8 u k 55 8-18 s x x
Hall 10853123 1999 US u 6 0 u k ND ND u x x
Harada 95263377 1995 Japan p 25 0 u k ND 15.6 s x x
Heesters 8120569 1993 The Netherlands u 11 0 u k ND 27 cc / 9 cc / 1 s/m x
Heesters 9541920 1998 The Netherlands p 8 0 u k 29-66 1 m x
Herminghaus 12546355 2003 Germany p 90 0 c n ND 4.2 - 12.7 s x
Henriksen 2031809 1991 Denmark p 17 0 u k 49, 24-77 3x3x3 s x x
Houkin 7761009 1995 Japan u 11 0 u k ND 2x2x2 - 3x3x3 s x
Howe 12541241 2003 UK p 42 8 u n ND 4 - 8 s x x
Hubesch 2558086 1989 US u 45 13 u k ND 18 - 40 s x
Ikehira 8848553 1995 Japan p 16 3 u k 46.4, 14-71 8-27 s x
Ishimaru 11511902 2001 Japan p 56 0 u k 55.8, 12-88 1.3x1.3x1.3 - 1.5x1.5x1.5 s x
Isobe 12165353 2002 Japan p 23 7 u k 20-26 2.2 - 31.5 s x x
Kadota 11372554 2001 Japan p 10 0 u k 12-73 2x2x2 - 3x3x3 s x x
Kamada 9095625 1997 Japan p 11 20 u k 7-76 8-27 s x
Kamada 11412866 2001 Germany p 7 10 u k 37-61 1.25x1.25x1.5 m x
Kaminogo 11396738 2001 Japan p 25 0 u k 13-82 12x12x12 - 15x15x15 s x x
Kim 9205254 1998 Korea p 14 0 c k 25-70 2x2x2 s x x
Kinoshita 9367328 1997 Japan p 12 16 u k 50, 43-62 1 s x x
Kizu 9508276 1998 Japan r 6 0 n k 50, 13-63 0.38-0.47 m x
Kugel 1584924 1992 Germany p 36 27 u k 27-81 8-18 s x x
Langkowski 2607903 1989 Germany p 16 0 u k 22-74 4-20 s x
Law 11867790 2002 US p 17 34 c k 51.9, 15-80 1x1x1.5 - 1x1x2 m x
Lin 11584229 2001 US p 49 14 c k 50 variable s x
Luan 10322655 1998 China p 13 0 u k 42, 13-68 2x2x2 s x x
Mader 97029389 1996 Switzerland p 17 7 u n 50.3, 20-74 8 / 3.4-4.5 s/m x x
Majos 12594562 2003 Spain p 25 0 c u ND 1.5 - 2 s x x
Manton 11252030 2000 UK p 23 0 u k ND variable s x
McBride 7502203 1995 US p 23 16 u k ND 27 s x x
McKnight 11169821 2001 US p 30 14 u k 42 1 m x x
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Evidence Table 1. Summary of studies examining technical feasibility for magnetic resonance spectroscopy (Continued)
Study characteristics Technique Study objective(s)
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Meyerand 9974066 1999 US p 27 0 u k 43, 19-72 1 - 6.2 s x x
Murphy 11973038 2002 UK p 19 0 c k ND 8 - 16 s  x
Negendank 8609557 1996 US/Europe/Japan p 86 0 u k 41, 3-75 8 s x x
Ng 11820651 2001 Taiwan p 58 0 u k ND 2 - 20 s x x x
Pirzkall 11429219 2001 US/Germany p 34 0 c k ND 1 m x
Pirzkall 12128127 2002 US p 20 0 u k 39, 23-57 1 m x
Poptani 7502961 1995 India p 120 40 u n 1-65 4.09 - 8 s x x
Poptani 8583866 1995 India p 34 30 u n 1-65 4.09 - 8 s x x
Preul 8612232 1996 Canada u 91 14 u u ND 0.1 m x
Preul 10690729 2000 Canada p 16 0 n M 48.2, 24-70 0.7 - 1.2 m x
Prost 9205253 1997 US p 18 8 u n 16-73 1.0 - 11.47 s x
Rabinov 12461273 2002 US p 14 0 u k 40.4, 28-51 1.25 m x
Ricci 10696025 2000 US r 19 0 c k 55, 42-70 4 - 8 s x
Rock 12234397 2002 US p 27 31 u M >18 0.9 m x x
Schlemmer 11498420 2001 US/Germany p 56 0 u k 42.5 1.5 - 2x2x3 s x x
Segebarth 2319936 1990 Europe p 10 12 u k ND 30 / 9-30 m x
Shimizu 10782774 2000 Japan p 26 0 c n 46, 24-79 1.2x1.2x1.6 - 2x2x2 s x
Shimizu 8730195 1996 Japan p 25 17 u k ND 1.3x1.3x1.5 - 2x2x2 s x
Sijens 9001146 1997 The Netherlands u 17 0 u k ND 1x1x2 cm m
Sijens 7651119 1995 US/Europe u 40 151 u k 24-73 8 s x
Sijens 8748188 1995 The Netherlands u 13 0 u k ND 3.4-64 / 10.2-13.6 s/m x
Tamiya 10872152 2000 Japan p 23 14 n M 42.5, 15-68 1 s x x
Tarnawski 11955739 2002 Poland p 51 30 c k 47, 20-68 1.5x1.5x1.5 s x x
Thomsen 2831923 1988 Europe u 8 8 u n 14-66 ND ND x x
Tien 8659372 1996 US p 46 10 n k 46, 17-78 6-8 s x
Tomoi 9140749 1997 Japan u 8 0 u k 62.5, 32-83 1.5x1.5x1.5 s x
Vigneron 11295350 2001 US p 31 8 u n ND 0.24 - 0.54, 1 - 2 m x x
Wald 9322843 1997 US p 12 0 u k ND 0.34 - 2 m x
Walecki 10401596 1999 Poland p 10 30 u k 28-51 8 s x

1 Voxel size data unclear or incomplete
2 Possible overlapping patient population
Abbreviations: c, consecutive; k, known; M, mixed; m, multiple; n, nonconsecutive; n, no histological diagnosis; ND, no data; p, prospective; r, retrospective; 
s, single; u, unknown
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Evidence Table 2. Summary of abstracts examining technical feasibility for magnetic resonance spectroscopy
Study characteristics Technique Study objective(s)
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Antiniw ISMRM 2002 US p 22 0 u k 22-84 ND m x
Ben Sira RSNA 2002 Israel r 35 0 c k ND ND s x
Bizzi1 RSNA 2001 Italy u 22 0 u u 44 ND m x
Bizzi1 ASNR 2001 Italy u 20 0 u u 40 ND m
Castillo ASNR 2001 US r 17 0 u k ND ND s x
Catalaa ISMRM 2001 US u 67 0 u u 23-78 1 m x
Cha ASNR 2002 US r 10 gliomas 0 u k ND ND u x
Cruz RSNA 2001 Brazil r 15 0 u k ND ND s x x
Fan RSNA 2002 China p 22 0 u u 36.7mdn, 8-62 ND u x
Fatterpekar ASNR 2001 US r 14 studies 0 u u ND ND u x
Fujiwara ISMRM 2001 Brazil u 22 5 u u ND 8 s x
Gomori RSNA 2001 Israel u 10 12 u k ND ND u x
Graves ISMRM 2002 US u 10 0 u u ND ND m x
Hakyemez ASNR 2001 Turkey u 23 0 u u ND 2x2x2 s x
Hearshen2 ISMRM 2001 US u 35 0 u k ND .9x.9x1.5 m
Herminghaus ASNR 2002 Germany u 174 lesions u u ND ND s x
Herminghaus3 ASNR 2001 Germany u 83 0 c M ND ND s x

Herminghaus3 ASNR
ISMRM 2001 Germany u 31 0 u u 52.8, 11-75 ND s x

Hiltunen ISMRM 2001 Finland u 8 2 u k ND m x
Hiwatashi ASNR 2002 US u 24 0 u u ND 1 m
Howe ISMRM 2002 UK u 25 8 u k ND ND u x
Law ISMRM 2002 US u 20 10 u k ND 1x1x1.5 - 1x1x2 m x
Leeds ASNR 2002 US u 9 0 u k ND ND m x x
Li4 ISMRM 2001 US u 18 0 u M ND ND s/m x
Li4 ISMRM 2002 US u 19 0 u k ND ND m x
Lim ASNR 2001 Singapore u 59 0 u u ND ND m x
Lim ISMRM 2002 Singapore u 20 15 u k ND 1 m x

Lin ISMRM 2001 US p 7 15 u u 43, 25-64 (cntrl) 4.5 (cntrl)
2-4.5 (case) s x

Lin ISMRM 2001 US u 50 50 c k ND 4-12.5 s x
Londono ASNR 2002 US u 15 meningiomas u M 24-81 ND s/m x
Majos RSNA 2002 Spain u 130 0 u u ND ND s x
Majos RSNA 2001 Spain p 108 0 u u ND ND s x
McKnight ASNR 2001 US u 58 0 u u ND 1 m x x
McKnight ISMRM 2002 US u 20 0 u u ND ND m x

Peck ISMRM
RSNA 2001 US u 10 0 u k ND ND u x

Pilatus ASNR
ISMRM 2001 Germany u 95 0 c u ND ND s x

Scatliff ASNR 2001 US u 12 0 u k ND 1.5-2 s/m x
Shah ISMRM 2002 India u 10 0 u n ND 3-6 s x
Shah5 ISMRM 2001 India u 72 0 u n ND 1.7-8 s x
Shah5 ISMRM 2002 India u 52 0 u n ND 2.2 - 8 s x
Smith RSNA 2003 US u 25 5 u u ND ND s/m
Szabo De Edelenyi ISMRM 2001 France u 56 7 u n ND ND m x
Tate ISMRM 2001 UK/Spain u 51 0 u u ND ND s x
Waldman ISMRM 2002 UK p 28 0 u n ND 1-8 s x

1, 3, 4, 5 Potential overlap of patient population
2 Potential overlap of patient population with Rock, Hearshen, Scarpace et al., 2002

Abbreviations: ASNR, American Society of Neuroradiology; c, consecutive; k, known; M, mixed; m, multiple; mdn, median; n, nonconsecutive; N, no histological 
diagnosis; ISMRM, International Society for Magnetic Resonance in Medicine; NA, not applicable; ND, no data; p, prospective; r, retrospective; RIBI, radiation-
induced brain injury; RSNA, Radiological Society of North America; s, single; u, unknown.
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