Appendix D1

ESEM and SEM/EDS Data for Test #2, Day-16 Fiberglass in High- and Low-Flow Zones

Figures

Figure D1-1.	Back-scattered electron (BSE) image overview. (T2HIX1)D1-6
Figure D1-2.	BSE image on center of Figure D1-1. (T2HIX2) D1-6
Figure D1-3.	BSE image at 1000 times magnification. (T2HIX3) D1-7
Figure D1-4.	BSE image at another angle on the center of the image. (T2HIX4)D1-7
Figure D1-5.	SEM image overview for interior of high flow. (T2HII5) D1-8
Figure D1-6.	SEM image of Figure D1-5 at 1000 times magnification. (T2HII6) D1-8
Figure D1-7.	SEM image of high-flow interior for another sample area. (T2HII7) D1-9
Figure D1-8.	SEM image overview for exterior of the low-flow sample. (T2LOX8)D1-9
Figure D1-9.	SEM image of the upper left portion of Figure D1-8, low-flow exterior.
	(T2LOX9)
Figure D1-10.	SEM image overview for interior of the low-flow sample. (T2LOI10) D1-10
Figure D1-11.	SEM image on the center of Figure D1-10, low-flow interior. (T2LOI11) D1-11
Figure D1-12.	SEM image overview of exterior crust. (HI_flow_ex_crust001) D1-11
Figure D1-13.	SEM image overview of the same area of Figure D1-12.
	(HI_flow_ex_crust002)D1-12
Figure D1-14.	SEM image close-up view of crust. (HI_flow_ex_crust003) D1-12
Figure D1-15.	SEM image of crust at 150 times magnification. (HI_flow_ex_crust004) D1-13
Figure D1-16.	Counting spectrum image of the deposit area in Figure D1-15.
	(hiflow~excrust~EDS1)D1-13
Figure D1-17.	SEM image of a new exterior crust area at 270 times magnification.
	(HI_flow_ex_ crust005) D1-15
Figure D1-18.	Counting spectrum image of the deposit area in Figure D1-17.
	(hiflow~excrust~EDS2)
Figure D1-19.	SEM image overview of another area for the exterior crust.
	(HI_flow_ex_crust006)
Figure D1-20.	Test #2, Day-16 SEM image overview. (Hiflow-interior001) D1-17
Figure D1-21.	Test #2, Day-16 SEM image for high-flow interior. (Hiflow-interior002) D1-18

Figure D1-22.	Test #2, Day-16 SEM image showing clean fibers. (Hiflow-interior003) D1-18
Figure D1-23.	Test #2, Day-16 SEM image of deposits for high-flow interior. (Hiflow-
	interior004)
Figure D1-24.	Test #2, Day-4 SEM image zoomed in on deposits on fiberglass,
	magnification 5000 times. (Hiflow-interior005) D1-19
Figure D1-25.	Test #2, Day-16 SEM image overview for low-flow interior. (Lowflow-
	interior001)D1-20
Figure D1-26.	Test-2 Day-16 SEM close-up image of Figure D1-25.
	(Lowflow-interior002)
Figure D1-27.	Test #2, Day-16 SEM image at 3500 times magnification of deposits shown
	in Figure D1-26. (Lowflow-interior003) D1-21
Figure D1-28.	Test #2, Day-16 SEM image at 370 times magnification showing close-up of
	deposits in Figure D1-26. (Lowflow-interior004)
Figure D1-29.	Test #2, Day-16 SEM image overview of a new sample area. (Lowflow-
	interior005)
Figure D1-30.	Test #2, Day-16 SEM image zooming in on Figure D1-29. (Lowflow-
	interior006)
Figure D1-31.	Test #2, Day-16 SEM image showing a cleaner appearance than seen in some
	high-flow interior samples. (Lowflow-interior007) D1-23
Figure D1-32.	Test #2, Day-16 SEM image overview for low-flow exterior. (Lowflow-
	exterior001) D1-23
Figure D1-33.	Test #2, Day-16 SEM image close-up (charging) of Figure D1-32.
	(Lowflow-exterior002)
Figure D1-34.	Test #2, Day-16 SEM image zooming in on deposits at 600 times
	magnification. (Lowflow-exterior003)
Figure D1-35.	Test #2, Day-16 counting spectrum image for a particle on the fiberglass
	shown in Figure D1-34. (Lowflow~exterior~EDS1)
Figure D1-36.	Test #2, Day-16 counting spectrum for a particle on the fiberglass shown in
	Figure D1-34. (Lowflow-exterior~EDS2)

Tables

Table D1-1.	The Chemical Composition for hiflow~excrust~EDS1 (Figure D1-16) D1-1
Table D1-2.	The Chemical Composition for hiflow~excrust~EDS2 (Figure D1-18) D1-1
Table D1-3.	The Chemical Composition for EDS1D1-2
Table D1-4.	The Chemical Composition for EDS2D1-2

This page intentionally left blank.

The debris accumulated on fiberglass in the ICET tests is of great interest because it may contribute to additional head loss during recirculation of the coolant following a LOCA. To evaluate these potential debris accumulations, fiberglass samples submerged in high- and low-flow zones in the tank were examined by ESEM and SEM/EDS.

In this appendix, images and data are presented for fiberglass samples that were extracted on February 21, 2005 (Test #2, Day 16). Both exterior and interior locations on the fiberglass samples were examined for material that had been placed in both high- and low-flow locations. Microprobe SEM was used to examine the fiberglass samples after they were air dried at room temperature and then coated with gold/palladium. Low-vacuum ESEM examinations were performed on hydrated material without any required coating to avoid sample modifications that might occur during the drying process. Microprobe SEM/EDS and ESEM analyses of Test #2, Day-16 fiberglass samples were obtained on February 25 and March 4, 2005, respectively. Accompanying EDS results provide a semiquantitative elemental analysis of the debris deposited on the fiberglass under both low- and high-flow conditions.

This page intentionally left blank.

Transcribed Laboratory Log

ESEM laboratory session from March 4, 2005

Instrument Conditions: 20-kV, 12-mm Working Distance, Low-Vacuum Mode (80 Pa)

T2 High-Flow Exterior

Image:	T2HIX1	$90 \times$	BSE Image Overview	Figure D1-1
	T2HIX2	$350 \times$	On center of image T2HIX1 (above)	Figure D1-2
	T2HIX3	$1000 \times$		Figure D1-3
	T2HIX4	$350 \times$	Another sample area	Figure D1-4

T2 High-Flow Interior

Image:	T2HII5	$90 \times$	Overview	Figure D1-5
	T2HII6	$1000 \times$	Same area as image T2HII5 (above)	Figure D1-6
	T2HII7	$550 \times$	Another area	Figure D1-7

T2 Low-Flow Exterior

Image:	T2LOX8	$90 \times$	Overview	Figure D1-8
	T2LOX9	$500 \times$	Upper left of image T2LOX8 (above)	Figure D1-9

T2 Low-Flow Interior

Image:	T2LOI10	$90 \times$	Overview	Figure D1-10
	T2LOI11	$500 \times$	On center of image T2LOI10 (above)	Figure D1-11

Transcribed Laboratory Log

Microprobe laboratory session from February 25, 2005

T2D16 Samples plus high-volume filter from T1D30

Conditions: 15-kV, 1 nA

High-Flow Exterior Crust

Image:	HI_flow_ex_crust_001	$40 \times$	Overview (Charging)	Figure D1-12
	HI_flow_ex_crust_002	$40 \times$	Overview the same as 001	Figure D1-13
	HI_flow_ex_crust_003	$60 \times$	Zoom in on crust	Figure D1-14
	HI_flow_ex_crust_004	$150 \times$	Zoom in on crust	Figure D1-15
EDS:	Hiflow_excrust_EDS1		Area of picture 004—deposit	Figure D1-16
Image:	HI_flow_ex_crust_005	$270 \times$	Zoom in on different region	Figure D1-17
EDS:	Hiflow_excrust_EDS2		Area of picture 005—deposit	Figure D1-18
Image:	HI_flow_ex_crust_006	$40 \times$	Overview of another area	Figure D1-19

Laboratory Session March 6, 2005

High-Flow Interior (T2D16)—(after sputtering again to get better pictures)

Image:	Hiflow-interior001	$40 \times$	SE overview image	Figure D1-20
	Hiflow-interior002	$80 \times$	SE image	Figure D1-21
	Hiflow-interior003	65 ×	SE image—pretty clean fibers	Figure D1-22
	Hiflow-interior004	$300 \times$	SE image—deposits	Figure D1-23
	Hiflow-interior005	5000 ×	SE image—zoom in on deposits on fiberglass	Figure D1-24

Low-Flow Interior (T2D16)

Image:	Lowflow-interior001	55 ×	SE overview image	Figure D1-25
	Lowflow-interior002	$120 \times$	Close-up of Lowflow- interior001	Figure D1-26
	Lowflow-interior003	$3500 \times$	SE image zoom in on deposits	Figure D1-27
	Lowflow-interior004	$370 \times$	SE image zoom in on deposits	Figure D1-28
	Lowflow-interior005	85 ×	SE overview image	Figure D1-29
	Lowflow-interior006	370 ×	Zoom in	Figure D1-30
	Lowflow-interior007	$100 \times$	SE image	Figure D1-31

General Observations: Low-flow interior looks cleaner than high-flow interior. No crusts, only small particles. Images Lowflow-interior001 through 004 taken on the same region

Low-Flow Exterior (T2D16)

Image:	Lowflow-exterior001	43 ×	SE overview image	Figure D1-32
	Lowflow-exterior002	$120 \times$	Close-up (charging)	Figure D1-33
	Lowflow-exterior003	$600 \times$	Zooming on deposits	Figure D1-34
	Lowflow-exteriorEDS1		Particle on fiberglass (pic 003)	Figure D1-35
	Lowflow-exteriorEDS2		Particle on fiberglass (pic 003)	Figure D1-36

General Observations: Although sputtered again, some problems with charging remain.

Figure D1-1. Back-scattered electron (BSE) image overview. (T2HIX1)

Figure D1-2. BSE image on center of Figure D1-1. (T2HIX2)

Figure D1-3. BSE image at 1000 times magnification. (T2HIX3)

Figure D1-4. BSE image at another angle on the center of the image. (T2HIX4)

Figure D1-5. SEM image overview for interior of high flow. (T2HII5)

Figure D1-6. SEM image of Figure D1-5 at 1000 times magnification. (T2HII6)

Figure D1-7. SEM image of high-flow interior for another sample area. (T2HII7)

Figure D1-8. SEM image overview for exterior of the low-flow sample. (T2LOX8)

Figure D1-9. SEM image of the upper left portion of Figure D1-8, low-flow exterior. (T2LOX9)

Figure D1-10. SEM image overview for interior of the low-flow sample. (T2LOI10)

Figure D1-11. SEM image on the center of Figure D1-10, low-flow interior. (T2LOI11)

Figure D1-12. SEM image overview of exterior crust. (HI_flow_ex_crust001)

Figure D1-13. SEM image overview of the same area of Figure D1-12. (HI_flow_ex_crust002)

Figure D1-14. SEM image close-up view of crust. (HI_flow_ex_crust003)

Figure D1-15. SEM image of crust at 150 times magnification. (HI_flow_ex_crust004)

Figure D1-16. Counting spectrum image of the deposit area in Figure D1-15. (hiflow~excrust~EDS1)

The results from the chemical composition analysis for hiflow~excrust~EDS1 are given Table D1-1.

Table D1-1. The Chemical Composition for hiflow~excrust~EDS1 (Figure D1-16)

Feb 25 11:07 2005 /tmp/eds pout.log Page 1 : NRC Group Sample : Hiflow_excrust ID# : 1 : deposit picture4 Comment Condition : Full Scale : 20KeV(10eV/ch,2Kch) : 60.000 sec Aperture # Live Time : 2 : 15.0 KV Probe Current : 1.002E-08 A Acc. Volt Stage Point : X=55.412 Y=74.945 Z=11.147 : Fri Feb 25 10:59:03 2005 Acq. Date K-ratio(%) +/- Net/Background Element Mode ROI (KeV) 0.25- 0.77 OK Normal 34.5490 0.0043 10752 / 46 126 / 1.26- 1.78 0.0006 0.0857 114 Al K Normal 1.50- 2.07 1534 / Si K 1.0405 0.0012 150 Normal 3.40- 4.30 0.0054 349 / Ca K Normal 0.4471 27 Na K 0.83- 1.28 3.7139 0.0097 3635 / 40 Normal PK Normal 1.75-2.38 5.2367 0.0043 3892 / 132 749 / 48 Normal 2.34-3.06 0.9080 0.0010 Cl K $Chi_square = 15.4770$ Element Mass% Atomic% ZAF Z Α F 69.992 80.1268 0.7836 0.9917 0.7902 1.0000 0 0.265 0.1798 1.1962 1.0046 1.1939 0.9974 Al 2.944 1.9201 1.0946 0.9924 1.1082 0.9953 Si 1.156 0.5280 0.9997 1.0065 0.9932 1.0001 Ca 11.074 8.8224 1.1534 0.9963 1.1562 1.0013 Na P 11.995 7.0932 0.8861 1.1964 0.7411 0.9993 Cl 2.574 1.3297 1.0964 1.0507 1.0440 0.9996 _____ 100.000 100.0000 Total Normalization factor = 2.5852

Figure D1-17. SEM image of a new exterior crust area at 270 times magnification. (HI_flow_ex_ crust005)

Figure D1-18. Counting spectrum image of the deposit area in Figure D1-17. (hiflow~excrust~EDS2)

The results from the chemical composition analysis for hiflow~excrust~EDS2 are given in Table D1-2.

Table D1-2. The Chemical Composition for hiflow~excrust~EDS2 (Figure D1-18)

Feb 25 11:18 2005 /tmp/eds_pout.log Page 1

Group Sample Comment Condition	: NRC : Hiflow : deposit : Full So Live T: Acc. Vo Stage H Acq. Da	excrust picture5 cale : 20 ime : 6 olt : 15 Point : X= ate : Fr	ID# : 2 KeV(10eV/c 0.000 sec .0 KV 55.001 Y=7 i Feb 25 1	h,2Kch) Apertu Probe 4.845 Z=1 1:13:54 2	re # : 2 Current : 1 1.147 005	.001E-08 A
Element	Mode	ROI (KeV) K-rati	o(%) +/-	Net/Bac	kground
OK	Normal	0.25- 0.	77 13.19	76 0.00	28 4103	7 40
Al K	Normal	1.26- 1.	78 0.10	87 0.00	05 160	/ 122
Si K	Normal	1.50- 2.	07 1.67	73 0.00	13 2470	/ 108
Ca K	Normal	3.40- 4.	30 0.48	60 0.00	55 379	/ 20
Na K	Normal	0.83- 1.	28 2.19	36 0.00	79 2145	/ 31
ΡK	Normal	1.75- 2.	38 0.64	50 0.00	30 479	/ 162
Cl K	Normal	2.34- 3.	06 1.20	20 0.00	10 990	/ 40
			Chi_squar	e = 13.21	.70	
Element Ma	ass% At	comic% Z	AF Z	A	F	
0 6	53.140 74	1.8335 0.8	873 0.9904	0.8959 1	.0000	
Al	0.704 0	0.4946 1.2	005 1.0030	1.2008 0	.9967	
Si	9.996 6	5.7486 1.1	053 0.9908	1.1175 0	.9982	
Ca	2.633 3	L.2457 1.0	047 1.0045	1.0001 1	.0001	
Na	13.248 10	.9272 1.1	201 0.9948	1.1246 1	.0012	
P	3.262 1	L.9970 0.9	380 1.1944	0.7868 0	.9981	
Cl	7.017 3	3.7533 1.0	828 1.0488	1.0332 0	.9992	
Total 10 Normalizat	00.000 100 tion facto	0.0000 or = 5.39	20			

Figure D1-19. SEM image overview of another area for the exterior crust. (HI_flow_ex_crust006)

Figure D1-20. Test #2, Day-16 SEM image overview. (Hiflow-interior001)

Figure D1-21. Test #2, Day-16 SEM image for high-flow interior. (Hiflow-interior002)

Figure D1-22. Test #2, Day-16 SEM image showing clean fibers. (Hiflow-interior003)

Figure D1-23. Test #2, Day-16 SEM image of deposits for high-flow interior. (Hiflow-interior004)

Figure D1-24. Test #2, Day-4 SEM image zoomed in on deposits on fiberglass, magnification 5000 times. (Hiflow-interior005)

Figure D1-25. Test #2, Day-16 SEM image overview for low-flow interior. (Lowflow-interior001)

Figure D1-26. Test-2 Day-16 SEM close-up image of Figure D1-25. (Lowflow-interior002)

Figure D1-27. Test #2, Day-16 SEM image at 3500 times magnification of deposits shown in Figure D1-26. (Lowflow-interior003)

Figure D1-28. Test #2, Day-16 SEM image at 370 times magnification showing close-up of deposits in Figure D1-26. (Lowflow-interior004)

Figure D1-29. Test #2, Day-16 SEM image overview of a new sample area. (Lowflow-interior005)

Figure D1-30. Test #2, Day-16 SEM image zooming in on Figure D1-29. (Lowflow-interior006)

Figure D1-31. Test #2, Day-16 SEM image showing a cleaner appearance than seen in some high-flow interior samples. (Lowflow-interior007)

Figure D1-32. Test #2, Day-16 SEM image overview for low-flow exterior. (Lowflow-exterior001)

Figure D1-33. Test #2, Day-16 SEM image close-up (charging) of Figure D1-32. (Lowflow-exterior002)

Figure D1-34. Test #2, Day-16 SEM image zooming in on deposits at 600 times magnification. (Lowflow-exterior003)

Figure D1-35. Test #2, Day-16 counting spectrum image for a particle on the fiberglass shown in Figure D1-34. (Lowflow~exterior~EDS1)

The results from the chemical composition analysis for Lowflow~exterior~EDS1 are given in Table D1-3.

Group : NRC Sample : T2D16 Low-flow ID# : 1 Comment : Exterior particle on fiberglass Condition : Full Scale : 20KeV(10eV/ch,2Kch) Live Time : 60.000 sec Aperture # : 3 Acc. Volt : 15.0 KV Probe Current : 2.003E-08 A Stage Point : X=52.122 Y=69.909 Z=12.467 Acq. Date : Sun Mar 6 21:42:04 2005
Floment Mode POI(KeW) K matic (%) (Mat (De slower d
O K Normal 0.25- 0.77 21.1989 0.0017 1491 / 6
Na K Normal 0.83-1.28 13.6362 0.0082 3016 / 14
Mg K Normal 1.03-1.52 0.4152 0.0007 116 / 204
Si K Normal $1.50-2.07$ 11.9355 0.0004 $222 / 13/$
Ca K Normal 3.40-4.30 3.2837 0.0042 579 / 4
Chi_square = 2.8832
Element Mass% Atomic% ZAF Z A F
0 41.276 53.6697 1.0489 0.9914 1.0580 0.9999
Na 24.595 22.2554 0.9716 0.9956 0.9752 1.0007 Ma 0.973 0.8323 1.2621 0.9981 1.2652 0.9992
Al 1.542 1.1892 1.2481 1.0035 1.2512 0.9940
Si 25.465 18.8616 1.1493 0.9912 1.1597 0.9999
Ca 6.149 3.1917 1.0088 1.0039 1.0048 1.0001
Total 100.000 100.0000 Normalization factor = 1.8564

Table D1-3. The Chemical Composition for EDS1

Mar 6 21:48 2005 /tmp/eds_pout.log Page 1

D1-26

Figure D1-36. Test #2, Day-16 counting spectrum for a particle on the fiberglass shown in Figure D1-34. (Lowflow-exterior~EDS2)

The results from the chemical composition analysis for Lowflow~exterior~EDS2 are given in Table D1-4.

Table D1-4. The Chemical Composition for EDS2

Mar 6 21:53 2005 /tmp/eds_pout.log Page 1

Group Sample Comment Condition	: NRC : T2D16 Low-f : Exterior fi : Full Scale Live Time Acc. Volt Stage Point Acg. Date	low ID# 1m on fi : 20KeV : 60.0 : 15.0 : X=52. : Sup M	: 2 berglass (10eV/ch 00 sec KV 133 Y=69 ar 6 21	1,2Kch) Aper Prob .884 Z	ture # e Curre: =12.467	: 3 nt : 2.0	003E-08 A
Element O K Na K Mg K Al K Si K Ca K	Mode RO Normal 0.2 Normal 0.8 Normal 1.0 Normal 1.2 Normal 1.5 Normal 3.4	I(KeV) 5- 0.77 3- 1.28 3- 1.52 6- 1.78 0- 2.07 0- 4.30	K-ratic 49.325 19.229 1.085 1.241 20.607 4.192	$p(%) + \frac{1}{57} 0.$ $p(%) + \frac{1}{59} 0.$	/- N 0025 0098 0010 0005 0018 0049	et/Backs 3469 / 4252 / 303 / 414 / 6865 / 739 /	ground / 20 / 22 / 308 / 240 / 48 / 10
		Ch	i_square	= 5.	6127		
Element Ma O 4 Na 1 Mg Al Si 2 Ca	ss%Atomic8.65760.9409.97417.4081.3701.1291.5681.1644.09117.1874.3402.169	<pre>% ZAF 3 0.9606 3 1.0115 2 1.2286 4 1.2300 5 1.1384 9 1.0081</pre>	Z 0.9936 0.9979 1.0005 1.0060 0.9937 1.0068	A 0.9668 1.0129 1.2288 1.2299 1.1458 1.0012	F 0.9999 1.0007 0.9993 0.9941 0.9999 1.0001		
Total 10 Normalizat:	0.000 100.000 ion factor =	1.0269					