Recent Changes and Results in Insertion Device Design

Toshi Tanabe

NSLS-II

NSLS-II Accelerator Systems Advisory Committee 2007/10/08-09

Outline

- 1) Various Review Recommendations and New ID Table
- 2) Permanent Magnet Damping / User Wiggler (ACD report)
- 3) Elliptically Polarized Undulator (EPU)
- 4) 3 Pole Wiggler (ACD report)
- 5) Magnetic Measurement Laboratory
- 6) Schedule and Budgetary Issues

Recommendations by Various Reviews

- Insertion Device Technical Review (Aug.20-21, 2007)
 - The construction of a dedicated ID laboratory seems essential.
 - The calculation of spectral flux in a finite aperture (primary slits for example) placed at some distance from the source must be performed for optimization
 - Separation (0.47m) between DWs with canting magnet might be too tight
 - It is probably important to investigate a "backup" solution in parallel to the CPMU R&D.
 - SCUs needs substantial R&D to become attractive.

• NSLS-II Comprehensive Design Review (Sep. 11-13,2007)

- The review committee supports the principle of variable (→movable) gap for damping wigglers.
- Implement an ID lab as soon as possible to start the R&D program.
- Clarify with the Experimental Facilities Division the ID specifications (period, gap, flux, energy range,..) taking into account the technical specifications of the beamlines (defining slits, power load,..).

NSLS-II IDs Planned as of 10/2007

	New						
Name	U20	U19	U45	U100	DW-1.8T	SCW	3 PW
Туре	IVU	CPMU	EPU	EPU	PMW	SCW	PMW
Photon energy range	Hard x-ray (1.9- 20keV)	Hard x-ray (1.5-20keV)	Soft x-ray (180eV- 7keV)	VUV (8eV- 4keV)	Broad band (<10eV- 100keV)	Very hard x-ray (<10eV- 200keV)	Broad band (<10eV- 100keV)
Type of straight section	5m	5m	8m	8m	8m	5m	near 2 nd Dipole
Period length (mm)	20	19	45	100	90	60	-
Total undulator length (m)	3.0	3.0	4.0	4.0	7.0	1.0	0.25
Number of periods	148	158	89	40	75	17	0.5
Magnetic gap (mm)	5	5	10	10	12.5	15	35 (32)
Peak magnetic field strength B (T)	1.03	1.21	0.68(Heli) 1.03 (Lin)	1.50	1.80	3.50	1.14
к	1.81 (eff)	2.03 (eff)	2.87 (eff) 4.67 (eff)	14.01	16.70(eff)	19.61	-
hv fundamental, eV	1832.8	1469.7	183.1	8.6			
hv critical, keV				11.8	21.0	2.4	6.8
Total power (kW)	8.02	11.18	12.09	25.64	64.40	34.89	0.34
G(K)	0.97785	0.9818	0.9959	0.9996	0.9997	0.9998	-
On-axis power density (kW/mrad ²)	62.33	77.86	40.03	26.33	55.30	25.60	0.28

DW-ACD by STI Optronics, Inc.

Note: ACD was carried out with 3.0m long, 80mm period length and 12.0mm magnetic gap, and cost estimate was done with the order of 7 devices.

- Wedged Pole + Side Magnet Design \rightarrow Straight Pole could be used for 90mm Device
 - Br=1.28T, Bpeak=1.867T
 - Integral of B2=0.150 T2.m (103% of ideal 1.8T sinusoidal field=0.146 T2.m)

ACD Findings

- Most of permendur poles are highly saturated even with wedged pole design
- Specified Hcj=20 kOe may be low → More expensive material such as NEOMAX 42AH (Br=1.28 [min], Hcj=24kOe [min]) maybe needed.
- Estimated attractive force is approximately 6.3 tons/m
- Deformation could be adjusted for the operating gap, but then care is needed for open position.
- With 7 device order, estimate cost of a device is <u>\$0.67M</u> (Magnetic Portion 65%)

EPU Design Choice

• After tracking study by J. Bengtsson, there appear to be only marginal improvement on DA for HiSOR design

 \rightarrow Apple-II will be working assumption

3PW (Gap=28mm) ACD by STI

- Findings:
 - Attractive force ~ 200 kg \rightarrow C frame suffices
 - Specified Hcj=20 kOe should be increased with Br=1.28T magnet
 - · Permendur is needed for center pole to achieve required performance
 - \$140K per device with an order of 15 devices

Elevation View

Room Temperature IVU

- Vacuum chamber selection
 - Cylinderical
 - Used by most of IVUs in the world
 - Magnetic arrays have to be inserted from the end
 - Measurement is done without chamber ightarrow
 - Square
 - 1m version works for MGU-X25 at NSLS
 - 4m version must be tested
 - Installation and measurement can be carried out without detaching main vacuum vessel.
- Transition area design
 - Taper angle and cooling capacity to be determined

Transition Area Design

• X25 Design \rightarrow short & no cooling

•SLS Design

Insertion Device Laboratory

- Class 10000 Temperature Controlled Semi-Clean Room for IVU Measurement
 - Metalic dust is very hard to remove after assembly.
 - Prevent bugs from entering hard-to-reach area.
 - 22 °C± 0.2 °C or tighter
 - Low vibration required by pulsed wire measurement
 - Cleanliness is also required for air-bearing stage in Hall probe bench
- Standard ID measurement setups
 - 6-7 m Hall probe bench
 - Stretched / pulsed wire system (3-4m)
 - Magnet characterization equipment (Helmholtz coil / small moving coil)
 - Hall probe calibration equipment

Schedule as of Oct.4, 2007

WBS and Scope of Work

WBS	Scope	\$(Unburdened)
1.02.01.03	Magnet Development Laboratory (preparation for insertion device magnet measurement facility)	\$3.3M
1.03.07.01 (DW)	PM wiggler mainly for the reduction of emittance, but also used as broadband user sources (2x 3.5m x3)	\$6.7M
1.03.07.02 (IVU)	In-Vacuum Undulators (3m x3) for hard X-rays.	\$6.2M
1.03.07.03 (EPU)	Elliptically Polarized Undulator (2x2m) for Soft X-ray polarization control.	\$3.7M
1.03.07.04 (3PW)	Three Pole Wiggler (15 devices) for NSLS-BM user needs.	\$0.2M (design only)
1.03.07.05	Certification of device performance (measurement and corrections)	\$0.37M
1.03.07.06	Installation	\$0.18M
1.03.07.07	Integrated Test without electron beam	\$0.08M
1.03.08.02	Insertion Device Magnet Measurement Facility	\$0.7M

ID-Group FTE Profiles

Category	2007	2008	2009	2010	2011
Scientist	1.3	2	3	4	4
Post Doc	0	1	2	1	0
Mechanical Engineer	0.5	1	2	2	2
Electrical Engineer	0.25	1	2	2	2
Mechanical Technician	0.25	1	1	1	2
Total	2.3	6	10	10	10

Summary

- Advanced Conceptual Design of <u>User / Damping Wiggler</u> has been accomplished.
 - Small available cross section may be a risk factor
 - Movable gap design has been chosen for various reasons
- Apple-II type <u>EPU</u> with the latest field correction schemes is being designed as another ACD.
- Optimum <u>IVU</u> design requires more studies such as impedance optimization for vacuum chamber and transitions
- ACD for <u>3PW</u> has been completed. However, production/installation will be paid for by the fund to move NSLS beamlines
- <u>ID magnetic measurement laboratory</u> with temperature controlled semi-clean room will be established
- Hiring competent staff is the most challenging task.

