Preliminary Design of Injector Complex

NSLS-II Accelerator Systems Advisory Committee

October 8th, 2007

T. Shaftan for NSLS-II team

Outline

- Introduction
- NSLS-II injection requirements
- Top-off
- Injection system overview
- Linac
- Booster
- Transport lines
- Cost
- Schedule
- Summary

Introduction

- CD-1: in-tunnel booster \rightarrow most economical solution
- Support from technical reviews
- Concerns expressed by Lehman review regarding booster-ring cross-talk and impact on installation schedule and troubleshooting
- Recommendation from Lehman review to develop injector with a "compact" booster
- Given short schedule: linac and booster are semi-turnkey procurements
- Transport lines and ring injection straight are by BNL
- Maximum energy for the injector is 3.1 GeV

Requirements for NSLS-II Injection

Ring Parameters Related to Injection

Parameter	Value
Energy, GeV	3
Circulating current, A	0.5
Circumference, m	792
Revolution period, µs	2.6
RF frequency, MHz (wavelength, m)	500(0.6)
Circulating charge, μ C	1.3
Total number of buckets	1320
Number of filled buckets	1320.4/5≈1080
Charge per bucket, nC	1.25
Lifetime, hours	3
Interval between top-up cycles, min	1
Current variation between top-up cycles, %	0.55%
Charge variation between top-up cycles, nC	7.3

Injection Scenario

- Many (~1000) bunches in the ring →
 → multi-bunch injection
 - ${\ensuremath{\,^{\circ}}}$ N_M bunches in the injected train
 - ${\mbox{ \bullet}}$ Filling ${\rm N}_{\rm M}$ consecutive buckets in the ring
 - Sequentially shift the injection timing
- 1 Hz repetition rate suffices with pulse train injection
- 1 minute between top-off cycles
- \bullet Kickers duration are 2 turns long (5.2 $\mu sec)$ or can be even longer
- Considered in ALS top-off (10 bunches)

Top-off formats and bunch patterns

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN SCIENCE ASSOCIATES

NSLS-II Injector Complex

Linac

- NSLS-II: 200 MeV, 15 nC/train, ~0.5% energy spread
- 100 MeV linac from THALES is in operations for SOLEIL
- Achieved parameters:
 - 10 nC/pulse in LPM
 - 0.5nC/pulse in SPM
- Close to NSLS-II requirements

	LP	M	SPM			
	Specified	Specified Measured Specified		Measured		
Pulses				1	4	
Pulse length (ns)	300	286	<2	1.3	1.3	
Energy (MeV)	>=100	108	>=100	110	110	
Charge/Pulse (nC)	8	9.3	0.5 and 2	0.52	2.15	
Emittance (mm.mrad)						
Horizontal (4βγσσ')	200	47	200	64	67	
Vertical (4βγσσ')	200	52	200	67	78	
Energy spread (%)	±1.5	±0.5	±1.5	±0.58	±0.82	

Booster Layout

• 200 MeV injection energy

Booster Lattice

- ASPb-like solution
- Cost-effective design
- Periodicity of 4
- Combined function FODO lattice
- B, K_1 , K_2 in dipoles
- Matching triplets (additional quad family for flexibility)
- Low dispersion in long straights
- Discrete sextupoles for eddycurrent compensation (+0.5 x, -1.4 y max at 1Hz)
- Preliminary design

Table name = TWISS

Booster parameters

Parameter	ASP booster	NSLS-II booster
Emittance, nm	34.4	26.6
Circumference, m	130.2	158.4
Revolution time, ns	434	528
RF frequency, MHz	499.654	499.68
RF voltage, MV	1.2	1.2
Harmonic number	217	264
X/Y tune	9.2/ 3.25	10.91/6.69
X/Y Chromaticity	-8.83/-11.5	-13.8/- 18.9
X/Y coupling	5%	
Corrected chromaticities	+0.83/+0.87	+1.7/+1.7
Momentum Compaction	0.0098	0.0072
Energy loss per turn, keV	743	625
X/Y/Z damping time, ms	2.7/3.5/2.0	5.4/5.1/2.5
Damped energy spread, %	0.094	0.078
Damped bunch length, mm	19	13.9

Flexibility of NSLS-II booster

Booster injection and extraction

•Considering booster injection system be able to allow stacking of the low-energy beam at the maximum linac repetition rate of 10 Hz.

•Calculations are in progress of attempting to stack two consecutive (separated by 0.1 seconds) bunch trains transversely in the booster by injecting them with ½ of the nominal kicker strength.

•Combination of DC strong septum and pulsed weak kicker is preferable and will be explored for both injection and extraction

Part Count / Magnetic element properties

Parameter	ASP	NSLS-II	Parameter	ASP	NSLS-II
Number, BF/BD	28/32	28/32	Number,	8/8	8/8/8
Length, BF/BD	1.35/1.15 m	1.35/1.4 m	QF/QD/QG		
Angle, BF/BD	3.43/8.25°	3.43/8.25°	Length,	0.25/	0.45/0.15/
Injection energy	100 MeV	200 MeV	QF/QD/QG	0.15 m	0.15 m
Field, BF/BD (inj)	0.015/0.042 T	0.030/0.069 T	K1,	-0.0784/	0.123/0.058
Field, BF/BD (ext)	0.443/1.25 T	0.443/1.00 T	QF/QD/QG (inj)	0.0133 m ⁻²	/-0.0869 m ⁻²
Quadrupole K1, BF/BD (ext)	0.82595/-0.66977 m ⁻²	0. 0.82800/-0.63831 m ⁻²	K1,	-2.351/	1.84/0.871
Sextupole K2, BF/BD (ext)	3.54/-4.925 m ⁻³	4.10/-5.65 m ⁻³	QF/QD/QG (ext)	0.400 m ⁻²	/-1.30 m ⁻²

Parameter	ASP	NSLS-II
Number, SF/SD	8/8	8/8
Length, SF/SD	0.2/0.2 m	0.15/0.15 m
K2, SF/SD (ext)	50/-30 m ⁻³	40/-40 m ⁻³

Thanks to S. Mikhailov (Duke Univ.)

Orbit correction and tolerances

Tolerances

- Dipole length0.1%Dipole field0.1%Dipole \parallel displ.1mmDipole $^{\perp}$ displ.0.1mmDipole roll0.5mradQuad $^{\perp}$ displ.0.2mm
- Quad gradient
- 0.02%

Corrector maximum angles <1mrad

Diagnostics and Instrumentation for Booster

- Measured parameters Value Accuracy 30 mA 0.1% Current Fill pattern 40-150 bun. 1% • Closed orbit 0.01 mm • Beta-functions <30 m Dispersion <35 cm • X/Y Tunes 10.9/6.7 0.01 • X geom. emittance ~30 nm·rad 10% • X/Y chromaticities -13.8/-18.9 0.3 • <10% 1% Coupling • Bunch length 16 ps RMS 2 ps• Synchrotron Frequency ~20 kHz 1 kHz
- Continuously monitored beam parameters:
 - Current
 - X/Y Tunes
 - Orbit
 - Beam shape

- Comments:
- Booster is a turnkey procurement; diagnostics to be supplied by vendor according to our requirement
- Libera BPM receivers are functional at two revolution frequencies therefore the same modules suitable for both ring and booster

Accelerator Systems Advisory Committee, October 8th 2007

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

- Diagnostics:
 - 20 X-Y BPMs
 - 1 DCCT
 - 2 striplines
 - 6 Fluorescent Screens
 - Fast Current Transformer
 - Synchrotron Light Monitor
 - Tune Measurement System
 - Bunch cleaner

Layout of LB TL

Diagnostics:

• Gun: 3 Wall Current Monitors

Linac

- 4 Fluorescent Screens 2 Current Transformers
- Linac to Booster Transfer Line
 - 5 Fluorescent Screens
 - Integrating Current Transformer
 - 3 Four-Button pick-ups

- E =200 MeV
- Q =15 nC
- $\varepsilon_n = 50 \text{ mm mrad}$
- σ_γ/γ= 0.5%
- N_b=40-150 bunches
- LB TL will allow fast linac commissioning

Layout of BSR TL

Storage ring injection straight

Injector cost

Activity	Labor, hr	Bare Cost, M\$
Linac	4087	9.963
Booster	16139	17.23
L-B TL	7163	1.345
B-SR TL	9796	1.808
Injector utilities	5015	0.871
Injector installation	16644	1.107
Injector testing	9308	0.731
Injector commissioning	9659	0.743
Total:	44.62 FTE	33.754

Large procurements: Linac (~9M\$) and Booster (~15M\$)

Schedule

Accelerator Systems Advisory Committee, October 8th 2007

22

Summary

- NSLS-II full energy injector will support top-off operations in presence of short beam lifetime
- Multi-bunch injection with high charge per bunch train
- Linac and booster are semi-turnkey procurements
- NSLS-II booster is based on existing ASP design with some modifications
- We choose low-emittance cost-effective solution for NSLS-II booster
- We developed design of injection straight and transport lines
- Injector cost and schedule are developed
- Preliminary level of design

Acknowledgements

J. Rose, I. Pinayev, R. Heese, S. Ozaki, F. Willeke, W. Guo, B. Nash, J. Bengtsson, E. Johnson, R. Meier, S. Sharma, D. Hseuh, N. Tsoupas, G. Ganetis, H. Nishimura, D. Robin, T. Shaftan, J. Skaritka, R. Grubb, J. O'Connor, C. Lavelle, T. Mennona

Back-up

Accelerator Systems Advisory Committee, October 8th 2007

25

Previous ASAC comments

Injection System with a Booster in Separate Tunnel (T. Shaftan)

- The committee is pleased with the injection tracking studies and recommends their continuation, including all insertion device effects and lattice errors.
- From experience elsewhere, the committee is not fully convinced that the present high beta straight for injection is long enough to accommodate injection equipment, and in particular is fully compatible with state of the art top-up requirements. In order to assess the adequacy of available space, an engineering layout of the injection straight of the storage ring should be generated. It is the feeling of the committee that a longer straight for injection could easily be accommodated in the lattice (see comments above).
- A possible operation at a 3.6 GeV energy was mentioned several times and the committee recalls that if NSLS-II intends to run at this energy, it should be included in the specifications of all systems such as magnets, absorbers, RF, Booster, and injection/extraction systems.
- The committee recommends a horizontally movable septum magnet at the ring injection point in order to ease commissioning through a near on-axis injection configuration as well as to optimize the kicker currents in relation to the final horizontal aperture.
- The Australian Light Source booster lattice design which is used as a reference design for the proposed booster lattice presents the drawback of limited flexibility in the tunes. The committee recommends the investigation of solutions which increase the accessible tune range.
- The proposed lattice for the booster synchrotron is pretty tight and the committee ask for an engineering layout in order to check that there is enough space for the correctors, diagnostics, vacuum pumps, etc. The committee recommends that the space required and the positioning of injection and extraction magnets inside the booster lattice be investigated (in particular the impact of the high value of the dispersion function in the injection and extraction straights has to be evaluated as well as the low beta values).
- The committee notes that there is no definite requirement yet for hybrid filling modes, but nevertheless recommends including this capability from the outset, since a need is almost certain to arise in the future.
- Regarding the issue of whether or not to use a single power supply for all storage ring injection kicker magnets, the
 committee believes that there will inevitably be differences from kicker to kicker (due to mechanical tolerances, thickness of
 ceramic coating, etc.). So the committee recommends that individual power supplies be used in order to optimize the bump
 closure and hence minimize the disturbance of the stored beam, in view of top-up operation.

Multi-bunch Injection

- Short lifetime \rightarrow multi-bunch mode
- SLS experience: feedback for enhancement of the bunch pattern purity
- "Hunt&Peck" mode: is it necessary for • NSLS-II?
- Studies at ALS on pattern evolution

"Hunt & Peck": Adjusting Average Value

- Measure charge in the ring buckets
- Every top-off cycle adjust gun grid voltage \rightarrow adjust charge per bunch
- Inject macropulse (N bunches) with average charge equal to missing charge in N-bunches in the ring
- Eliminates all bunch-bunch variations on $N_{\rm b}{>}N_{\rm MICRO}$ scale
- Can be done is "sequential" or "hunt & peck" modes
- Reducing harmonics of SR bunch pattern: requires R&D

BROOKHAVEN SCIENCE ASSOCIATES

"Hunt & Peck": Fast modulation of macropulse

- Measure charge in the ring buckets
- Modulate gun voltage (laser intensity) with inverse of the charge/bunch in the pattern
- or
- Stack bunches in the booster via multiple injections
- Inject "premodulated" macropulse into the ring

Accelerator Systems Advisory Committee, October 8th 2007

29

Alternative version by H. Nishimura (ALS)

- Betatron Tunes X/Y = 9.26706/ 4.19942
- Momentum Compaction = 7.51991E-003
- Chromaticity H = -11.46993
 V = -7.17248
- Radiation Loss = 8.33737E+002 [keV]
- Natural Energy Spread = 1.45518E-003
- Natural Emittance = 1.61981E-008
- Radiation Damping H = 1.67192 [msec]
 - $V = 3.80238 \,[msec]$
 - $E = 5.23937 \,[msec]$
- Periodicity of 2 (racetrack)
- Combined function FODO lattice
- B, K₁ in dipoles
- 2 s_x, 2 s_y sextupoles per cell
- Booster Dynamic Aperture gives about ±30 mm in both planes (in middle of straight)
- Needs more realistic chromaticity correction
- Preliminary design

BROOKHAVEN SCIENCE ASSOCIATES

DA and Emittance scan

- Maximum of DA is ± 10 mm in both planes
- Emittance of 26 to 100 nm rad within tune footprint
- Broad range of optics solutions

Diagnostics in Linac & Linac-to-Booster Transport Line

 Measured pa 	arameters Value	Accuracy	•	Diagnostics:
(at Linac exit	:):	, ,	•	Gun:
Charge	15 nC	0.2%		3 Wall Current Monitors or Fast
 Fill pattern 	ו		_	
 Energy 	<270 MeV	V 0.5%	•	Linac
 Energy sp 	read <0.5% R	MS 0.05%		 4 Fluorescent Screens
Beam pos	sitions	0.1 mm		 2 Integrating Current Transformers
Beam size	es ~2 mm	0.1 mm	•	Linac to Booster Transfer Line
Norm. em	ittances ~50 mm·i	mrad 5%		 5 Fluorescent Screens
Continuously	/ monitored beam para	ameters:		 Integrating Current Transformer
Charge				• 3 Four-Button Pick-ups with Libera
• Energy				BPIM receivers
Beam pos	sitions			

• Bunch train pattern

Comments:

Linac is a turnkey procurement; diagnostics to be supplied by vendor according to our requirement; transport line we are developing ourselves

Diagnostics suite must enable early commissioning of Linac and demonstration beam parameters required for lossless injection into Booster

Charge monitoring will be used for interlocks

Diagnostics in Booster-to-Storage Ring Transport Line

 (at Booster exit): Charge 10 nC 0.2% Fill pattern Energy GeV Geom, emittances Geom, emittances Continuously monitored beam parameters: Charge Energy Beam profile and position Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	Measured parameters	Value	Accuracy	• Diagnostics:				
 Charge Fill pattern Energy Gev Gev<td>(at Booster exit):</td><td>10 - 0</td><td>0.00/</td><td>6 Fluorescent Screens</td>	(at Booster exit):	10 - 0	0.00/	6 Fluorescent Screens				
 Energy 3 GeV 0.5% Energy spread <0.1% RMS 0.05% Beam positions 0.1 mm Beam sizes <1 mm 0.1 mm Geom. emittances -30 nm-rad 5% Continuously monitored beam parameters: Charge Energy Beam profile and position Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	 Charge Fill pattern 	IUNC	0.2%	Integrating Current Transformer				
 Energy spread 8 (0.1% RMS 0.05%) 8 (0.1 mm) 8 (0.1 mm) 8 (0.1 mm) 9 (0.	• Energy	3 GeV	0.5%	 6 Four-Button Pick-ups with Libera receivers 				
 Beam sizes <1 mm 0.1 mm Geom. emittances ~30 nm·rad 5% Continuously monitored beam parameters: Charge Energy Beam profile and position Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	 Energy spread Beam positions 	<0.1% RMS	0.05% 0.1 mm	 Two cameras with external trigger capability 				
 Geom. emittances ~30 nm·rad 5% Continuously monitored beam parameters: Charge Energy Beam profile and position Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	Beam sizes	<1 mm	0.1 mm	ingger capability				
 Continuously monitored beam parameters: Charge Energy Beam profile and position Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	Geom. emittances	~30 nm·rad	5%					
 Charge Energy Beam profile and position Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	Continuously monitore	ed beam parameters:						
 Energy Beam profile and position Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	Charge							
 Beam profile and position Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	• Energy							
 Bunch train pattern Comments: Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	Beam profile and po	sition						
 Transport Line we are developing ourselves Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 	Bunch train pattern	Comments:						
 Diagnostics suite must enable early commissioning of Booster and demonstration of beam parameters required for lossless injection into Storage Ring Charge monitoring will be used for interlocks 		Transport Line we	ırselves					
Charge monitoring will be used for interlocks		Diagnostics suite must enable early commissioning of Booster and demonstrat of beam parameters required for lossless injection into Storage Ring						
		Charge monitorii	ng will be used for i	nterlocks				

Injector Service Area

Activity Name	Original	Finis	h 1007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	Duration			FY08	FY09	FY10	FY11	FY12	FY13	FY14	FY15	
Built-In Days for Funding Profile - Booster	389	21-Apr-09	ct-07		Built-In Days 1	for Funding Profile -	Booster					
Booster Ring - Preliminary Design/Specification	83	19-Aug-09			22-Apr-09 Boost	er Ring - Preliminary	/ Design/Specification		R	nnst	ρr	
Booster Ring - Prepare Solicitation	42	19-Oct-09			20-Aug-09-	poster Ring - Prepar	e Solicitation		U	0031		
Booster Ring - Vendor Selection	90	03-Mar-10			20-Oct-09	Booster Ring	- Vendor Selection		C			
Booster Ring - Award Contract	0	03-Mar-10			03-Mar-10), <table-cell-rows> Booster Ring</table-cell-rows>	- Award Contract		30	.neo	ule	
Booster Ring - Detail Design Vendor	292	29-Apr-11			04-Mar-	10	Booste	r Ring - Detail Design Ve	ndor			
Booster Ring - Detail Design Support	292	29-Apr-11			04-Mar-	10-	-Booste	r Ring - Detail Design Su	pport			
Booster Ring - Design Finished	0	29-Apr-11				29	9-Apr-11, 📥 Booste	r Ring - Design Finished				
Booster Ring - Vendor Manufacturing Leadtime	146	01-Dec-11				0	02-May-11	Booster Ring - Ve	ndor Manufacturing Lead	time		
Booster Ring - Manufacturing Support	146	01-Dec-11				0)2-May-11	Booster Ring - Ma	nufacturing Support			
Booster Ring - 1st Design/Contract Review	5	24-Mar-10			18-Mar	10 Booster Rin	g - 1st Design/Contra	ct Review				
Booster Ring - 2nd Design/Contract Review	5	29-Jun-10			2	3-Jun 10 Boos	ter Ring - 2nd Des gn/	Contract Review				
Booster Ring - 3rd Design/Contract Review	5	03-Nov-10				28-Oct-10	Booster Ring - Brd	Design/Contract Review				
Booster Ring - 4th Design/Contract Review	5	13-May-11				(09-May-11	er Ring - 4 <mark>1</mark> h Design/Cont	ract Review			
Booster Ring - Final Design/Contract Review	5	13-Sep-11					07-Sep-11	Booster Ring - Final De	sign/Contract Review			
Booster Ring - Vendor Delivery	83	17-Jan-12					14-Sep-11	-Booster Ring -	Vendor Delivery			
Booster Vendor Leadtime - Built-In Float	120	06-Jul-12					18-Ja	an-12 - Boo	ster ∨endor Leadtime - B	uilt-In Float		
Booster Ring - is Delivered to BNL	0	06-Jul-12						06-Jul 12, ┿ Boo	ster Ring - is Delivered to	BNL		
Booster Installation - Start Milestone	0							09-Jul-12 😽 Boo	ster Installation - Start M	ilestone		
Booster - Installation	111	14-Dec-12						09-Juli-12	Booster - Installation	on		
Booster Installation - Built-In Float	21	17-Jan-13						17-Dec-	12 🔄 Booster Installat	ion - Built-In Float		
Booster - Integrated Testing	84	17-May-13						18-Jar	n-13 Booster	- Integrated Testing		
Booster - Ready for Commissioning	0	17-May-13							17-May-13, 😁 Booster	- Ready for Commissioning		
Booster Ring - Commissioning	88	24-Sep-13							20-May-13	Booster Ring - Commissior	ing	
Booster Commissioning - Built-In Float	21	24-Oct-13							25-Sep-13	Booster Commissioning	Built-In Float	
Storage Ring Beam Commissioning - Start	0								25-Oct-13	Storage Ring Beam Com	missioning - Start	
Storage Ring w/o ID - Commissioning	86	03-Mar-14							25-Oct-13	Storage Ring w/	DID - Commissioning	
IVU - Installation	20	31-Mar-14							04N	lar-14	n	
IVU - Integrated Test	10	14-Apr-14							01	-Apr-14 IVU - Integrati	ed Test	
Storage Ring w/ ID IVU - Commissioning	50	24-Jun-14							1	5-Apr-14	Ring w/ ID IVU - Commissi	oning
Storage Ring Commissioning - Complete	0	24-Jun-14								24-Jun-14, 📥 Storage I	Ring Commissioning - Con	nplete
Early Project Completion	0	24-Jun-14								24-Jun-14, 📥 Early Pro	ject Completion	
NSLS-II Project - Built-In Float	250	25-Jun-15								25-Jun 14	NSLS-II Pro	ject - Built-In Float
CD-4b Approve Start of Operations	0	25-Jun-15*								25	-Jun-15*, 🛶 CD-4b App	ove Start of Operation