Impedance calculations

NSLS-II Accelerator Systems Advisory Committee October 8-9, 2007

Alexei Blednykh

Outline

- Introduction
- Impedance Model and Instability Thresholds
- Impedance Calculations with GdfidL
- Infrared (IR) extraction chamber
- In-Vacuum Undulator
- CESR-B RF straight section
- Concluding Remarks

Introduction

- NSLS-II cluster (24nodes, 2CPU's and 8GB RAM each) was created for impedance and beam dynamic analysis.
- 3D GdfidL code for electromagnetic field computation
 - The conventional algorithm requires a lot of computer resources to compute complex geometries for short bunch length.
 - A new window wake algorithm implemented in GdfidL allows computations of the short-range wakepotential for $\sigma \leq 0.3$ mm for most of the components with present computer resources
- We use simplified geometries to verify computed data with analytical results before computing complex geometries (far-IR chamber, RF assembly, In-Vacuum Undulator)
- Preliminary impedance budget contains loss factors and kick factors for a $\sigma_s\text{=}3\text{mm}$ Gaussian bunch.
- In the future we plan to calculate pseudo Greens function using 0.3 mm bunch. Results will be used with particle tracking codes to analyze instability thresholds.

NSLS-II Alexei Blednykh

NSLS-II Current

N=number of electrons in single bunch (7.8x10⁹) Ne =Bunch Charge (1.25 nC) M=number of bunches (1056)

Single Bunch Current
$$I_0 = \frac{Ne}{T_0}$$
 (.5 mA)

Peak Bunch Current
$$I_p = \frac{Ne}{\sqrt{2\pi}\sigma_t}$$

(33 A for σ_t -15 ps) ignoring bunch lengthening

Average Current
$$I_{av} = \frac{M N e}{T_0}$$

(500mA)

Comparison Between NSLS-II, ESRF, APS

	NSLS-II	ESRF*	APS*
Energy (GeV)	3	6	7
Circumference (m)	792	844.4	1100
RF Frequency (MHz)	499.7	352.2	351.9
RF Voltage (MV)	3.9	9.0	9.5
Mom. Compaction (x10 ⁻⁴)	3.7	1.86	2.9
Synchrotron Tune	.0096	.006	.007
Horiz. Emittance (nm)	0.5	3	3
Coupling (%)	1	0.5	1
Chromaticity x/y	5/5 ?	5.5/5.8	5/7
Rad. Damp. Time x/s (ms)	12/6	7/3.5	9.5/4.7
RMS Energy Spread (%)	0.1	0.1	0.1
RMS Bunch Duration (ps)	15	14	24

*K. Harkay et al, Proc. EPAC2002, "A preliminary comparison of beam Instabilities among ESRF, APS and SPRING-8"

NSLS-II Alexei Blednykh

Initial Impedance Model

CESR-B cavity higher-order modes $\beta_x = 18m, \beta_y = 3m, \eta = 0$

720m of aluminum chamber with half-gap of 12.5mm and $\beta_{y,av}$ =7.6m

$$\kappa_{\parallel} = 4.0V / pC$$
 $\kappa_y = 0.68 KV / pC / m$

60m of copper surface with half-gap of 2.5mm and $\beta_{y,av}=2m$ $\kappa_{\parallel}=1.3V/pC$ $\kappa_{v}=5.6KV/pC/m$

Transverse broad-band impedance with $f_r = 30GHz$, $R_y = 1M \Omega/m$, $Q_y = 1$, $\beta_{y,av} = 7.6m$ $\kappa_y = 19 \, KV / pC / m$

Longitudinal broad-band impedance with $f_r = 30GHz$, $R_s = 30k\Omega$, $Q_s = 1$ $(\text{Im}Z_{\parallel}/n)_0 = 0.4\Omega$ $\kappa_{\parallel} = 35V/pC$

- Based on this approximate model our estimates indicate that NSLS-II goals of 0.5mA per bunch and 500mA average current are achievable.
- Base line design includes transverse feedback system

Detailed Calculated Impedance

Object	Number of occurrences	К _{loss} V/pC	(ImZ /n)₀ Ω	К _х V/pC/m	<i>К</i> _у V/pC/m
Absorber	180	3.4x10 ⁻³	9.2x10 ⁻⁶	0.5	0.002
Bellows ¹	180	8.7x10 ⁻³	124x10 ⁻⁶	0.8	2
BPM	200	20x10 ⁻³ (Σκ=4)	47x10 ⁻⁶	0.9	1.1
Cavity transitions/straight	2	3.5 (Σκ=7)	14x10 ⁻³	25.4	57
500MHz CESR-B cavity	4	0.31	40x10 -3	0.17	0.17
1500 MHz CESR-B cavity	4	0.52	13.4x10 ⁻³	2.6	2.6
Dipole Chamber	60	3.3x10 ⁻⁵	0.7x10 ⁻⁷	4.5x10 ⁻³	0
Multipole Chamber	90	0.5x10 ⁻⁵	0.1x10 ⁻⁷	0.7x10 ⁻³	0
Flange ¹	300	0.47x10 ⁻³	16x10 ⁻⁶	0.141	0.141
Injection Region	1	TBD	TBD	TBD	TBD
SCU chamber geometric	TBD	22.6x10 ⁻³	0.6x10 ⁻³	61	257
SCU chamber ease* (2.5m)	TBD	5.6x 10 ⁻³		13	26
IR chamber SM	4	0.84	2.1x10 ⁻³	11.4	22.6
IVU geometric	TBD	95x10 ⁻³	1.1x10 ⁻³	136	425
IVU resistive wall (3.5m)	TBD	66x10 ⁻³		112	225
720m AI resistive wall	1	4.0		272	545
Scraper (Horizontal)	2	0.22	1.4x10 ⁻³	22	2
Scraper (Vertical)	2	TBD	TBD	TBD	TBD

SM – simplified model

Alexei Blednykh

Infrared (IR) extraction chamber

A possible variant of IR chamber for NSLS-II

Simplified model of IR-extraction chamber

Estimate of short-range wakepotential

a) a_1 b_1 b) b_1 b_1 b_1 b_1 b_2 b_1 b_2 b_2 b_1 b_2	narrow slo	c) c) tr	rapezoid	
ω_{0}	$\sigma_0 = 2\pi \times 384.6 \text{ kHz}$ $\sigma_s = 3 \text{mm}$			3mm
	(ImZ /n) ₀ , Ω	κ _{loss} , V/pC	κ _x , V/pC/m	κ _y , V/pC/m
Tapered structure	1.8x10 ⁻³	0.83	11.1	22.6
Tapered str. + 10mm narrow slot	1.8x10 ⁻³	0.83	11.1	22.3
Tapered str. + 10mm narrow slot + trapezoid	2.1x10 ⁻³	0.84	11.4	22.6

We thank D. Robin and F. Sannibale for discussion of the results of impedance studies for the IR-extraction chambers for CIRCE*

Office of Science **NSLS-II** Alexei Blednykh *J.M Byrd at el., "CIRCE: a dedicated storage ring for coherent THz synchrotron radiation", Infrared Physics & Technology, 45, 2004.

In-vacuum undulator (NSLS X-Ray ring)

NSLS-II Alexei Blednykh

GdfidL model of the in-vacuum undulator

- Short-range wakepotential is predominantly determined by the tapers
- Field strength of modes depends on taper angle
- Long-range wakepotential depends on the cross-sectional geometry of the vacuum enclosure and the length of the magnet
- Resonant modes have been observed experimentally (microwave measurements) in the Prototype Small-Gap Undulator in 1995 by Peter Stefan using pick-up electrodes. It is a similar geometry to current IVU
- X-25 IVU in NSLS X-Ray (1 m long) can be used for experimental studies (with beam, microwave measurements)

	V/pC	V/pC/m	V/pC/m
SCU chamber geometric	22.6x10 ⁻³	61	257
IVU geometric	95x10 ⁻³	136	425
IVU resistive wall (3.5m)	66x10 ⁻³	112	225
720m Al resistive wall	4.0	272	545

Impedance of RF Straight

Concluding Remarks

- A detailed calculated impedance including the most important components has been generated using GdfidL code. It will be evaluated and renewed with ongoing changes in components.
- Based on an initial impedance model and the detailed calculated impedance data the NSLS-II goal of 0.5mA per bunch and 500mA average current are achievable.
- The presented design of the far-IR extraction chamber eliminated the problem of resonant modes due to the mirror. Additional short-range wakepotential computations are required.
- In-vacuum undulator geometry needs to be further investigated. Impedance analysis has been performed for a magnet length of 500mm (the real length of the IVU is 3m)
- In the future we plan to calculate effective Green's functions to use in tracking codes to study single-bunch as well as coupled bunch instabilities.

Acknowledgements

S. Krinsky, B. Nash, V. Ravindranath, W. Bruns, L. Carr, S. Coburn, J. Rose

