CD2-SR LATTICE OPTIMIZATION

NSLS-II Accelerator Systems Advisory Committee

October 8-9, 2007

Stephen Kramer

for the NSLS-II Design Team

Outline of talk

- Sufficient linear and nonlinear lattice design control
- Overview of lattice changes CDR \rightarrow CD2
- Proposed CD2 lattice
- CD2 Lattice tuneability range
- Large Positive Linear Chromaticity option
- Summary and Further Work

Linear Lattice Tuneability

Varying Quad Strengths only (no lengths) for Number of Constraints

- 1. Symmetry at Center of Cell (Alpha X,Y)- 2
- 2. Symmetry at SID center (Alpha X,Y) & (Beta X,Y) 4
- **3.** Beta's in LID (Beta X,Y), alpha's come naturally periodic 2
- 4. Tunes per cell or ring- 2
- 5. Dispersion and Slope in either ID 2
- 6. Emittance –2 constraints at dipole (BetaX and AlphaX) _ _ 2

Total constraints = 14

Determine the finite difference response (tuning) matrix, solve with SVD

Sufficient Linear Tuneability

For quadrupole tuning

•Conclusion:

Two quadrupole families from CDR lattice have reduced sensitivity for the linear lattice constraints for a given lattice solution, adding trim Quad doesn't increase tuneability.

Optimizing the Chromaticity Tuning

Biggest change CDR→CD2, space for TPW added 0.4m to QD position increasing η_x and β_x at QD, increases η_x ' and $\alpha_{y,}$, peak $\eta_x = 0.45 \rightarrow 0.49$ m

Normalized Dispersion Amplitude, *H*_o invariant between dipoles

$$H_o = \frac{(\eta_x^2 + (\beta_x \eta_x' + \alpha_x \eta_x)^2)}{\beta_x}$$

At SF $\alpha_x = \eta_x'=0$, therefore $H_o = (\eta_x)^2/\beta_x$, or $\beta_x \sim (\eta_x)^2$

Increased η_x could reduce sextupole strengths but increased β_x will enhance nonlinear drive terms faster > $\beta^{3/2}$

Small $\eta_x \& \beta_x$ means weak QD and less separation $\beta_{x,} \beta_y$ at SF and SD which will increase chromatic sextupole strengths

Peak Dispersion Scan

CDR lattice had weak SD1,since SD2 has better $\xi_x^{<2>}$. If SD1 is removed, QD can be shifted to reduce the TPW caused increase of η_x

Fix tunes and scan peak $\eta_x \sim 0.44$ to 0.49m for linear lattice constraints and reduced sextupole strength (improved beta function separation at SF& SD2)

Optimum peak $\eta_x \sim 0.46$ m with peak $\beta_x \sim 29$ m versus 27 m in CDR

Working Point Selection

 $1/\sin(\pi Q) < 1.4$ for COAF, $Q_y < 0.5$ for Head-Tail, $Q_y < Q_x$ for reduced coupling and increased momentum aperture from tune shifts

$CDR \rightarrow CD2 LATTICE CHANGES$

Reduction in Number of Elements
Ouadruplets in ID straight sections replaced by Triplets:

Quadruplets in ID straight sections replaced by Triplets:-2 Quads per cellChromatic sextupoles reduced 3 to 2 families-2 Sextupole/ cellShort Straight Section one less geometric sextupole lower β_x -1 Sextupole/ cellNet per cell:10-Quads (8 families), 10-Sext (9 families) CDR:12-Q(10), 13-S(11)

Add Length to ID straight sections

Vacuum Group better defined transition section to undulators/wigglers Short ID drift length 5 \rightarrow 6.6m and Long ID 8 \rightarrow 9.3m, allow IDs 5 and 7m Circumference increased for improved harmonic number for RF system

• Add Three Pole Wigglers in dispersion region

TPW active length 20cm with 2mradian central bend > 1T plus 20cm free space Impact on emittance $\Delta \varepsilon_x \sim 0.18$ to 0.2nm for 15(60) - TPWs

15* (9.3m LIDs + 6.6m SIDs + 4 *0.40m(0.20m) TPWs)= 262.5m 33.1% Circumference= 791.96m (25% CDR 780.3m)

CD2 Lattice Functions one Cell

CD2 QUAD Closed Orbit Amp. Factor

Stronger Quadrupole Focusing and Higher Beta functions yields $COAFs(X,Y) = (56,52) \rightarrow (55, 57)$ Increased in SID Y 12 \rightarrow 16

U.S. DEPARTMENT OF ENERGY

CD2 Magnet Alignment Tolerances

- Quadrupole and Sextupoles have centers measured to a resolution of 10 and 15 µm with vibrating wire technique
- Allow 2X for resolution, alignment Tolerance \leq 30µm on girder
- Girder alignment Tolerance in tunnel <100µm (as achieved elsewhere) girder amplification factors (9.4,4.3) in SID are ~3 to 4X less than COAF
- Beam based alignment of Quads at ends of girders to 10µm reduces correlated error and random alignment errors impact at lower level

U.S. DEPARTMENT OF ENERGY

RMS(COD) for 100 seeds with girder alignment $\Delta X, \Delta Y=10 \mu m$ random at both ends

DA and Diffusion Map CD2

Using 9/9 sextupole families $\beta_x = 20.3 \text{ m}$ $\beta_y = 3.07 \text{ m}$ $\xi_x = +2$ $\xi_y = +1$

DA for Corrected Alignment Errors

Tune Shift with Amplitude Controlled

- 2 Chromatic plus
- 7 Geometric Sextupoles

Gives adequate control but improvement in $dQ_{v/}dJ_v$ being studied

Dynamic Momentum dP/P > 3%

Lattice Tuneability for Nonlinear Optimization

Period Tune Scan \odot \odot 1.11L \diamond \odot \Diamond \odot \odot 1.10 \Diamond \Diamond \odot \Diamond 1.09 \odot \odot \odot \Diamond \odot \odot \odot $\boldsymbol{\gamma}_{\boldsymbol{V}}$ \Diamond \Diamond \odot \Diamond 1.08 \odot \Diamond \Diamond \odot \Diamond \Diamond \Diamond \odot 1.071 \odot \odot \odot \odot \odot 1.06l \odot 1.05L♦ \Diamond \diamond \diamond \Diamond \odot \diamond \odot \odot \odot 2,20 2,21 2,22 2,23 2,24 2,25 2.26 2.19

 $\begin{array}{l} & \Delta\nu(period) \sim 0.07 \mbox{ for } \underline{+}\mbox{0.5 ring tune can be} \\ & achieved with \mbox{ constraints on } \beta_y \mbox{ in IDs and } \epsilon_x \mbox{ but} \\ & gives \ \beta_x \ (\eta x \) \ changes \ in \ Long \ ID \ and \ SF, \ also \ ratio \\ & of \ beta \ functions \ at \ SD \ and \ SF. \end{array}$

Changes in Quad strength < 7% required

Increased Linear Chromaticity

DBA lattice has large high order (odd) chromaticity from achromatic tune A disadvantage for $\xi=0$, but advantage for $\xi > 0$. Example for $\xi_{x,y} = +5$, +4

Maintains DA and Momentum Apert.

Including Alignment Tolerances

Long & Short ID Layout

Grid size 1.0000 [m]

Two BPM per girder for BBA of girder, 6 per cell plus 2 user (high precision BPMs) IDs

Discrete H & V Corrector magnets 2/ girder, 6/cell; 4 fast over SS bellows and

2 slow over Aluminum chamber

Dispersion Straight Layout

Changes in Source Parameters

	Length Long ID	Long ID β _x , β _y	Length Short ID	Short ID β _x , β _y	TPW(0.2m)
	[m]	- x, - y	[m]	· · · · · · ·	Ρ _X ,, Ρ _y , Π _X
CD2	9.3 (7)	20,3.07	6.6 (5)	1.9 ,1.26	4.1, 19.1 , 0.168
CDR	8 (7)	18.1, 3.1	5 (3)	2.7, 0.95	NA
ϵ_x =0.5nm	Long ID	Long ID	Short ID	Short ID	TPW
ε _y = 8pm	$\sigma_{x}, \sigma_{x'}$	σ_y , $\sigma_{y'}$	σ_{x} , $\sigma_{x'}$	σ_{y} , $\sigma_{y'}$	σ_x , σ_y
	[um, urad]	[um, urad]	[um, urad]	[um, urad]	[um, um]
CD2	107.7,4.64	4.8,1.67	29.6,16.9	3.1,2.58	175,12.4
CDR	95.3,5.25	4.97,1.6	36.9,13.6	2.75,2.9	None

CD2 Lattice Parameters

Circumference [m]	791.958	Number of cells/SP	30 / 15
Energy [GeV]	3	RF Frequency [MHz]	499.68
Uo [KeV]	286.39	Dipole Bend radius [m]	25.02
(8- 7m DW)	(1320)	Dipole Field [T]	0.399
ϵ_x dipoles [nm]	2.017	Energy Spread [%]	0.051
(with 8- 7m DW) [nm]	(0.501)	(8- 7m DW) [%]	(0.102)
ε _y [pm]	8	Bunch length [ps]	10-20
Tunes Qx,Qy 33.36,16.28		Synchrotron frequency [KHz]	3.1
Chrom. ξ _x , ξ _y	-101,-41.2	$\alpha_{c}(1)$, $\alpha_{c}(1)$ (x 10 ⁻⁴)	3.63, -4.64
$\beta_{x_{y}}, \beta_{y}$ LID [m]	20.2,3.07	ID length total (active) [m]	9.3 (7)
SID [m]	1.9,1.26		6.6 (5)

* Changes from CDR in Red

Summary and Additional Work

- Reduction of No. Quads & Sexts in ID & dispersion sections
- Increased ID length for vacuum transitions and components
- Increased Circumference for RF matching and harmonic No.
- Added possibility for 15+ TPWs to provide sources for NSLS beam line migration
- Far IR beams from low field dipoles with increased gap, 4+
- Need further study of sextupole and nonlinear tuning
- Study in progress for field tolerances and IDs effects
- Canted IDs and Decker Distortions were studied to have minimum impact on damped ϵ_x , but more work to be done

