NSLS-II Project Update

Steve Dierker
Associate Laboratory Director for Light Sources
NSLS-II Project Director
Accelerator Systems Advisory Committee
October 8, 2007

Project Scope

Accelerator Systems

- Storage Ring (~ ½ mile in circumference)
- Linac and Booster Injection System

Conventional Facilities

- Improvements to Land
- Ring Building w/ Operations Center and service buildings (~ 326k gsf)
- Laboratory/Office Buildings (LOBs) to house beamline staff & users (~68k gsf)
- Reuse of existing NSLS office/lab space for NSLS-II staff
- Sustainable design (LEEDS certification)

Experimental Facilities

- Initial suite of 6 insertion device beamlines and instruments
- Capable of hosting at least 58 beamlines

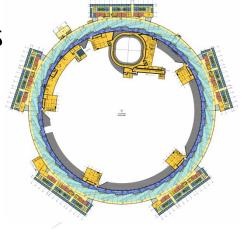
R&D

- Advanced optics for achieving 1 nm and 0.1 meV
- Nanopositioning

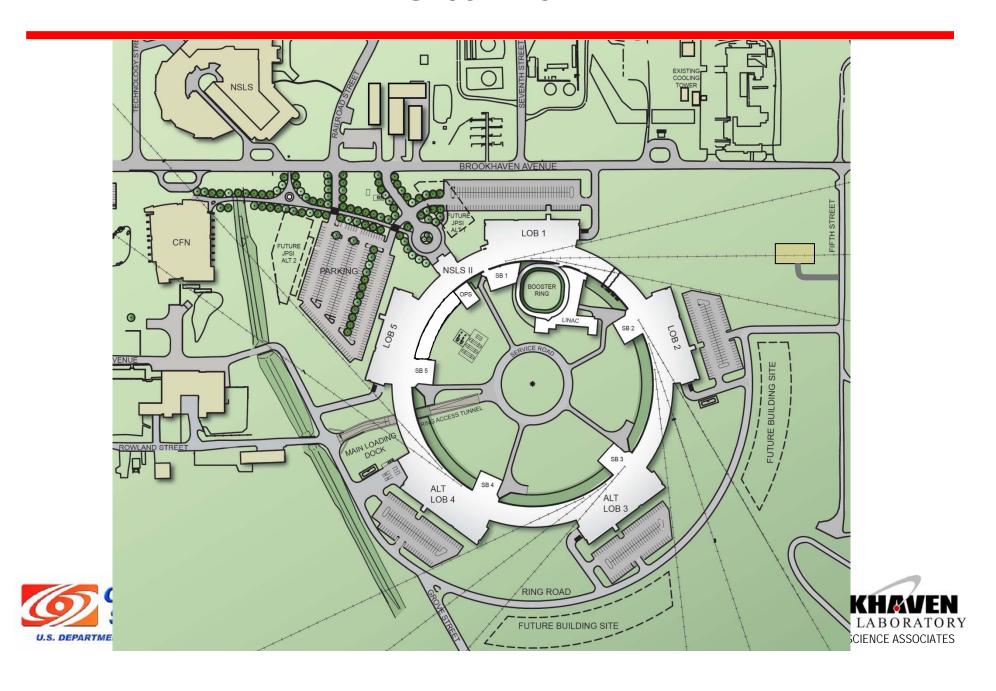
U.S. DEPARTMENT OF ENERGY

Advanced insertion devices

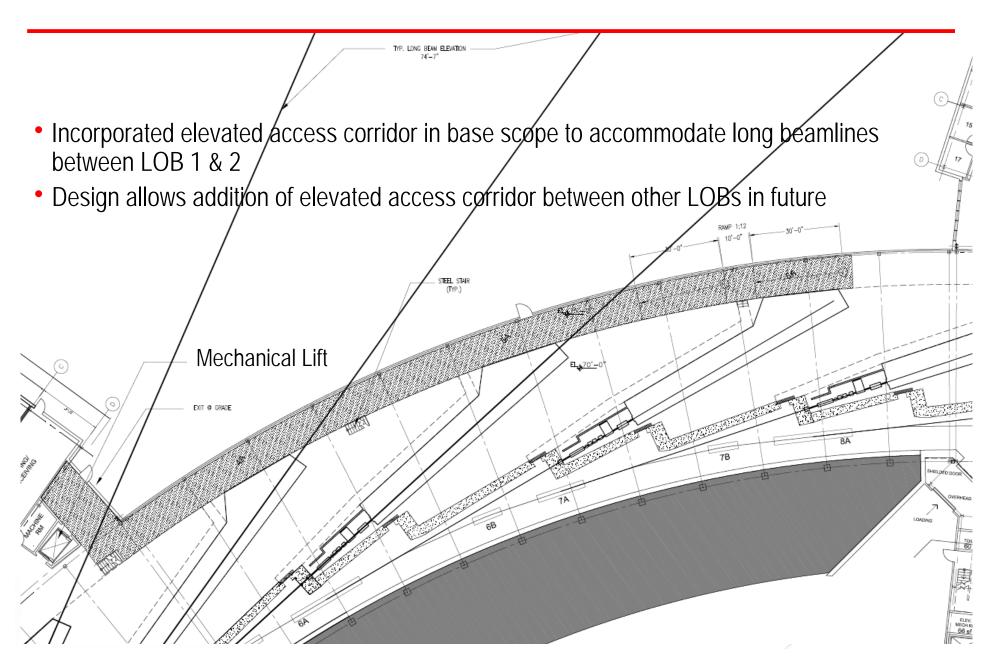
Storage Ring


- Very Broad Spectral coverage
 - Far-IR through very hard x-rays
- Very high Brightness from 10 eV to 20 keV
 - > 10^{21} p/s/0.1%/mm²/mrad² from ~ 2 keV to ~ 10 keV
- Very high Flux from 10 eV to 20 keV
 - > $5x10^{15}$ ph/s/0.1%bw from ~ 500 eV to ~ 10 keV
- Very small beam size
 - $\sigma_y = 2.6 \ \mu \text{m}$, $\sigma_x = 28 \ \mu \text{m}$
 - $\sigma'_{v} = 3.2 \, \mu \text{rad}, \, \sigma'_{x} = 19 \, \mu \text{rad}$
- Top-off Operation
 - Current stability better than 1%
- 27 straight sections available for insertion device beamlines
- 31 BM or Three Pole Wiggler ports available for beamlines

Design Parameters


- 3 GeV, 500 mÅ, top-off injection
- Circumference 791.5 m
- 30 cell, Double Bend Achromat
 - 15 long straights (8.6 m)
 - 15 short straights (6.6 m)
- Novel design features:
 - damping wigglers
 - soft bend magnets
 - three pole wigglers
 - large gap IR dipoles
- Ultra-low emittance

 - ε_{x} , ε_{y} = 0.5, 0.008 nm-rad Diffraction limited in vertical at 10 keV
- Pulse Length (rms) ~ 15 psec



Site Plan

Elevated Access Corridor

Some Activities Since Last ASAC Meeting

 Finalized Lattice Design & Footprint 	May 4
• SC Mini-Review	May 22
 Project Advisory Committee (PAC) 	May 24-25
 Kick off cost estimate for CD-2 	June
• CD-1 ESAAB	June 13
 CD-1 Approval 	July 12
 Held User Workshop 	July 17-18
 WBS Level 2 Cost Estimate Meetings 	July/August
 Internal Cost and Schedule Review 	Aug 30
 Held seven Accelerator Technical Design Reviews 	Aug/Sep
 Storage Ring Magnets, Vacuum Systems, Front Ends Instrumentation and Diagnostics Control Systems Accelerator Physics 	
 Insertion Devices Power Supplies Interlock Systems 	
 Conventional Facilities 90% Title I Submission 	Sep 7
 Comprehensive Project Design Review 	Sep 11-13
 SC Mini-review of Cost/Schedule Baseline 	Sep 28
 BSA-EVMS Certification Review 	Oct 1-5
 Experimental Facilities Advisory Committee (EFAC) 	Oct 4-5

NSLS-II User Workshop

First Day Session

- Described conceptual design and status of project
- Highlight talks on physical and life sciences and user access models
- Described process for beamline development at NSLS-II
- Described Joint Photon Sciences Institute
- Described plans for transitioning from NSLS to NSLS-II
- Discussions at reception and dinner
- > 450 Attendees
- OSTP: John Marburger
- DOE: Pat Dehmer (BES), Pedro Montano (BES), Susan Gregurick (BER)
- NIH: Charles Edmonds (NIGMS), Alan McLaughlin (NIBIB), Michael Marron (NCRR), Amy Swain (NCRR)
- NSF: Guebre Tessema

NSLS-II User Workshop

2nd Day Breakout Sessions

Technique-based Sessions

- Hard x-ray NanoprobeSoft Coherent Scattering and Imaging
- Powder Diffraction
- Macromolecular Crystallography
- Liquid Interfaces
- Inelastic X-ray Scattering
- Hard Coherent and XPCS/SAXS
- •XAFS
- Bio-SAXS
- Photoemission Spectroscopy

Science-based Sessions

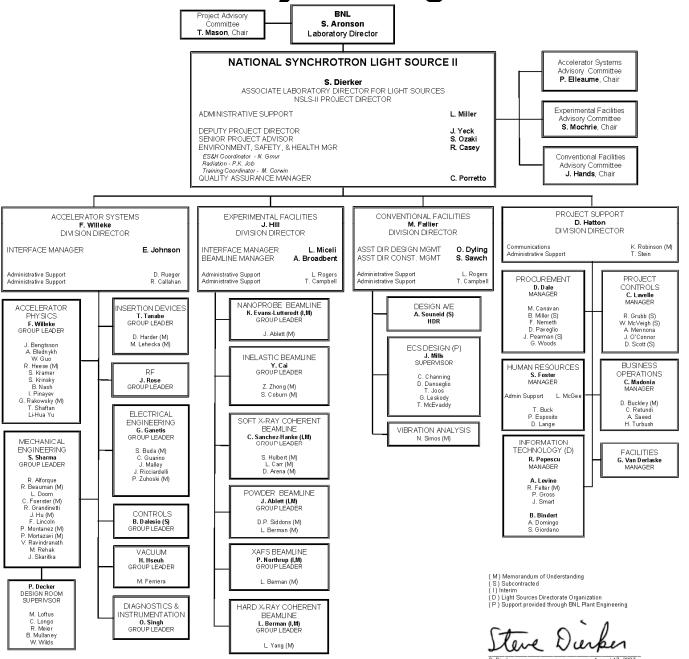
- •Life Sciences
- Catalysis
- Environmental Science
- High-Pressure
- Strongly Correlated Electrons
- Magnetism
- Radiometry and Metrology
- Soft Condensed Matter

Some Upcoming Events

Post material for CD-2 EIR Review
 Oct 5-19

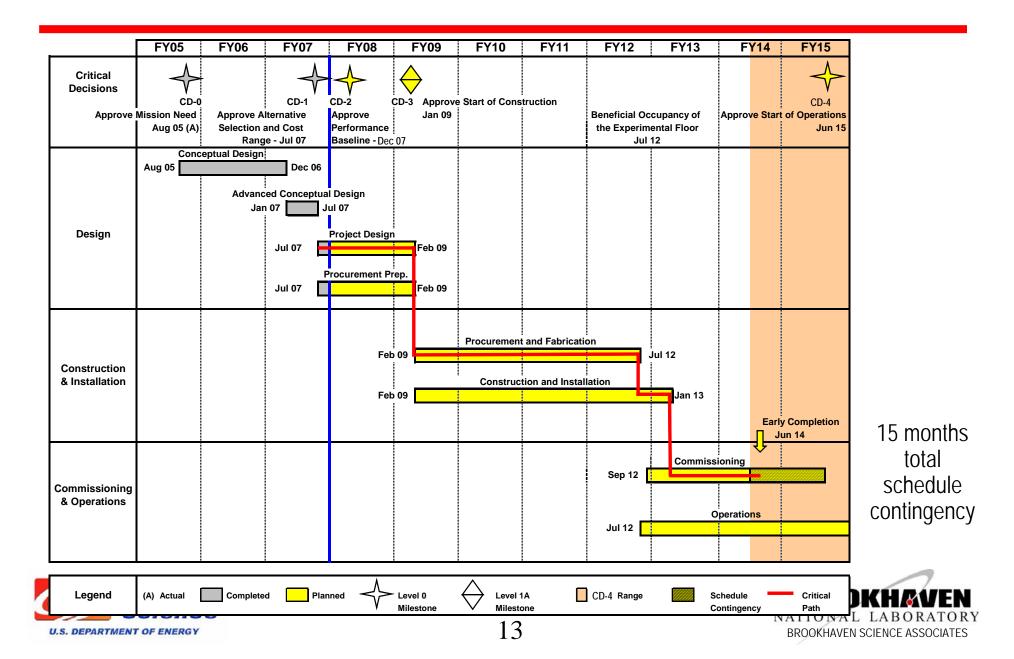
DOE CD-2 Review and External Independent Review Nov 6-9

Project Advisory Committee (PAC)


Organization & Staffing

- Organization is well established
- Making good progress with staff additions
 - Ferdinand Willeke joined project full-time on August 1 to succeed Satoshi
 Ozaki as Director of Accelerator Systems Division
 - Interface Managers for ASD, CFD, and XFD all in place
 - Asst Director for Construction Management hired
 - Other recent hires:
 - QA Manager, IT Manager, many physicists, engineers, & designers (see org chart on next vg)
 - 26 open requisitions many candidates identified; interviews ongoing

NSLS-II Project Organization


Project FTE Profiles

Category	Total	2008	2009	2010	2011	2012	2013	2014	2015
Project Management	235	42	45	42	42	40	18	6	0
R&D & Concept Design	73	19	19	18	17	0	0	0	0
Accelerator Systems	524	76	93	91	99	122	25	18	0
Experimental Facilities	129	17	25	25	24	20	14	4	0
Conventional Facilities	49	8	8	9	9	9	4	2	0
Pre-Operations	173	0	0	0	2	28	75	68	0
Total	1,183	162	190	185	193	219	136	98	0

Schedule Schematic

CD-4 Criteria & Key Performance Parameters

Level 1B Milestone: To be granted upon receiving Beneficial Occupancy of the experimental floor in one pentant of the storage ring building

- Director of DOE-BES is approving authority
- Enables early operations funding

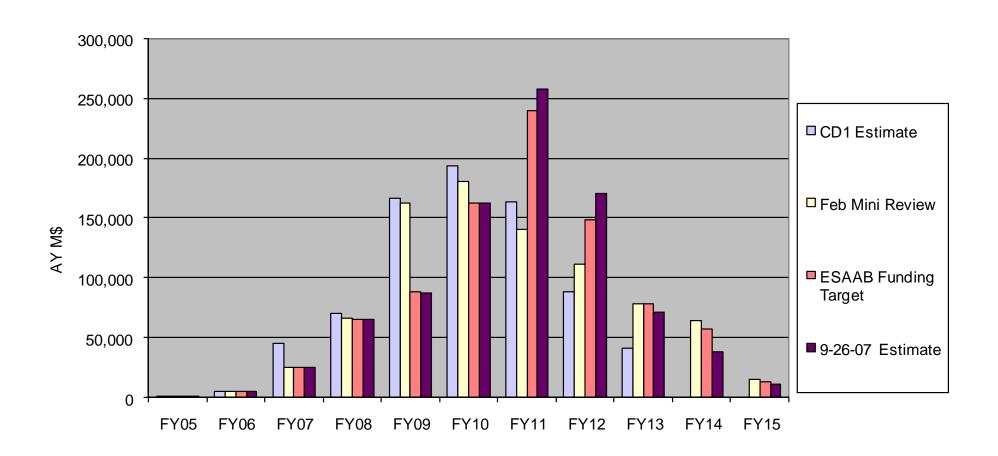
CD-4: To be granted upon meeting the following key performance parameters:

- Accelerator Facilities
 - Electron Energy = 3.0 GeV
 - Stored Current = 25 mA
- Conventional Facilities
 - Building Area = 300,000 gross square feet
- Experimental Facilities
 - Beam lines installed and ready for commissioning with x-ray beam = 2
 - Additional beam lines procured = 4

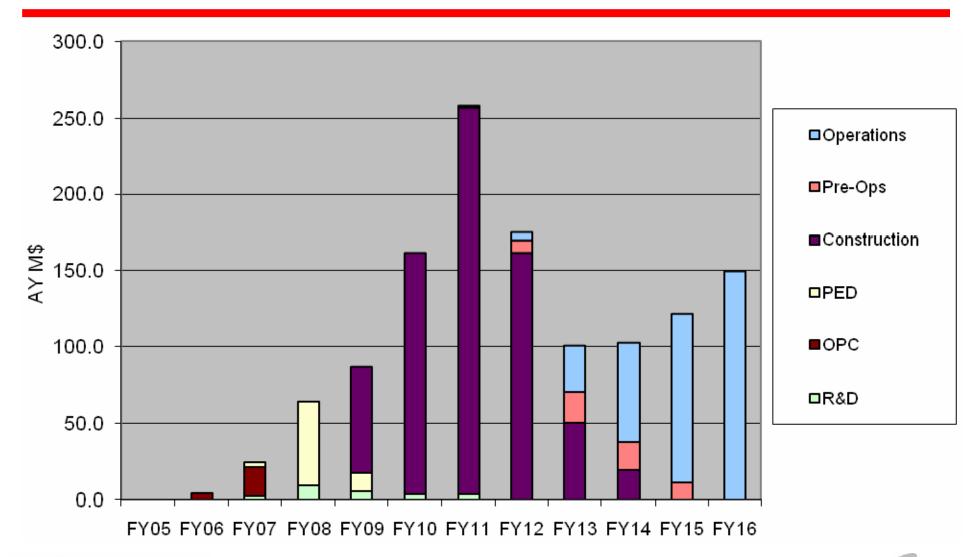
Commissioning and Transition to Operations

- Commissioning Schedule
 - Start Linac commissioning in Sep 2012
 - Start Storage Ring commissioning in Oct 2013
 - Beam available to beamlines on early finish date of June 2014
- Transition to Pre-Operations and to Operations
 - Start transitioning staff to pre-ops when experimental floor is available FY12
 - Start shifting staff to NSLS-II operations in FY13
 - Transition all staff to pre-ops or ops after early finish date

Current Cost Estimate \$M


Project Management	\$ 62
Accelerator Systems	250
Conventional Facilities	213
Experimental Facilities	80
Contingency (on TEC items above)	<u>182</u>
Total Estimated Costs (TEC)	787
R&D and Conceptual Design	51
Pre-Operations .	<u>56</u>
Other Project Costs (OPC)	<u>107</u>
Total Project Costs (TPC)	\$ 894

(estimates are fully burdened and escalated and include 30% contingency)


Funding Profile Evolution

Funding Target Profile w/ NSLS-II Ops

Funding Target Profile and Current Cost Estimate

WBS Element (\$ x 1000)	FY2005	FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012	FY2013	FY2014	FY2015	Total
Funding Target	1,000	4,800	25,000	65,000	88,000	164,500	254,400	170,800	71,000	37,800	11,500	893,800
1.0 NSLS-II	1,000	4,800	25,000	64,882	87,252	162,128	258,331	170,430	70,982	37,815	11,501	894,121
1.01 Project Management			250	11,487	12,285	10,732	11,566	10,505	4,306	1,240		62,371
1.02 R&D	1,000	4,800	22,000	9,790	5,743	3,909	3,561					50,803
1.03 Accelerator Systems			500	16,031	26,068	45,782	91,834	49,935	16,384	3,495		250,029
1.04 Experimental Facilities			250	3,836	5,694	7,867	13,806	36,889	11,072	940		80,354
1.05 Conventional Facilities			2,000	13,075	15,340	67,468	86,023	27,709	1,358	244		213,217
1.06 Pre Operations							734	7,881	19,671	17,769	9,501	55,556
Contingency			0	10,663	22,122	26,370	50,807	37,511	18,191	14,127	2,000	181,791

Estimates are fully burdened and escalated

Scope & Cost Reductions

Additional pre-CD-2 scope & cost reductions in order to accommodate funding profile in 09 &10 and maintain TPC < \$900M

<u>Area</u>	Bottom Line Estimate
Accelerator Systems	\$ 11.3 M
Conventional Facilities	\$ 14.1 M
Experimental Facilities	\$ 9.3 M
Total	\$ 34.7 M

Scope Contingency

<u>Area</u>	Bottom Line Estimate
Accelerator Systems	\$ 2.7 M
Conventional Facilities	\$ 26.0 M
Experimental Facilities	\$ 14.1 M
Total	\$ 43.4 M

Total Scope Contingency equals 7% of TEC

Potential Future Scope Additions

<u>Area</u>	Bottom Line Estimate
Accelerator Systems	\$ 11.3 M
Conventional Facilities	\$ 40.6 M
Experimental Facilities	\$ 11.6 M
Total	\$ 63.5 M

Issues

- Aggressive schedule for establishing the Performance Baseline
 - Preliminary design period shortened due to FY07 Continuing Resolution and lead time required for FY09 budget submission
 - Project baseline will be approved when the project is ~5% complete
- FY09 and FY10 funding constrain the technically limited plan. Work not on the critical path has been deferred.
- Some additional resource leveling is required and better staffing plans needed, especially for FY10
- Aggressive schedule for documenting preliminary design

EIR Documentation Schedule

Posted 5 weeks in advance (week ending Oct 5) CD-0 and CD-1 Documents

- **Acquisition Strategy**
- Preliminary Project Execution Plan Environmental Assessment & FONSI
- Conceptual Design Report
- SC/OPA CD-1 Review Report

CD-2 Design Related Documents

- Draft Final Hazard Analysis (DOE approval pending)
- **NSLS-II Accelerator Design Reviews**

Presentations & Reports

- NSLS-İl Comprehensive Design Review Presentations & Report
- Conventional Facilities Preliminary Design
- Conventional Facilities Preliminary Design **Drawings**

CD-2 Baseline and Management Documents

- Integrated Project Team Charter
- Project Organization Chart
- Global Requirements Document
- Work Breakdown Structure
- Project Control (EVMS) System Description
- Risk Management Plan
- Configuration Management Plan

Posted 4 weeks in advance (week ending Oct 12)

- Draft Project Execution Plan
- WBS Dictionary
- Detailed Cost Éstimate
- Resource Loaded Schedule, including Primavera Source Files
- Risk Registry
- Value Engineering/Management Report
- Start-up Test Plan

Posted 3 weeks in advance (week ending Oct 19)Experimental Facilities Design Packages for Beamlines


Posted 1 week in advance (Nov 2)

Final Presentations for SC/OPA Review

Summary

- Conceptual design has matured into an exciting design, promising superlative experimental capabilities.
- Novel design w/ outstanding performance and flexibility from the far-IR to the very hard x-ray. A range of sources will be available to match the various scientific needs.
- Baseline scope meets performance and cost goals and provides substantial experimental capability
- Good progress at resolving design challenges
- Project Organization well developed to execute project
- Planning for transition from NSLS and reuse of experimental and conventional facilities from NSLS

