
ORNL/TM-13545

Computer Science and Mathematics Division

Mathematical Sciences Section

PACKED STORAGE EXTENSION FOR SCALAPACK

Ed F. D’Azevedo
Jack J. Dongarra

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

Date Published: January 1997

This work was supported in part by the National Science Foundation
Grant No. ASC-9005933; by the Defense Advanced Research Projects
Agency under contract DAAH04-95-1-0077, administered by the Army
Research Office; by the Office of Scientific Computing, U.S. Department
of Energy, under Contract DE-AC05-84OR21400; and by the National Sci-
ence Foundation Science and Technology Center Cooperative Agreement
No. CCR-8809615, and Center for Computational Sciences at Oak Ridge
National Laboratory for the use of the computing facilities.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Lockheed Martin Energy Research Corp.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-96OR22464

Contents

1 Introduction . 1
2 Data layout for packed storage . 2
3 Examples in the use of packed storage matrix . 4
4 Numerical experiments . 6
5 Summary . 8
6 References . 11

- iii -

List of Tables

1 Performance (in seconds) of Cholesky factorizations and solves. 8
2 Performance (in seconds) of simple drivers for symmetric eigensolvers. 8
3 Performance (in seconds) of expert drivers for symmetric eigensolvers. 9
4 Performance (in seconds) of expert drivers for generalized eigensolvers. 10

- v -

List of Figures

1 Two-dimensional block-cyclic distribution. 3
2 Example code to illustrate the reuse of ScaLAPACK components for matrices

stored in packed storage. 5

- vii -

PACKED STORAGE EXTENSION FOR SCALAPACK

Ed F. D’Azevedo

Jack J. Dongarra

Abstract

We describe a new extension to ScaLAPACK [2] for computing with symmetric (Hermi-

tian) matrices stored in a packed form. The new code is built upon the ScaLAPACK routines

for full dense storage for a high degree of software reuse. The original ScaLAPACK stores a

symmetric matrix as a full matrix but accesses only the lower or upper triangular part. The

new code enables more efficient use of memory by storing only the lower or upper triangu-

lar part of a symmetric (Hermitian) matrix. The packed storage scheme distributes the ma-

trix by block column panels. Within each panel, the matrix is stored as a regular ScaLAPACK

matrix. This storage arrangement simplifies the subroutine interface and code reuse. Rou-

tines PxPPTRF/PxPPTRS implement the Cholesky factorization and solution for symmetric

(Hermitian) linear systems in packed storage. Routines PxSPEV/PxSPEVX (PxHPEV/PxHPEVX)

implement the computation of eigenvalues and eigenvectors for symmetric (Hermitian) ma-

trices in packed storage. Routines PxSPGVX (PxHPGVX) implement the expert driver for the

generalized eigenvalue problem for symmetric (Hermitian) matrices in packed storage. Per-

formance results on the Intel Paragon suggest that the packed storage scheme incurs only a

small time overhead over the full storage scheme.

- ix -

1. Introduction

This paper describes a new extension to ScaLAPACK [2] for computing with symmetric (Her-

mitian) matrices stored in a packed form. ScaLAPACK is an acronym for Scalable Linear

Algebra PACKage, or Scalable LAPACK. ScaLAPACK is a library of high-performance linear

algebra routines for distributed-memory message-passing MIMD (Multiple Instruction Mul-

tiple Data) computers and networks of workstations. Capability of ScaLAPACK is described

in the ScaLAPACK Users’ Guide [2].

The new code is built upon the ScaLAPACK routines for full dense storage for maximum

portability. The original ScaLAPACK stores a symmetric matrix as a full matrix but accesses

only the lower or upper triangular part. This design allows the reuse of Level 3 PBLAS (Par-

allel Basic Linear Algebra Subroutines) [3] without modification. However, almost half of the

storage is holding redundant information. The new code enables more efficient use of mem-

ory by storing the submatrix blocks associated with only the lower or upper triangular part of

a symmetric (Hermitian) matrix.

Although current computers have unprecedented storage and computation speed, they are

also called upon to tackle ever larger problems. Let N� N be the largest symmetric (Hermi-

tian) problem that can be stored in memory, then a larger approximately
p

2N�p2N symmet-

ric matrix can be stored in the same memory using the packed storage scheme. Linear solution

of symmetric (Hermitian) matrices by Cholesky factorization and computing eigenvalues and

eigenvectors by the QR algorithm both have O(N3) complexities. With an O(N3) complexity,

the runtime for solving the larger problem will be approximately
p

2
3 � 2:8 times longer.

A symmetric eigensolver for packed storage may be adapted for use with out-of-core al-

gorithms for solving large eigenvalue problems. The initial stage in the classical algorithm

for finding eigenvalues and eigenvectors is to first reduce the original symmetric matrix into

a tridiagonal matrix by orthogonal similarity Householder transformations. The original ma-

trix is overwritten by these Householder transformations. One of the key steps is the frequent

need for computing a matrix-vector multiply. An out-of-core algorithm that stores the sym-

metric matrix on disk would be highly inefficient since the matrix must be read in from disk

for each matrix-vector multiply operation. A solution suggested by Ken Stanley is to hold in

memory the symmetric matrix in packed storage and store the eigenvectors on disk. This ap-

proach would require O(N2=2) memory for the symmetric matrix in packed storage instead of

O(2N2) memory for holding the symmetric matrix and eigenvectors in full storage, and would

allow larger problems to be solved using the same limited amount of memory.

We have developed prototype codes PxPPTRF/PxPPTRS for Cholesky factorization and so-

lution, and simple driver routines PxSPEV (PxHPEV) for finding eigenvalues and optionally

eigenvectors of symmetric (Hermitian) matrices in packed storage. Expert drivers for sym-

- 2 -

metric (Hermitian) matrices PxSPEVX (PxHPEVX) and generalized eigenvalue problems PxSPGVX

(PxHPGVX) are also available as prototype code. The names for the new routines follow the

convention used in LAPACK [1] of using a ‘P’ to represent packed storage. Thus ‘SY’ (‘HE’)

represents a symmetric (Hermitian) matrix and ‘SP’ (‘HP’) represents a symmetric (Hermitian)

matrix in packed storage; similarly, ‘PO’ denotes a symmetric positive definite matrix and ‘PP’

denotes the symmetric positive definite matrix in packed storage.

Section 2 describes the layout of the packed storage scheme. Section 3 shows by a simple

example how other ScaLAPACK routines can be modified for use with packed matrices. Sec-

tion 4 summarizes the performance ofPDPPTRF/PDPPTRS,PDSPEV, PDSPEVX and PDSPGVX on the

Intel Paragon. Finally, Section 5 contains the summary.

2. Data layout for packed storage

ScaLAPACK principally uses a two-dimensional block-cyclic data distribution (see Figure 1)

for full dense in-core matrices [2, Chapter 4]. This distribution has the desirable properties of

good load balancing where the computation is spread reasonably evenly among the processes,

and can make use of highly efficient level 3 BLAS (Basic Linear Algebra Subroutines) at the

process level. Each colored rectangle represents an mb� nb submatrix. Matrix entry (i; j) is

mapped to matrix block (ib; jb)= (1+ b(i� 1)=mbc; 1+ b(j� 1)=nbc) and is assigned to process

(p; q)= (mod(ib� 1; Pr);mod(jb� 1; Pc)) on a Pr � Pc process grid. Thus the first entry (1; 1) is

mapped to process (0; 0) and entry (1+mb; 1+ nb) is mapped to process (1; 1).

The packed storage scheme resembles the ScaLAPACK two-dimensional block-cyclic data

distribution but physically stores only the lower (or upper) blocks. For example, on a 2� 3

process grid as shown in Figure 1, if only the lower blocks are stored, then process (0; 0)

holds blocks A11, A31, A51, A71, A54, A74, A77. Process (0; 2) holds blocks A33, A53, A73 and

A76. Similarly process (1; 1) holds blocks A22, A42, A62, A82 and A65, A85 plus A88. We note

that each block in the packed storage scheme is assigned to the same process as in the fully

two-dimensional block-cyclic data distribution. Moreover, each block column or panel in the

packed storage scheme may be considered a full ScaLAPACK matrix distributed across only

one process column. This treatment of a block column panel as a particular ScaLAPACK sub-

matrix is a key characteristic to the reuse of ScaLAPACK and PBLAS library components.

If we consider the ‘local’ view in process (0; 0), the first block column panel consists of A11,

A31, A51 and A71. This panel is stored in memory as a 4�mb�nb Fortran column-major matrix.

The second block column panel consists of blocks A54 and A74. It is stored in local memory

as a 2 �mb� nb Fortran column-major matrix. The first entry of the second panel follows the

last entry of the first panel in memory, i.e. the first entry in block A54 follows the last entry

in block A71. Note that the entire diagonal block A11 is stored, even though only the lower

- 3 -

2-DIMENSIONAL BLOCK CYCLIC

DISTRIBUTION

A

A

A

A

A

A

A

A

21

31

41

51

61

71

81

11

A

A

A

A

A

A

A

A

12

32

22

42

52

62

72

82 A

A

A

A

A

A

A

A

13

23

33

43

53

63

73

83 A

A

A

A

A

A

A

A

14

24

34

44

54

64

74

84 A

A

A

A

A

A

A

A

15

25

35

45

55

65

75

85 A

A

A

A

A

A

A

A

16

26

36

46

56

66

76

86 A

A

A

A

A

A

A

A

17

27

37

47

57

67

77

87 A

A

A

A

A

A

A

A

18

28

38

48

58

68

78

88

A

A

A

A

11

A

A

A

A

A

A

A

A

31

51

71

14 17

3734

54 57

7774

A

A

A

A

A

A

A

A

A

A

A

A

21

61

41

81

24

44

64

84

27

47

67

87

A

A

A

A

A

A

A

A

A

A

A

A

12

32

52

72

15 18

38

58

7875

55

35 A

A

A

A

A

A

A

A

1613

33 36

53

73 76

56

A

A

A

A

A

A

A

A

A

A

A

A

22

42

62

82

25

45

65

85

28

48

68

88

A

A

A

A

A

A

A

A

23

43

63

83

26

86

46

66

0 1 2

1

0

Global (left) and distributed (right) views of matrix

Figure 1: Two-dimensional block-cyclic distribution.

triangular part is accessed. This incurs a small price in extra storage but greatly simplifies

reuse of ScaLAPACK components.

- 4 -

3. Examples in the use of packed storage matrix

Here we illustrate by examples the reuse of ScaLAPACK library components for matrices

stored in packed form. The key idea is the treatment of each block column or panel as a

regular ScaLAPACK matrix distributed across a process column. The routine DESCINITT is

provided to simplify the manipulation of indices by initializing a new matrix descriptor for a

block column panel. The routine interface can be described using Fortran 90 syntax as

SUBROUTINE DESCINITT(UPLO, IA, JA, DESCA, IAP, JAP, LOFFSET, DESCAP)

CHARACTER,INTENT(IN) :: UPLO

INTEGER, INTENT(IN) :: IA, JA, DESCA(:)

INTEGER, INTENT(OUT) :: IAP, JAP, LOFFSET, DESCAP(:)

END SUBROUTINE DESCINITT

For example, access to the global entry A(IA, JA) in full storage is obtained by the ScaLA-

PACK routine

CALL PDELGET(SCOPE, TOP, ALPHA, A, IA, JA, DESCA)

The corresponding code to access the lower triangular entry in packed storage would be

CALL DESCINITT('Lower', IA, JA, DESCA, IAP, JAP, LOFFSET, DESCAP)

CALL PDELGET(SCOPE, TOP, ALPHA, A(LOFFSET), IAP, JAP, DESCAP)

The routine DESCINITTgenerates a new matrix descriptorDESCAP that corresponds to the block

column panel with new indices(IAP, JAP) relative to the new descriptor. It will also produce

the correct value for LOFFSET to adjust for the beginning of the column panel.

Another more complicated example (see Figure 2) is computing the largest absolute value

(max(jA(I; J)j)) in a packed matrix. This is similar to computing with the NORM=`M' option in

PDLANSY for the full storage,

ANRM = PDLANSY('M', UPLO, N, A, 1, 1, DESCA, WORK)

The new code reuses ScaLAPACK PDLANSY and PDLANGE for computing the maximum entry

in each block column panel.

The code traverses each block column (line 4) and calls DESCINITT to establish the appro-

priate matrix descriptor. It calls PDLANSY (line 11) to find the largest value in the diagonal

block. Routine PDLANGE (line 19) computes the largest value in the remaining off-diagonal

rectangular block. Although essentially the same computation is performed, the packed ver-

sion has higher overhead in making several separate calls toPDLANSY and PDLANGE. Moreover,

the granularity of the algorithm is limited by the width of the column panel (NB=DESCA(NB)).

- 5 -

1 N = DESCA(N_) ! Number of columns in matrix A

2 NB = DESCA(NB_) ! Width of each block column

3 ANRM = ZERO

4 DO JA=1,N,NB

5 JB = MIN(NB, N-JA+1)

6 IA = JA

7 CALL DESCINITT('Lower',IA,JA,DESCA,IAP,JAP,LOFFSET,DESCAP)

8 !

9 ! Handle diagonal block

10 !

11 ANRM2 = PDLANSY('M','Lower',JB,A(LOFFSET),IAP,JAP,DESCAP,WORK)

12 ANRM = MAX(ANRM, ANRM2)

13 !

14 ! Handle off-diagonal rectangular block

15 ! Use Lower triangular part

16 !

17 IA = IA + JB

18 IF (IA .LE. N) THEN

19 ANRM2 = PDLANGE('M',N-IA+1,JB,A(LOFFSET),IAP+JB,JAP,DESCAP,WORK)

20 ANRM = MAX(ANRM, ANRM2)

21 ENDIF

22 ENDDO

Figure 2: Example code to illustrate the reuse of ScaLAPACK components for matrices stored
in packed storage.

- 6 -

4. Numerical experiments

We have developed the following prototype codes: PxPPTRF/PxPPTRS for Cholesky factoriza-

tion and solution, simple driver PxSPEV (PxHPEV) routines for finding eigenvalues and eigen-

vectors of symmetric (Hermitian) matrices stored in packed form, expert drivers for symmetric

(Hermitian) matrices PxSPEVX/PxHPEVXand generalized eigenvalue problemsPxSPGVX/PxHPGVX.

We have compared the performance of the new routines in packed storage with ScaLA-

PACK routines in full storage. The goal is to demonstrate that the new version with packed

storage has little or no overhead cost over the existing routines for full storage. The new

routines have higher overhead in index calculations and have algorithm granularity limited

by the width of the block column panel. However, the packed storage may have better data

locality and cache reuse.

The tests were performed on the XPS/35 Intel Paragon at the Center for Computational

Sciences at the Oak Ridge National Laboratory. The XPS/35 has 512 GP nodes arranged in a

16� 32 rectangular mesh. Each GP node has 32MBytes of memory. The runs were performed

in a time-shared multi-user (non-dedicated) environment using a Pr � Pc logical process grid.

Matrix block mb= nb= 50 was used for all tests. Results for upper case (UPLO='U') and lower

case (UPLO='L') are very similar so results for only the lower case are presented. The latest

version of PBLAS (version 2.0 alpha) was compiled with ‘-O3 -Mvect -Knoieee’� and linked

with ‘-lkmath’, the highly optimized CLASSPACK serial BLAS library. The new version of

PBLAS incorporates automatic algorithmic blocking with block size set to 50y. The PBLAS

version 2.0 alpha release is still undergoing performance tuning.

Table 1 summarizes the times for the Cholesky factorization PDPOTRF for full storage and

PDPPTRF for packed storage. The relative increase in runtime with packed storage over full

storage is also displayed in the table. Routines PDPPTRS and PDPOTRS are used to solve the

factored system with 50 and 1000 (NRHS) right-hand vectors. For the cases considered, the

times for factorization by PDPPTRF with packed storage is comparable (at most two seconds

difference) to times taken by PDPOTRF with full storage. Solution times for a narrow right-

hand matrix (NRHS=50) show PDPPTRS for packed storage to be slower than PDPOTRSfor full

storage for large problems (N � 2000). The difference is about 3 seconds. Solution times for a

wide right-hand matrix (NRHS=1000) show PDPPTRS for packed storage to be competitive with

PDPPTRS. Routine PDPPTRS is slightly faster than PDPOTRS for cases N = 1000 and N = 4000,

whereas for N = 2000, PDPPTRS is slower by 36%.

Table 2 summarizes the execution times for the symmetric eigensolvers PDSYEV with full

�Option -Knoieee turns off software emulation of IEEE arithmetic in divisions or operations on de-normalized
numbers to use the faster (but slightly less accurate) hardware units.

yvalue return by routine PILAENV in PBLAS.

- 7 -

storage and PDSPEV with packed storage. The computations were performed with JOBZ='N'

to find all eigenvalues or with JOBZ='V' to find all eigenvectors and eigenvalues. Routine

PDSPEV for packed storage incurs at most a 11% increase over PDSYEV for full storage in find-

ing eigenvalues only. On closer examination and profiling, we find part of the extra time is

incurred in a routine to perform a matrix vector multiply operation where the matrix is stored

in packed storage. Performance of DSYMV and DGEMV for the packed version may be limited by

the width of the block column panel and by the block column by block column nature of the al-

gorithm. When both eigenvectors and eigenvalues are required,PDSPEV compares favourably

with PDSYEV for full storage.

Table 3 summarizes the execution times for the expert drivers for the symmetric eigen-

solvers. Although the expert driver is capable of finding specific clusters of eigenvalues, all

eigenvalues (RANGE='ALL') are requested. The routine PDSPEVX performs reorthogonalization

of eigenvectors when there is sufficient temporary workspace. This reorthogonalization ac-

counts for the higher run times for finding all eigenvectors over the simple driverPDSYEV. Per-

formance analysis of PDSYEVX is described in [2, Chapter 5] and [4]. When only eigenvalues

are requested (JOBZ='N'), PDSPEVX for packed storage is slower than PDSYEVX for full storage

by 5 to 9 seconds. For longer running computation when both eigenvectors and eigenvalues

are requested (JOBZ='V'), PDSPEVX for packed storage is even slightly faster than PDSYEVX for

full storage.

Table 4 summarizes the times for the generalized symmetric eigensolvers PDSPGVX with

packed storage and PDSYGVX with full storage for finding all eigenvalues with RANGE='All'.

The input parameter IBTYPE describes the type of problem to be solved:

IBTYPE=

8>>>><
>>>>:

1 solve Ax = �Bx,

2 solve ABx = �x ,

3 solve BAx = �x.

(1)

The problem is reduced to canonical form by first performing a Cholesky factorization on B

(B = LLH or UHU) and then overwriting A with

IBTYPE=

8><
>:

1 A � U-H AU-1 or L-1AL-H,

2 or 3 A � UAUH or LH AL.
(2)

For the cases IBTYPE=2 and IBTYPE=3, the packed version incurs a significant extra overhead

compared to the version for full storage. The in-place conversion of matrix A to canonical form

(2) may require access to block rows in matrix A or B. Since the packed storage is stored in a

column panel oriented manner, traversal across block rows will be less efficient than traversal

- 8 -

NRHS=50 NRHS=1000
Pr� Pc N PDPOTRF PDPPTRF change PDPOTRS PDPPTRS change PDPOTRS PDPPTRS change
8� 8 1000 2.3s 0.9s -63% 1.6s 1.5s -1% 4.1s 3.8s -8%
8� 8 2000 2.5s 2.9s 14% 1.3s 2.2s 73% 6.9s 8.5s 24%
8� 8 4000 14.7s 13.9s -5% 3.9s 7.6s 93% 62.6s 27.8s -56%

10� 10 1000 2.3s 0.8s -63% 1.9s 1.6s -20% 4.2s 3.2s -25%
10� 10 2000 2.0s 2.5s 21% 1.3s 2.1s 68% 4.8s 6.5s 36%
10� 10 4000 11.3s 10.8s -4% 4.1s 6.8s 67% 58.1s 20.2s -65%

Table 1: Performance (in seconds) of Cholesky factorizations and solves.

Pr� Pc N JOBZ PDSYEV PDSPEV Change
8� 8 1000 N 25.3s 27.6s 9%
8� 8 2000 N 81.4s 90.5s 11%
8� 8 4000 N 317.0s 341.1s 8%

10� 10 1000 N 25.4s 27.7s 9%
10� 10 2000 N 79.0s 87.8s 11%
10� 10 4000 N 304.2s 321.6s 6%

8� 8 1000 V 64.6s 62.8s -3%
8� 8 2000 V 239.6s 226.8s -5%
8� 8 4000 V 1336.1s 1342.3s 0%

10� 10 1000 V 65.3s 62.3s -5%
10� 10 2000 V 217.4s 221.7s 2%
10� 10 4000 V 866.4s 843.2s -3%

Table 2: Performance (in seconds) of simple drivers for symmetric eigensolvers.

down columns.

5. Summary

The overall results suggest that for a reasonably large block size (nb= 50), the packed storage

incurs only a small time overhead over the full storage routines. The difference may be as

large as 20 seconds for short runs that complete in about a minute and approximately extra

10% overhead for larger problems. In some cases, the packed storage may even yield slightly

better performance due to better data locality and cache reuse. The generalized eigensolver

with IBTYPE=2 or IBTYPE=3 may require traversal across block rows and this leads to higher

overhead (about 30% – 50%) for packed storage over full storage.

The design of the packed storage data layout to be a dense ScaLAPACK matrix in each

block column panel also facilitates the reuse of PBLAS and ScaLAPACK library components

for good performance.

- 9 -

Pr � Pc N JOBZ PDSYEVX PDSPEVX Change
8� 8 500 N 6.3s 6.2s -2%
8� 8 1000 N 13.1s 16.0s 22%
8� 8 2000 N 36.9s 45.4s 23%

10� 10 500 N 6.6s 6.3s -4%
10� 10 1000 N 11.1s 14.5s 31%
10� 10 2000 N 34.8s 40.2s 16%
8� 8 500 V 74.7s 65.9s -12%
8� 8 1000 V 555.1s 537.9s -3%

10� 10 500 V 73.5s 66.0s -10%
10� 10 1000 V 554.4s 537.3s -3%

Table 3: Performance (in seconds) of expert drivers for symmetric eigensolvers.

- 10 -

Pr� Pc N IBTYPE JOBZ PDSYGVX PDSPGVX Change
8� 8 500 1 N 9s 8s -11%
8� 8 1000 1 N 15s 21s 34%
8� 8 2000 1 N 54s 70s 30%
8� 8 500 2 N 6s 7s 15%
8� 8 1000 2 N 15s 21s 38%
8� 8 2000 2 N 48s 75s 55%
8� 8 500 3 N 5s 7s 31%
8� 8 1000 3 N 15s 21s 39%
8� 8 2000 3 N 48s 75s 55%

10� 10 500 1 N 10s 8s -16%
10� 10 1000 1 N 14s 20s 39%
10� 10 2000 1 N 47s 62s 32%
10� 10 500 2 N 6s 7s 14%
10� 10 1000 2 N 13s 19s 41%
10� 10 2000 2 N 40s 65s 62%
10� 10 500 3 N 5s 7s 36%
10� 10 1000 3 N 13s 19s 44%
10� 10 2000 3 N 40s 65s 61%
8� 8 500 1 V 12s 10s -19%
8� 8 1000 1 V 21s 25s 18%
8� 8 2000 1 V 76s 89s 16%
8� 8 500 2 V 7s 8s 25%
8� 8 1000 2 V 19s 25s 33%
8� 8 2000 2 V 66s 94s 42%
8� 8 500 3 V 6s 8s 29%
8� 8 1000 3 V 18s 25s 34%
8� 8 2000 3 V 65s 93s 44%

10� 10 500 1 V 13s 10s -25%
10� 10 1000 1 V 18s 23s 27%
10� 10 2000 1 V 64s 76s 19%
10� 10 500 2 V 6s 8s 28%
10� 10 1000 2 V 16s 22s 38%
10� 10 2000 2 V 53s 79s 49%
10� 10 500 3 V 6s 8s 34%
10� 10 1000 3 V 16s 22s 39%
10� 10 2000 3 V 52s 78s 51%

Table 4: Performance (in seconds) of expert drivers for generalized eigensolvers.

- 11 -

6. References

[1] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. D. CROZ,

A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV, AND

D. SORENSEN, LAPACK Users’ Guide, SIAM, second ed., 1995. Online version at

http://www.netlib.org/lapack/lug/lapack lug.html.

[2] L. S. BLACKFORD, J. CHOI, A. CLEARY, E. D’AZEVEDO, J. DEMMEL, I. DHILON,

J. DONGARRA, S. HAMMARLING, G. HENRY, A. PETITET, K. STANLEY, D. WALKER,

AND R. C. WHALEY, ScaLAPACK Users’ Guide, SIAM, 1997. Online version at

http://www.netlib.org/scalapack/slug/scalapack slug.html.

[3] J. CHOI, J. DONGARRA, S. OSTROUCHOV, A. PETITET, D. WALKER, AND R. C.

WHALEY, A proposal for a set of parallel basic linear algebra subprograms, Tech. Rep.

CS-95-292, Department of Computer Science, University of Tennessee, Knoxville,

Tennessee, 1995. Also appears as LAPACK working note 100. Online version at

http://www.netlib.org/lapack/lawns/lawn100.ps.

[4] J. DEMMEL AND K. STANLEY, The performance of finding eigenvalues and eigenvec-

tors of dense symmetric matrices on distributed memory computers, Tech. Rep. CS-94-

254, Department of Computer Science, University of Tennessee, Knoxville, Ten-

nessee, 1994. Also appears as LAPACK working note 86. Online version at

http://www.netlib.org/lapack/lawns/lawn86.ps.

- 13 -

ORNL/TM-13545

INTERNAL DISTRIBUTION

1. T. S. Darland
2–6. E. F. D’Azevedo

7–11. J. Dongarra
12. M. A. Kuliasha
13. M. R. Leuze

14. S. A. Raby
15. Laboratory Records - RC

16–17. Laboratory Records
Department/OSTI

18. Central Research Library

EXTERNAL DISTRIBUTION

19. Dr. Stephen T. Elbert, Division of Mathematical, Information, and Computational
Sciences, U.S. Department of Energy, ER-31, 19901 Germantown Road, German-
town, MD 20874-1290

20. Daniel A. Hitchcock, ER-31, Acting Director, Mathematical, Information, and
Computational Sciences Division, Office of Computational and Technology Re-
search, Office of Energy Research, Department of Energy, Washington, DC 20585

21. Frederick A. Howes, ER-31, Mathematical, Information, and, Computational Sci-
ences Division, Office of Computational and Technology Research, Office of En-
ergy Research, Department of Energy, Washington, DC 20585

22. Tom Kitchens, ER-31, Mathematical, Information, and, Computational Sciences
Division, Office of Computational and Technology Research, Office of Energy
Research Department of Energy, Washington, DC 20585

23. David B. Nelson, ER-30, Associate Director, Office of Energy Research, Director,
Office of Computational and Technology Research, Department of Energy, Wash-
ington, DC 20585

