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A STUDY OF I/O IN A PARALLEL FINITE ELEMENT

GROUNDWATER TRANSPORT CODE

David Mackay

Ed D’Azevedo

Kumar Mahinthakumar

Abstract

A parallel finite element groundwater transport code is used to compare three different

strategies for performing parallel I/O: (1) have a single processor collect data and perform

sequential I/O in large blocks, (2) use variations of vendor specific I/O extensions (3) use

the EDONIO I/O library. Each processor performs many writes of one to four kilobytes

to reorganize local data in a global shared file. Our findings suggest having a single pro-

cessor collect data and perform large block contiguous operations may be quite efficient

and portable for up to 32 processor configurations. This approach does not scale well for

larger number of processors since the single processor becomes a bottleneck for gathering

data. The effective application I/O rate observed, which includes times for opening and

closing files, is only a fraction of the peak I/O performance. Some form of rearrangement

and buffering of data in remote memory as performed in EDONIO may yield significant

improvements for random I/O access patterns and short requests. Implementors of parallel

I/O systems may consider some form of buffering as performed in EDONIO to speed up

such I/O requirements.
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1. Introduction

Efficient handling of multi-gigabytes of disk I/O in a parallel computing environment is a

challenging problem for application programmers. The programmer is faced with a dilemma

of using portable but sequential standard I/O constructs, or non-portable vendor extensions

to take advantage of parallel I/O subsystems to achieve good performance.

This paper uses a parallel finite element groundwater transport code to explore and com-

pare different strategies for performing parallel I/O. This application performs many writes

of only several kilobytes in length. The small write sizes do not lend themselves easily to high

performance I/O. In this paper we compare various parallel data writing strategies to deter-

mine the best I/O strategy for parallel programmers. These results should be of interest both

to the parallel programmer and the high performance system designers. Our findings suggest

having one processor gather the distributed parallel data and perform large block contiguous

operations may be quite efficient and portable for small configurations of processors. Some

form of rearrangement and buffering of data in remote memory as performed in the EDONIO

I/O library may yield significant improvements for random I/O access patterns and short

requests.

Several groups are performing active research in high performance portable parallel I/O

solutions under the multi-agency Scalable I/O Initiative [9]. For example, the PABLO [14] per-

formance analysis environment and PPFS (Portable Parallel File System) [16] are developed at

University of Illinois. The PASSION (Parallel And Scalable Software for I/O) [15] compiler

and run-time environment to optimize out-of-core applications written in HPF (High Perfor-

mance Fortran) is being developed at the Center for Advanced Technology in Computer Ap-

plications and Software Engineering at Syracuse University. ADIO (Abstract-Device Interface

for I/O) [4] and ROMIO [8] are efforts from the Scalable I/O Project at the Argonne National

Laboratory.

The MPI Forum [5] is working on producing the MPI-2 standard that addresses portable

and efficient parallel I/O. MPI-IO implementations are currently being developed and tested

on the IBM SP2, Intel Paragon, Cray T3D, Meiko CS-2, and SGI Clusters by groups at Lawrence

Livermore National Laboratories, and NASA Ames Research Center. When the MPI-IO stan-

dard is widely adopted by vendors with efficient implementations, MPI-IO might become

the ideal solution for new applications. Until that time, alternative practical approaches are

needed to solve today’s needs.

To explore and evaluate different strategies for performing parallel I/O, we consider in

detail a distributed memory parallel groundwater transport application based on structured

grids on the Intel Paragon system and other parallel systems. We consider several approaches:

(1) collection to one processor and perform sequential I/O, (2) using two variations of ven-
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dor supplied extensions, (3) using EDONIO, a software library to perform disk caching in

distributed memory. Our timings on the Paragon supercomputer indicated that writes are

generally more expensive than reads and hence we decided to focus only on writes in this

paper.

The groundwater transport application, its nature and I/O needs, is described in x2 and

x3. The Paragon system parallel file system is described in x4. Section 5 discusses the three

strategies used and their performance on the Intel Paragon system. Some performance re-

sults on other parallel systems are included in x6. Finally our conclusions and findings are

summarized in x7.

2. Groundwater Transport Application

The I/O application chosen here is from the finite-element transport module of the parallel

groundwater remediation codes PGREM3D [11]. Below we briefly describe the principal gov-

erning equation, numerical implementation, and the parallelization strategy.

2.1. Governing Equation

The general governing equation describing the transport of a dilute solute in a saturated, es-

sentially incompressible porous medium is [7, 10, 13]

@c
@t

= r � (Drc)� vrc+ G: (1)

where c here represents the mass concentration of the solute in the dissolved phase [M=L3], t

is the time [T], v is the 3� 1 velocity field vector [L=T], D is a 3� 3 dispersion tensor depen-

dent on v [L2=T], and G is the source/sink term representing the rate of mass production or

consumption [M=L3T]. The term G can take many forms depending on the type of reaction

or the source/sink term. In PGREM3D, G represents terms coming from injection wells, first

order decay, kinetic/equilibrium sorption, and bioremediation. For the case of bioremedia-

tion, an additional transport equation for biomass of the form given by Equation (1) needs to

be solved. The additional equations describing sorption kinetics and microbial growth/decay

involve first order derivatives in time and zeroth order derivatives in space.

The velocity field v is usually obtained from the solution of the groundwater flow equation

[12]. For the steady state, saturated flow v is given by

�v= �Krh (2)

where h is the computed pressure head field from the groundwater flow equation, K is the
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3� 3 hydraulic conductivity tensor (usually diagonal), and � is the porosity. The elements of

the 3� 3 dispersion tensor D are given by

Di j = �Lkvk�i j+ (�L � �T)
viv j

kvk
+ Dm (3)

where �L and �T are longitudinal and transverse dispersivities assumed to be constant, Dm is

the coefficient of molecular diffusion assumed to be constant (usually very small).

2.2. Numerical Implementation

In PGREM3D, the three-dimensional form of the transport equation is discretized using lin-

ear hexahedral elements on a logically rectangular grid and based on the upstream weighted

Galerkin formulation [7]. The time stepping is implemented using a variable weighted finite-

difference scheme. Options are available to handle uniform rectangular, non-uniform rectan-

gular, and distorted grids. Different boundary condition options including time dependent

and cyclic boundary conditions are available. The code executes a comprehensive mass bal-

ance check at each time step as outlined by [6]. The mass matrix and the zeroth order terms

are evaluated using a lumped formulation [7]. Reactions include equilibrium sorption, kinetic

sorption, first order decay and non-linear bioremediation. The entire matrix is assembled only

during the first time step or when the boundary conditions change. The right hand side is as-

sembled at all time steps. Non-linearity in bioremediation reactions are handled using Picard

type iterations. Each of these iterations involve a linear system (matrix) solution. The linear

system solution is performed using iterative solvers based on Krylov subspace methods.

The finite-element approximation of Equation (1) results in a matrix equation of the form

Ax= b, where A is a sparse, non-symmetric matrix. In PGREM3D, the nodes and elements are

numbered in the z-first ‘natural order’. For a logically rectangular grid structure and ‘natural

ordering’ of unknowns matrix A has a 27-diagonal banded non-zero structure. In this imple-

mentation the non-zero entries of the matrix are stored by diagonals. This enables vectoriz-

ing compilers to generate extremely efficient code for operations like a matrix vector product,

which are used in iterative Krylov solvers. Although PGREM3D has a choice of several Krylov

solvers [13], the BiCGSTAB solver was used throughout our tests.

2.3. Test Problem

The test problem involves a single extraction well in the center of a square domain extracting

a uniformly distributed cylindrical plume. This simple problem was chosen since the radial

velocity field for this problem is analytically known and therefore eliminates the need for

a flow solution. In this paper we are concerned with the I/O performance, rather than the



- 4 -

complexity of the problem. The velocity field for the test problem is analytically obtained

from the simple expression kvk = Qw=(2�rd). Here Qw is the pumping rate, r is the radius

from the center of the well and d is the constant vertical depth. This solution assumes infinite

boundaries. The pumping rate Qw and the initial radius of the cylindrical plume r0 are set to

arbitrary constant values.

2.4. Parallelization

Our parallel implementation (in double precision) was originally targeted for the Intel Paragon

machines using asynchronousNXmessage passing. The code was then ported to the SGI/Power

Challenge Array, SGI/Cray Origin 2000, Convex Exemplar, and IBM SP systems using an MPI

(Message Passing Interface) implementation.

For parallelization, we used a two-dimensional (2-D) domain decomposition in thex and y

directions as depicted in Figure 1. A 2-D decomposition is generally adequate for groundwater

problems because common groundwater aquifer geometries involve a vertical dimension that

is much shorter than the other two dimensions. For the finite-element discretization such

decomposition involves communication with at most 8 neighboring processors. We note here

that a 3-D decomposition in this case would require communication with up to 26 neighboring

processors.

To avoid additional communication during the assembly step we overlap a set of finite ele-

ments along processor boundaries. There is no overlap in node points. In order to preserve the

27-diagonal band structure within each processor submatrix, we perform a local renumbering

of the nodes within each processor subdomain. This local renumbering causes numbers in

only the z-y plane to have contiguous global ordering. Such a numbering gives rise to some

complications during explicit communication and parallel I/O stages. For example, in explicit

message passing, non-contiguous array segments had to be gathered into temporary buffers

prior to sending. This buffering requires only one message for each neighboring processor.

These are then unpacked by the receiving processor. In contrast the I/O must read or write

globally contiguous data and can not pack or buffer output in the same fashion.

3. I/O Test Case, Needs and Requirements

3.1. I/O Test Case and I/O Needs

The solute transport module of PGREM3D requires parallel binary I/O for reading the velocity

and nodal flux fields (output from the flow module) and for writing out the concentration

fields at desired timesteps. A very small number of global input parameters are read from

an ASCII file using one processor and then broadcast to all other processors. Additional I/O
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Figure 1: Plan View of Two-Dimensional Domain Decomposition. Each gray region belongs to
a processor; the white regions are overlapped. The arrows show the communication pattern.

is required for reading the element model data and also in check-pointing for writing out

and reading in binary restart files. When distorted meshes or fully heterogeneous material

properties are encountered additional binary I/O is required to read in these values. All binary

I/O is performed in the ‘natural’ z-first then y, then x order.

Parallel I/O to a single globally shared file requires non-contiguous writes to a file on small

blocks of size in the order of a few KBytes. As we show later in this paper, this can contribute

to some I/O performance degradation particularly when a large number of processors are

involved. As described in x2.4, the 2-D domain decomposition strategy employed here results

in a local processor node numbering that is different from the global node numbering of the

entire domain. However, when the solution output is written to a file, we need to make sure

that the proper order is preserved in the global sense.

For a typical finite-element application, some I/O quantities can be node based and some

can be element based. For example, in PGREM3D, the quantities such as velocities and het-

erogeneous material properties (e.g. porosity, reaction coefficients etc.) are element based,

and quantities such as concentrations, nodal fluxes, mesh coordinates are node based. Ob-

serve Figure 1 to note that although elements overlap between processors, there is no overlap

in node assignment. Each processor is responsible for performing I/O on a unique set of

elements and nodes, so that asynchronous independent parallel I/O can be exploited, even

though there may be overlap of elements along processor boundary. Explicit message passing

is then performed at the end of a read to get information at the overlapping elements where

information is required but has not been read in.

For a typical simulation the binary writes are of the order nb bytes (where nb= 8 � nx � ny �
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nz and nx, ny, nz are the problem dimensions in each direction) per output or restart frequency

(hereby denoted as instance). The output and restart frequencies are controlled by the user.

For a typical simulation, the output frequency can be as frequent as once every 10 timesteps

and the restart frequency once every 1000 timesteps of simulation. For the simplest case of

single component transport, the write size is nb bytes per instance, and for bioremediation

involving kinetic sorption it is 5nb bytes per instance. Moreover, for each field variable (nb

bytes), a file is opened and closed. For example, for a 251� 251� 11 problem the output can

be from 6to28 MBytes per instance. If we use 16 processors for this simulation using a 4� 4

domain decomposition (see Figure 1), then each contiguous block of write is approximately

only 1.4 Kbyes (= 8� 11� 251=4).

3.2. File Requirements

In designing the parallel I/O routines for this code we decided to follow certain constraints.

The first constraint is that each field variable would be stored in a single file in the global finite

element node ordering. This means data from each processor would not be contiguous in the

file (c.f. x3.1). Data from each processing node will be collected in global ordering into a single

file. Data will not be stored based on local processor data order. There are some reasons we

feel this is important. The output files are used both for postprocessing a history of solute

movement and also for restart/checkpoint of the calculation. The scientist may postprocess

the data on a different number of processors than used for calculations. When restarting the

run to continue the calculations, there may be more or fewer processors available. If data

is stored in individual files or in local processor ordering, it is more difficult to postprocess

or restart calculations on a different number of processors. A single file makes it easier for

the user to manipulate the data files, since there is only one file to copy or move to a long

term storage device for backup and recovery. In addition, the files must be written to a file

system that is always accessible. The data files should not be written to a file system belonging

to a dedicated processor. Otherwise, the application can be restarted only on the identical

processor configuration.

In addition, we choose to keep each instance of field variables in separate files. We can

save on the overhead associated with opening and closing files, if we write all of the data to

one large file. This means we will incur the cost of opening and closing each file each time we

write data. However, it is common practice to write out the data for each field in a separate

file. In postprocessing, the scientist may want to examine only one part of the data, say the

soluble nutrient. Although this could be extracted from a large file, we followed PGREM3D

code tradition of putting each variable in a separate file.
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4. Paragon System Parallel I/O

The Intel Paragon supercomputer is a massively parallel computer built from processing ele-

ments using the 50 MHz Intel i860XP microprocessor and distributed memory interconnected

in a two dimensional mesh. The system runs a version of OSF1 operating system. The system

dedicates a number of processors to handle I/O tasks in a dedicated I/O partition, separate

from the compute partition where applications are run. Each processor board in the I/O par-

tition has a daughter card and RAID (Redundant Array of Independent Disks) attached to it.

All output on the Paragon system is written to a RAID instead of a single disk. Each RAID

has a UNIX file system (ufs) partition. On top of the UNIX file system, Intel built a parallel file

system (pfs) which stripes a file across multiple RAID’s and I/O processors. To the Paragon

system user all of the standard UNIX file commands (ls, cp, rm, ftp) work on the parallel file

system, and the striping is transparent.

The system administrator controls the maximum number of ufs partitions a parallel file

system will stripe across and the size of the stripes. A user may call fcntl to stripe across

fewer RAID’s or to select a smaller stripe size, but he may not exceed the number of RAIDs

or stripe size setup by the system administrator. As part of the NX message passing library,

Intel provides optimal cread and cwrite commands to improve I/O performance. The goals

in designing the parallel file system were to optimize I/O for large files, to build on top of

standard UNIX file systems, and to allow normal UNIX file manipulation.

The Intel XPS/150 Paragon system at the Oak Ridge National Laboratory (ORNL) allows

us to test I/O in a number of different manners. The ORNL XPS/150 Paragon system has four

different parallel file systems on it, each striping across a different number of RAIDS (/pfs64,

/pfs32, /pfs16, /pfs8), to meet the diverse needs of the different applications and users on

the system. Although not part of its normal operating environment, we were able to write to

a specially configured parallel file system on a single RAID to use for comparisons to other

systems. Each compute node has 64MB of memory.

Each RAID can write at about 3.0 MBytes/sec. We measured writing files at 190 MBytes/sec

across 64 I/O nodes (2.97MBytes/sec per processor) on the XPS/150, by excluding the file

open and close times. However, opening a single file striped across 64 RAIDS each connected

to a different processor on the network and establishing ports to 1024 compute processor takes

from 10 to 30 seconds depending on the I/O mode. This is a significant amount of time, espe-

cially for small files. In all timings shown in this paper we measure application output time,

this includes the time to open, write and close the file. This is not the actual device write rate,

but more importantly though, this is the time cost a scientist running an application observes.
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5. Strategies for Performing Parallel I/O

Write rate in MB/sec
File PFS 1024 512 256 128 64 32 16
Size stripes nodes nodes nodes nodes nodes nodes nodes
2 GB 64 51 77 113 122 132 136 99
8 GB 64 104 125 144 151 152 155 107
2 GB 32 44 50 62 68 74 78
8 GB 32 66 125 75 77 76 82
2 GB 16 29 31 35 37 38 38
8 GB 16 36 36 37 38 38 38

Table 1: Application write rates on Intel Paragon system in MB/sec

The results shown in Table 1 for the Intel Paragon system for writing files, are an ideal case.

Each node was writing the same amount of data, and the amount of data written at each call

exactly matched the parallel file system stripe size. This is not the case for typical applications.

Even though the code studied in this paper operates on a structured grid, the number of finite

elements and/or nodes assigned to each processor may differ in each direction. As previously

described, the finite element groundwater transport code solves a time dependent problem.

As part of the output, a history file is needed that shows the movement and tracing of particles

as they are transported over time is needed. The code will generate several history files every

hour. Since the application operates on a logical three-dimensional cube, it is easier to plan

the output than in an arbitrary unstructured case. In an unstructured finite element grid, the

ordering for global data stored in output files may differ dramatically from the ordering for

local data on a processor. As a result, the file access from each node may be very irregular and

very difficult to optimize. In other words, the structured I/O case is easier to optimize than

the unstructured case.

In the simplest groundwater transport case, there may only be one solute whose transport

is simulated. When this code is used for bioremediation with kinetic sorption though, at least

five different field values must be tracked: a dissolved contaminant, a solid phase contami-

nant, a dissolved phase nutrient, a solid nutrient, and biomass. In some cases there may be

multiple contaminant or nutrients. Each of these field values is stored in an array of the same

length. Each of these variables is written in a separate file, and each file is the same size. In

our tests we measure the time to write one file and calculate the write rate. In a typical one

hour run of the code, we would actually want to write a history file for each property four or

five times per hour. So the actual I/O time would be 20 times what we measure here. Since

all files are the same length and are written to the same directory, we feel it is fair to measure

time to write one file and extrapolate.

We implemented four different methods of performing the output on the Intel Paragon
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supercomputer. The first method of writing the output file was to have each processor send

its data to the first processor. The first processor opened the file and wrote out all data. The

first processor received, stored, and wrote the data using a 128Kbyte buffer. Flow control

was added to handle the flood of incoming messages from the other processors. This method

is not ideal, but is portable to a wide variety of systems running different message passing

environments, such as NX, MPI, PVM. We implemented this method in order to compare with

other systems.

The second case followed the standard Intel Paragon system parallel I/O model. That is

the file was opened for asynchronous I/O, and each processor repositioned its own file pointer

to the appropriate file location and wrote its output. Because of the distributed nature of the

problem, each processor called lseek()multiple times to fill the file. The third method used is

a variation of the second method. The only change is the addition of one system call to buffer

data on the I/O processors. The application makes the same number of calls to lseek() and

cwrite().

The fourth method used a library package called EDONIO described in x5.1. This sim-

ple change essentially required only changing lseek/cwrite commands to dolseek/dowrite

commands and linking in the appropriate library. We attempted a fifth method where we

made another system call to match the file stripe parameter to the application write lengths.

This method showed no improvement and is not reported here.

5.1. Distributed Object Network I/O Library

EDONIO (Distributed Object Network I/O Library) [1, 2, 3] provides fast parallel direct ac-

cess random I/O operation to a global shared file by providing a large multi-gigabyte disk

cache using the aggregate distributed memory. EDONIO translates I/O requests to message

communication. On most modern multiprocessors, such as the Intel Paragon system, the com-

munication network bandwidth is commonly much higher than the I/O subsystem. Thus it

may be faster to transfer data to/from memory on remote processors than directly from the

disk. EDONIO also reorganizes actual disk operations to perform transfers in large contigu-

ous blocks aligned to RAID disk geometry. User initiated prefetching and cooperative writing

to enhance I/O performance are also supported in EDONIO.

EDONIO mimics the UNIX like capability in lseek/read/write for global shared files.

This facilitates porting of serial code or conversion ofNX codes to EDONIO. To access a shared

file, each processor uses lseek to relocate its own private copy of the file pointer and then

performs input/output operations. Simultaneous output to overlapping regions in a shared

file is non-deterministic, which is similar to ‘reckless’ mode in other parallel file systems. Un-

like MPI-IO, EDONIO does not provide high level description of global I/O operations such
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as writing out a two-dimensional distributed block cyclic array. Instead, EDONIO provides

simple yet flexible primitives and still manages to achieve high performance.

EDONIO organizes the disk file in fixed size blocks distributed in a block cyclic fashion

across processors. The block size is commonly chosen to match the RAID stripe size (64KBytes

on the Intel Paragon). On the Intel Paragon, each processor uses the fastestNX specific M ASYNC

file access mode to perform independent I/O requests. A simple “Least Recently Used” al-

gorithm is used on each processor to cache data blocks in a dedicated pool of memory. The

cache size is user adjustable (EDONIO uses a maximum of 4MBytes per processor by default).

A read reference to a missing block will cause the data block to be transferred from disk, simi-

larly a write reference may cause overflow data blocks to be drained out to the disk. EDONIO

performs a cooperative filling or purging of disk cache on a user initiated ‘prefetch’ or ‘flush’

operation. In all of the results in this paper we include the EDONIO flush command as part of

the write time. The EDONIO Library package must still open the file from every node, write

the data, and close the file. The advantage is that the data reorganization is hidden from the

programmer, and, in addition the data reordering provides large contiguous data blocks to

write which improves I/O device performance.

5.2. Results on Paragon system

We present the results on the Paragon system here. Write rates for other platforms are pre-

sented in the next section. Table 2 shows the finite element grid size and the output file sizes

for each run. Tables 3 and 4 show complete results for all four strategies and different pfs

stripe configuration. In Figures 2 and 3 we have plotted the data for /pfs64 and /pfs8. We

expected gathering data to one node would perform poorly when writing from hundreds of

processors. This method actually performed fairly well up to 32 processors and sometimes

up to 64 processors. The standard NX write routines worked fairly well. By examining the

write rates for 64 processors in Table 4 shows, we see that buffering on the I/O processors can

significantly improve write performance. On the other hand in Figure 3 we notice that write

performance degrades when the system attempts to buffer a file from 1024 compute proces-

sors when there is insufficient memory on the /pfs8 file system. This is not surprising, and in

addition the ratio of 1024 compute processors to 8 I/O processors is outside the recommended

ratio for optimal pfs performance. The EDONIO library package consistently showed the best

write performance. We believe this was due to a better buffer data collection process. Col-

lectively these results indicate that a significant amount of time in performing output is spent

gathering small segments of data into the proper global order.
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processors grid size file size
1024 1801� 2001� 11 302.4 MB
512 1401� 1262� 11 148.4 MB
256 901� 1001� 11 75.7 MB
128 701� 631� 11 37.1 MB

64 451� 501� 11 19.0 MB
32 251� 251� 11 5.3 MB

Table 2: Problem size and file size.

/pfs64 /pfs32
processors one std buf donio one std buf donio

1024 2.1 5.4 5.6 10.3 2.2 4.0 4.0 11.5
512 2.5 6.3 6.6 9.1 2.6 4.4 5.2 10.6
256 2.6 5.2 6.0 9.0 2.6 3.9 5.4 10.1
128 2.3 2.9 5.9 6.6 2.5 3.5 5.7 6.7
64 2.2 2.2 3.8 5.3 2.3 3.3 4.8 6.8
32 1.8 0.9 1.2 1.7 1.6 0.7 2.0 2.7

Table 3: Effective write rate in MBytes/second on Intel Paragon system

/pfs16 /pfs8
processors one std buf donio one std buf donio

1024 2.2 2.4 1.8 10.3 2.2 1.2 0.8 7.6
512 2.4 2.7 2.6 9.6 2.7 1.4 1.1 8.4
256 2.5 2.2 2.9 11.0 2.5 1.2 1.3 7.3
128 2.8 2.3 3.5 8.0 2.7 1.3 1.9 7.4
64 2.5 1.9 4.2 7.0 2.3 1.1 2.5 6.4
32 2.2 0.6 1.8 2.6 2.4 0.6 1.8 3.0

Table 4: Effective write rate in MBytes/second on Intel Paragon system
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Figure 2: Write rates for PGREM3D to /pfs64 on Intel Paragon system



- 13 -

0

1

2

3

4

5

6

7

8

9

1024 512 256 128 64 32

Number of processors

W
rit

e 
R

at
e 

(M
B

/s
ec

)

one

std

buf

donio

Figure 3: Write rates for PGREM3D to /pfs8 on Intel Paragon system
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6. Results on Multiple Platforms

Although our performance evaluations were primarily targeted towards the Intel Paragon, we

measured and compared performance across a range of distributed parallel platforms for a test

problem involving moderate number of processors (8, 16, and 64). The comparisons involve

SGI/Power Challenge Array (16 processors), Convex Exemplar (8 processors), Cray/SGI Ori-

gin 2000 (16 processors), Intel Paragon XPS/150 (16 and 64 processors), and IBM SP (16 and

64 processors). Only the single-node I/O mode was used in this comparison since not all sys-

tems have true parallel I/O capabilities. The problem size is chosen to allocate approximately

43,000 nodes/processor. This translates to 251� 125� 11; 251� 251� 11, and 501 � 501� 11

for the 8, 16, and 64 processor configurations.

Below in Table 5 we compare the I/O rate for the 16 processor case (except Convex Exem-

plar where we used 8 processors). We note here that the I/O rates include times for message

System MB/s
SGI/PC(ufs) 0.49
Convex Exemplar(scratch)* 3.71
Convex Exemplar(ufs)* 1.58
Cray/Origin 2000(ufs) 1.88
IBM SP(ufs) 1.46
IBM SP(/piofs) 8.08
XPS/150(/pfs 1) 1.29
XPS/150(/pfs64) 2.13

*8 processors with 251� 125� 11

Table 5: Write rates for a 251� 251� 11 problem size with 16 processors

passing required to collect data into one processor and times for opening and closing files.

Hence the message passing latency and bandwidth of each system may impact the rates re-

ported here. We also note that for some of the results presented here the files were written to

the standard UNIX file system (ufs) of the user’s home area. In Table 6 we present the write

rates for the 501� 501� 11 problem using 64 processors in the IBM SP and XPS/150. It is in-

teresting to note that the IBM SP performance on /piofs has decreased from the 16 processor

case while the XPS/150 performance on /pfs64 has increased slightly.

System MB/s
IBM SP(ufs) 1.45
IBM SP(/piofs) 6.62
XPS/150(/pfs 1) 1.35
XPS/150(/pfs64) 2.38

Table 6: Write rates for a 501� 501� 11 problem size with 64 processors

In Table 7 we compare the total run time and write times for a typical run. This analy-
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sis gives us a measure of relative time spent on parallel I/O compared to the total time for

each system. Unlike the Paragon system runs, these problems involved kinetic sorption and

bioremediation where we required output of 5 vectors each of size nx � ny � nz. The solution

requires nonlinear iterations with about 10 matrix solves per time step. The I/O performance

analysis is for writing binary output at the end of 10 time steps. Each vector was written to a

different file. The timings on 16 processor are for the 251� 251� 11 problem except the Con-

vex Exemplar which solved a 251� 125 � 11 problem using 8 processors. From Table 7 we

observe that for Convex and IBM SP the time spent in binary output is less than 4% of to the

total time.

System Write Time Total Time
SGI/PC(ufs) 54.3 435
Convex Exemplar(scratch)* 3.5 860
Cray/Origin 2000(ufs) 14.0 196
IBM SP(/piofs) 3.3 131
XPS/150(/pfs64) 12.4 354

*8 processors with 251� 125� 11

Table 7: Total and output times in seconds for a 251� 251� 11 problem size with 16 processors

7. Discussion

We did not expect exceptionally high write rates for the chosen application. Due to the global

‘natural’ z-fastest node ordering, each processor writes out a contiguous set of data values that

correspond to only a plane of the mesh. For the problem sizes considered, each request is only

2 to 4KBytes in size. We believe it may be difficult to obtain high throughput with small write

segments when the I/O system is optimized for high volume access to large files.

The all-to-one method worked fairly well up to 32 processing nodes by coalescing multi-

ple short write requests into a larger 128KBytes block. However, this strategy does not scale

well as the single I/O processor becomes a bottleneck collecting the data. Moreover, a single

processor cannot saturate the bandwidth to a highly parallel /pfs32 or /pfs64 file system.

The standard access mode using NX specific gopen/lseek/cwrite has better scalability

for over 128 processors writing to /pfs64 or /pfs32. Using the buffered I/O on the dedicated

I/O nodes of the Paragon has marginal improvement on performance. The limited amount

of memory (32Mbytes per node) on the dedicated I/O nodes may not be sufficient to have a

significant impact. On /pfs8 and 1024 processors, buffering actually decreased performance.

The EDONIO library consistently gave the best performance. Since EDONIO utilizes dis-

tributed memory across all processors for data buffering, the entire file can in fact be easily

cached in memory. Data is flushed out to disk in large blocks in the most efficient manner.
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Data buffering is not a new idea. Early high performance vector systems used solid state

memory storage devices as a disk cache before writing to disk. This type of buffering for re-

organizing and sorting the data would benefit I/O on unstructured meshes in finite element

applications.

We examined the MPI-IO specifications recommended by the MPI-2 forum. We did not

have an implementation of MPI-2 to test this method on, but we observed two items that de-

serve comment. The MPI-2 specifications permit us to describe how data from each processing

node is distributed into a global file. Then the data may be written with a single high level

MPI-IO call which writes out the appropriate array. It seems to take just as much work for the

programmer to describe the data layout to MPI as it does to calculate the offsets and call lseek

between each write to the file. If there is a substantial overhead cost associated with generat-

ing the optimal schedule for this high level global write operation, then a reasonable MPI-IO

implementation should amortize this cost even when multiple files are opened and closed.

For I/O on unstructured grids, a simple global description of the data distribution via

MPI TYPE CREATE DARRAY may not be convenient or feasible. The programmer may need to

resort to generating short requests with various offsets. There will always be some applica-

tions, like PGREM3D, writing small pieces of data into very large files. In these cases it is

our experience that the handling of the data-gather is just as important as the actual device

throughput. The I/O buffering provided in the Paragon system pfs improved performance,

but never matched the gathering and buffering strategy of EDONIO. Based on our results,

the implementors of MPI-IO might consider an EDONIO like buffering scheme to redistribute

and coalesce data into large blocks in preparation for efficient I/O to the parallel file system.

The purpose of this study was to examine parallel I/O from an application programmers

point of view, in this case for a finite element program. We also feel that the high performance

computing community should put as much emphasis on application I/O times as peak device

I/O throughput. There was little variation in the gather-to-one processor write method used

on all systems. The wide variations in parallel write rates observed by this code indicate that

both programmers and system designer consider how to efficiently handle data reordering for

I/O. In conclusion, we recommend that parallel applications writers consider an efficient I/O

gather strategy, such as used in EDONIO.
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