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Introduction

• “What level of performance can we expect if we implement
spherical harmonic transform using matrix formulation?”

• Exercise in evaluation of modern architectures for parallel
climate simulations. Attempt to highlight strengths and
weaknesses of modern architectures.

• Parallel Spherical Harmonic Transform is a computational
kernel for high resolution models.

• Consider simple serial and parallel abstract kernels in
understanding potential performance gains.
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Spherical Harmonic Transform

Field variable on the sphere ξ(λ, µ) is represented as

ξ(λ, µ) =

M

∑
m=−M

M

∑
n=|m|

ξm
n Pm

n (µ)eımλ

ξm
n =

Z 1

−1

1
2π

[

Z 2π

0
ξ(λ, µ)e−ımλdλ

]

Pm
n (µ)dµ

ξm
n =

Z 1

−1
ξm(µ)Pm

n (µ)dµ, ξm(µ) from Fourier Transform,

where µ = sin θ, θ is latitude, λ is longitude, m is Fourier mode
number, Pm

n (µ) is the associated Legendre function

Pm
n (µ) = (−1)m(1 − µ2)m/2 dm

dµm Pn(µ) (Pm
n (µ) = 0 if n < m) .

Transform between field variable and spectral coefficients.
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Approximation on lon-lat grid

• Field approximated on I × J grid, I (east-west) longitude are
equally spaced (for FFT), latitude lines chosen such that µ j are
Gaussian quadrature points to evaluate integral as

ξm
n =

Z 1

−1
ξm(µ)Pm

n (µ)dµ =

J−1

∑
j=0

ξm(µ j)Pm
n (µ j)w j

where ξm(µ j) are obtained by multiple FFT.

• Consider only m ≥ 0 since ξm
n and ξ−m

n are complex conjugates.

• Note a triangular grid in spectral space is used I = 2J (I is
usually a power of 2), and I ≥ 3M + 1 to prevent aliasing, e.g.
M = 170,I = 512,J = 256.
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Matrix computation

• The transforms can be computed as matrix multiply
aF

m = PmaS
m, aS

m = Pt
mWaF

m where aF
m =

[

ξm(µ1) . . . ξm(µJ)
]

are the
Fourier functions, aS

m = [ξm
m . . . ξm

n ] are the spectral coefficients,

Pm =











Pm
m (µ1) · · · Pm

n (µ1)
...

...

Pm
m (µJ) · · · Pm

N (µJ)











, W = diag(w1 . . .w j)

• Only half of Pm may be stored since Legendre functions are
symmetric and µ j quadrature points are anti-symmetric across
the equator.

• Pm may regenerated efficiently by recursion formula.
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Projection in Spherical Harmonics

• Alternate approach in computing derivatives entirely in
Fourier representation with projection into spherical
harmonics to stabilize and filter out high frequency
components,

ãF
m = PmPt

mWaF
m .

• Storage efficient variant in storing the orthogonal complement
of Pm.

• Although Fast Multipole Methods have been proposed, we
have not considered this in our study.

6



Computer Science and Mathematics Division ORNL'

&

$

%

Numerical Experiments

• Vendor supplied libraries for BLAS and FFT.

• Multiple 1D complex to complex FFT.

• Vendor MPI communication library was used.

• Non-portable Co-array or SHMEM implementation might be
faster but not considered.

• Runs made on a shared (not dedicated) environment.
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Cray X1

• 256 Multi-Streaming vector processors (MSP) and 1TeraBytes
of globally addressable memory.

• Each MSP has 2MB of shared cache and peak performance is
about 12.8Gflops. Four MSP form a node with 16GB of shared
memory. Each MSP consists of 4 Single-Streaming Processor
(SSP).

• Each SSP runs at 400Mhz and performs 4 Multiply-Add
operations per clock in 2 vector pipes (peak 3.2Gflops).

• Memory bandwidth (34GByte/sec) is about half of cache
bandwidth.
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Power 4

• IBM SP Regatta node, each with 32 Power 4 (1.3GHz)
processors and over 32GBytes of memory.

• Two processors on the same chip, four chips (8 cpus) share a
multiple-chip module.

• 32-way node can be reconfigured as 4 logical partitions of 8
cpus.

• Each Power 4 processor can perform 2 Multiply-Add
operations per clock (peak 5.2Gflops).
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SGI Altix

• 256 Itanium2 processors running at 1.5Ghz with 6MBytes L3
cache, 256KBytes L2 cache and 32KBytes of L1 cache.

• 2 TeraBytes of memory with 1.5TFlop/s peak performance.

• Divided into two 128 cpu partitions running 64-bit version of
SMP linux.

• System bus is 400Mhz, 128-bit wide, 6.4GByte/s bandwidth.

• The Itanium2 can perform 2 Multiply-Add per clock (peak
6Gflop/s).
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Serial computation

•

CRAY X1 Power 4 Itanium2

Matmul 7.6-9.6GF 2.2-2.8GF (3.4) 3.0-4.8GF (2)

FFTM 2.8s 22.8s (8.1) 9.4s (3.4)

IFFTM 3.3s 26.9s (8.2) 9.5s (2.9)

• Complex matrix multiply using ZGEMM.

• Multiple complex 1-D FFT 2048 vectors, of length 2048,
performed 96 times.
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Parallel Computation

• Physics phase require vertical data on same processor.

• FFT performed locally to avoid high communication volume
for parallel FFT. Longitude data on same processor.

• Method 1: Perform data redistribution (distributed transpose)
followed by serial matrix multiply.

• Method 2: Perform part of matrix multiply in-place, and
perform global sum.
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Transpose operation

• Multiple point-to-point message passing.

• Transpose of complex distributed N × N matrix 96 times on
CRAY X1.

N P=4 P=8 P=16 P=32 P=64

1024 1.7s 1.0s 0.8s 0.6s 0.6s

2048 6.3s 3.6s 1.8s 1.4s 0.7s

4096 - - 9.4s 4.6s 2.4s
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Transpose

• Transpose on SGI Altix seems to be slower than CRAY X1.

N P=4 P=8 P=16 P=32 P=64

1024 13.6s 3.4s 1.7s 1.1s 2.6s

2048 95.0s 51.3s 22.4s 4.7s 4.1s

4096 391s 205s 112.4s 55.8s 24.3s
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• Comparison within node (shared memory) communication on
IBM Power 4 with N=1024 suggests the CRAY X1 has faster
communication.

P=8 P=16 P=32

CRAY X1 1.0s 0.8s 0.6s

SGI Altix 3.4s (3.4) 1.7s (2.1) 1.1s (1.8)

IBM 2.8s (2.8) 1.4s (1.8) 0.9s (1.5)
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Global sum

• Best time among using tree sum, single or multiple calls to
MPI Allreduce, on distributed complex N × N × 96 array.

P=32 N=512 N=1024 N=2048

CRAY X1 0.04s 0.22s 1.09s

SGI Altix 0.87s (21.8) 2.82s (12.8) 14.5s (13.3)

IBM 0.2s (5) 0.78s (3.5) 4.03s (3.7)

P=64 N=512 N=1024 N=2048

CRAY X1 0.03s 0.15s 0.67s

SGI Altix 1.1s (36.7) 3.45s (23) 16.8s (25.1)

IBM 0.18s (6) 0.61s (4.1) 3.37s (5)
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Summary

• Matrix multiply (compute bound): CRAY is about 2X faster
than SGI and 4X faster than IBM.

• FFT (memory bandwidth): CRAY is about 3X faster than SGI
and 8X faster than IBM.

• Transpose: CRAY is slightly faster than IBM and SGI slowest.

• Global sum: CRAY is roughly 4X faster than IBM and over 12X
faster than SGI.

• We expect the fastest spherical transform would be Method 2
(global sum) on the CRAY X1.
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