EDONIO: Enhanced
Distributed Object Network
|70 Library

E.F. D'Azevedo
C.H. Romine

http://www.epm.ornl.gov/~romine/

EDONIO

e C and Fortran callable replacements for
NX I/O calls on Intel IPSC and Paragon.

e Provides disk caching for enhanced
performance.

« EDONIO translates I/O calls into
messages that update disk cache.

e EDONIO uses extended int's to access
files up to 16Terabytes.

Premise of EDONIO

Total network bandwidth greatly
exceeds disk I/O bandwidth.

Aggregate memory of IPSC/Paragon
used as large disk cache.

Non-sequential concurrent access to
shared files Is desirable.

Optimal PFS performance is achieved
for concurrent large contiguous blocks.

EDONIO

e Unix/C binary file, NOT Fortran
unformatted file

o All processors (not subgroup)
participate in 1/O to shared file

e Uses M_ASYNC mode for high
nerformance

Cache

e Disk cache holds disk blocks of
64Kbytes

o Data cache holds read-only remote data
of 8Kbytes pages

e Disk blocks statically assigned in block
wrapped mapped fashion

o Simple Least Recently Used strategy

EDONIO Operations

o Standard I/O calls replaced as follows:
» open becomes do _open or DOOPEN
» read becomes do_read or DOREAD
» write becomes do_write or DOWRITE
» |Iseek becomes do_Iseek or DOLSEEK
» flush becomes do_flush or DOFLUSH
» close becomes do_close or DOCLOSE

e Most I/O during preload, close and flush

do nio

Synchronous call to initialize package
do_nio(int myid, int nproc)

Also Initializes IPX message subsystem
Required before any EDONIO calls

do _open

Returns a file descriptor” for later file
access (do_read, do_write, do_close)

All processors must open file as
synchronous operation.

Optional call to synchronous “do_Isize”.

Require read/write permission on
writeonly files.

do read

o Assuming requested data not in local
data-cache (read-only files):

» (C

» |
O

etermines location of data in network

P X sends appropriate messages to obtain
ata

» may require 1/O to reload disk block

» recelved data are used to satisfy read
request

» data pages are cached, if file is read-only

do read

Error to call “do_read” with write-only
files

Error to read past end-of-file
Seek pointer updated to next byte In file

Times may vary substantially,
depending on access pattern and cache

do preload

e Synchronous operation to read ahead
and preload disk cache

e Start reading from min file pointer
(beginning of file after do_open)

o WIll not displace data already In disk
cache. Use “do_csize” to make room or
displace existing data.

do write

Location of requested data determined

Messages sent to owner processors
requesting updates

Simultaneous updates of overlapping
data undefined

May require reloading of disk block
before update

do csize

Synchronous call to expand or contract
cache used

Default 512K for data cache, 4096K for
disk cache

Tip:avoid paging with large cache size,
use “vm_stat” to monitor free pages

Hold entire file in core for best
performance

do _gsync/do_check

e Polling version of IPX
e “do_check” to perform polling

e “do_gsync” before gdhigh to purge IPX
messages

o Avoid message tags 0-10 and over 8Mil

do eseek/do Iseek

e Simply resets local file pointer to
iIndicated value

e do_eseek returns extended integer for
files over 2Gigabytes

e Independent file pointers, need care on
SEEK END operations

do flush

e Forces disk I/O, writing current image of
file In memory to disk

e Writes only “dirty” disk blocks, cache Is
Intact.

e Supplied to avoid catastrophic loss due
to crash/power failure and loss of cache

e Synchronous call requiring all
processors to participate

do close

do_flush followed by destruction of file
cache

disk I/O done on large contiguous
blocks to optimize performance

All processors must participate

Tip: file not automatically closed on exit,
need explicit call to “do_close”

Differences

e Require read/write permisson even on
write-only files

e Care on SEEK END operations with
do Iseek

e Care with blocking primitives (such as
gdhigh, gsync, crecv) with polling
version of EDONIO

o EXxact file size even with do_Isize

EDONIO Results

e Synthetic benchmark to generate
element to vertex list

e 200x200x200 grid (256MBytes),
300x300x300 grid (864MBytes)

e Default 512K and 4096K for data and
disk cache

e Run on xps35, affected by other disk
activities

EDONIO Results

e [Total Cache size increase with more
Nrocessors

e Physical I/O with “wclose” and “preload”

e Preload and Close times increase with
more processors

o Same volume of message spread
across more processors

EDONIO vs NX (256MB)

proc: wopen

16 3.1(1.3)
32 3.1(2.1)
64 3.0(3.5)

128 4.7(4.7)

write

wclose

31.3(141.2) 1.9(0.2)

15.5(122.4) 3.2(0.4)

5.3(118.6)

3.0(89.2)

7.6(0.7)

11(1.5)

ropen
1.4(0.8)
1.5(1.3)
2.5(2.1)

4.3(3.7)

preload
2.2
3.6
7.9

7.7

read rclose
84.5(89.5) 0.3(0.2)
30.1(49.3) 0.4(0.4)
7.2(48.0) 0.8(0.7)

4.0(47.5) 1.6(1.4)

EDONIO vs NX (864MB)

proc: wopen write wclose ropen preload read rclose
32 2.1(1.5) 45.9(262.0) 5.2(0.4) 2.6(2.3) 3.4 120(111) 0.4(0.3)
64 2.9(2.8) 24.1(218.1) 7.3(0.7) 2.8(2.2) 6.5 56.7(109) 0.8(0.7)

128 4.9(4.5) 14.1(360.3) 23 (1.5) 4.6(4.8) 15.8 21.4(105) 1.5(1.5)

X[s5 100x100x100 (32MBytes)

proc wopen
16 0.8(0.6)
32 0.9(0.7)
8 0.6(0.4)
4 0.4(1.0)
4 0.5(0.5)

write
2.3(142.9)
1.3(146.8)
4.5(153.3)
25.8(186.5)

16.6(164.5)

wclose
5.3(0.1)
5.5(0.2)
5.3(0.1)
22 (0.1)

11 (3.7)

ropen
0.9(0.2)
1.1(0.3)
0.9(0.2)
0.5(0.2)

0.4(0.2)

preload
6.7

6.9
25.3
9.0

7.7

read
2.4(77.6)
1.3(76.1)
12.8(87.7)
26.8(95.3)

26(100.5)

rclose

0.1(0.1)
0.2(0.2)
4.4(0.1)
0.1(0.1)

0.1(0.1)

Example

e Xps5:/home/xps5/ul/efdazedo/TEST
» eX3.F, ex3.sh (EDONIO), ex3nx.sh (NX)

e precompiled library
» nipxnode.o libdo.newio.a
» link In SAME order
» should work on other Paragon systems

e CPP Macro expansion with “fwrap” awk
postprocessing

