
DOLIB Shared Memory Library

Simpli�es Programming for PVM

and Paragon

Ed D'Azevedo and Chuck Romine

Mathematical Sciences Section

9 November 1994

http://www.epm.ornl.gov/~romine/

or

http://www.epm.ornl.gov/~efdazedo/

'

&

$

%

ornl MSR/Algorithms

Shared- vs. Distributed-memory

\That's the e�ect of living backwards," the Queen

said kindly: \it always makes one a little giddy at

�rst |"

\Living backwards!" Alice repeated in great

astonishment. \I never heard of such a thing!"

\ | but there's one great advantage in it, that

one's memory works both ways."

{ Lewis Carroll
Through the Looking Glass

and what Alice found there

'

&

$

%

ornl MSR/Algorithms

Premise

� Message-passing (distributed-memory) programming
model

{ Requires careful matching between sends and
receives

{ Places burden of problem decomposition on

programmer

{ Makes dynamic load balancing impractical

{ Treats \naturally shared" data as distributed

� Shared-memory programming model

{ Natural expression of parallelism

{ Program decomposition determined at runtime

{ Dynamic load balance natural

{ Direct access to \naturally shared" data.

'

&

$

%

ornl MSR/Algorithms

DOLIB

� Distributed Object LIBrary

{ Uses IPX from Brookhaven National Laboratory

{ Fortran and C callable library of subprograms

to support shared-memory programming model
for PVM and Paragon (currently limited PVM
support from IPX)

{ Core routines written in (Fortran-callable) C, to
take advantage of (portable) dynamic memory

allocation

{ Globally shared arrays (byte, int,
oat, double)

allocated and freed dynamically

{ Access to array elements is through gather and
scatter primitives

{ Automatic caching of read-only data to enhance
performance

{ No explicit locking mechanism needed

{ No compiler extensions or operating system
support needed

� User is free to mix message-passing and DOLIB for

best programmability/performance

� Serial version of the library available for easy

debugging of DOLIB parallel code

'

&

$

%

ornl MSR/Algorithms

Goal of DOLIB

� Ease of use

� More rapid parallelization of serial code

� Simpler debugging environment with serial version of

DOLIB

� Competitive performance

� Use aggregate memory as a huge resource for

\Grand Challenge" problems

{ Molecular Dynamics calculations on huge
systems of atoms

{ Atmospheric Modeling at high resolution

{ Groundwater Modeling at high resolution

'

&

$

%

ornl MSR/Algorithms

DONIO

� Distributed Object Network I/O Library

{ Designed to solve I/O bottleneck of the Intel

Paragon

{ Uses DOLIB to create a disk cache copy of �le in
the aggregate memory of the processors

{ Fortran and C callable library of subprograms
to mimic standard UNIX I/O calls (lseek,
read, write, etc.)

{ Able to handle large �les (DONIO on xps35 can
store 2GByte �le using 4MBytes per processor).

{ DONIO automatically translates read and write

calls into DOLIB gather and scatter calls,
respectively

{ Actual disk I/O done

� in large contiguous blocks to take advantage

of RAID 0 striping

� only during do open for read and read-write

�les

� only during do close or do flush for

read-write and write-only �les

{ DONIO can use full bandwidth of the Paragon

network of processors

{ File checkpointing provided to avoid catastrophic

loss

'

&

$

%

ornl MSR/Algorithms

DOLIB Routines

� do init { initialize DOLIB subsystem

� do declare { declare and allocate space for a
global array

� do destroy { destroy global array and free space

� do enable { enable caching for global array

� do disable { disable caching for global array

� do gather { collect speci�ed global array entries

� do scatter { update speci�ed array entries

� do gsync { enhanced barrier (to prevent starvation)

� do check { check for gather/scatter/update
requests

� do axpby { update array (y �x + �y).
Accumulate operation useful for �nite element

matrix assembly.

� do axpbyz { update array, returning previous value

of y. Useful for load balancing, among other things.

'

&

$

%

ornl MSR/Algorithms

DONIO Routines

� do nio { initialize DONIO subsystem

� do open { allocate global cache for �le, reading if it
exists

� do close { write �le if updated, then destroy
cached copy

� do lsize { set �le size

� do lseek { set local �le pointer

� do read { \read" from globally cached �le

� do write { \write" to globally cached �le

� do flush { write out current copy of cached �le

(checkpoint)

Note: do flush or do close is required for altered
�les.

'

&

$

%

ornl MSR/Algorithms

Dynamic Load Balancing

� Di�cult with message-passing paradigm

� Important for applications where the message tra�c
depends upon data, for example

{ Groundwater
ow and transport modeling

{ Atmospheric modeling

� Load balancing made simple with DOLIB do axpbyz

call

'

&

$

%

ornl MSR/Algorithms

Structure of DOLIB Global Arrays

� Global arrays are decomposed into �xed size blocks
(blocksize) of �xed size pages (pagesize).

� blocksize and pagesize are user-supplied at
array declaration time

� Blocks are wrap-mapped to the processors

� Data movement is in pages, not individual entries

{ Provides automatic \prefetching" of data

{ Simpli�es implementation of caching

� DOLIB relies on caching to reduce message-passing
overhead

'

&

$

%

ornl MSR/Algorithms

Caching in DOLIB

� A single cache for all global arrays (for simplicity)

� Unit of cache storage is a page

� User determines which arrays are cached, and when

(with do enable and do disable)

� Current cache implementation is doubly linked list
with linear searches

� Empirical studies of cache e�ects show

{ Performance of user program is sensitive to size
of cache

{ Cache overhead is small, so simple
implementation su�cient (for now)

'

&

$

%

ornl MSR/Algorithms

Comparison of DONIO with NX

� Example problem:

{ simulated �nite-element disk I/O

{ multiple direct access lseeks, reads and
writes

{ three grid sizes: 41� 41� 31, 81� 81� 61, and
121� 121� 91

� Results are summarized below:

Problem Size

Small Medium Large
(1.5 MBytes) (12.3 MBytes) (41.5 MBytes)

Processors NX DONIO NX DONIO DONIO

4 98.6 23.0 427.7 115.6 {
8 104.7 15.6 408.3 64.7 201.9
16 114.6 10.7 431.2 46.6 136.4

32 134.4 8.5 476.4 31.5 105.2
64 211.9 7.3 524.8 27.7 99.6
128 { { { { 81.6

Even more impressive gains in GCT.

'

&

$

%

ornl MSR/Algorithms

Semi-Lagrangian Transport (SLT) with

DOLIB

� CHAMMP computational kernel

{ simple advection of scalar �elds (e.g., moisture)

{ backward in time Lagrangian one-step particle
tracking

{ transformation to avoid singularities at the

earth's poles may induce load imbalance

� Initial parallelization used domain-decomposition and
explicit message-passing

{ extended each subdomain with \ghost region"
and exchanged neighboring
ow �eld information

{ high cost in memory use and communication
volume, or

{ severe time-step constraint

� Using DOLIB:

{ Identi�ed critical do-loops

{ performed gathers before entering loop

{ performed scatters upon exiting loop

'

&

$

%

ornl MSR/Algorithms

� On resolution T42 (64 lattitudes, 128 longitudes, 18
levels) averaged time per step (time on slowest

processor and excluding I/O) is 16.8 sec
(16 processors) and 11.2 sec (32 processors).

� Runtimes were insensitive to size of time step.
Runtimes changed by 5% with time step twice as
large.

� Host/node version with explicit message passing

takes 19.2 sec on 16 processors.

� In a high resolution simulation (T63), 96 mesh layers

are estimated to be required for a simulated time of
30 minutes per step.

'

&

$

%

ornl MSR/Algorithms

Molecular Dynamics with DOLIB

� Large-scale MD code based on SOTON PAR

� DOLIB version employs dynamic load balancing

� More memory e�cient than previous parallel version

{ Total memory requirement is 40 bytes per atom
(52 bytes if forces are accumulated in double

precision)

{ We believe it is possible to model 1000 million

atoms on Paragon undergoing testing in
Beaverton (1000 node machine)

� Current tests show runtimes competitive with other

parallel MD codes

� LJ6-12 potential, 50� 50� 50 lattice (500,000
atoms), T = 0:72, � = 0:8442, Rcut = 2:5,

dt = :00462.

Processors Time per step

4 110.0
8 57.5
16 30.8

32 15.0
64 9.3

'

&

$

%

ornl MSR/Algorithms

Future Work

� Improve caching strategy

� Continue to explore load-balancing with DOLIB

� Enhance performance

� Enhance DONIO to work on larger �les (> 2GBytes)

� Full PVM implementation

� Incorporate DOLIB into PICS GCT Groundwater
model

'

&

$

%

ornl MSR/Algorithms

Limitations

� DOLIB

{ Supports only 1-dimensional arrays. User must
treat multidimensional arrays as 1-D

{ No support for more general objects

{ Caching support only for read-only data (no
attempt to check for cache coherency)

{ Currently very limited PVM cluster support (i.e.,

nearly-homogeneous networks)

� DONIO

{ Current �le size limitation of 2GBytes

{ UNIX compatible I/O only. No support for
Fortran unformatted binary �les

{ User must estimate eventual size of write-only or
read-write �les (with do lsize)

'

&

$

%

ornl MSR/Algorithms

DOLIB Code Fragment

�

�

�

C allocate global storage for matrices

pagesize = 1024

blocksize = 1

ctype = 'double precision' // char (0)

name = 'A(nrowA,ncolA)' // char (0)

call dodeclare(IA, name, nrowA * ncolA,

ctype, pagesize, blocksize)

�

�

�

reqid(nreq) = dobdgather(IA, nsizeA, istrt,

Abuf(1, icol))

�

�

�

call dowait(reqid(nreq))

'

&

$

%

ornl MSR/Algorithms

DONIO Code Fragment

�

�

�

#define IOINIT(myid,nproc)

call donio(myid,nproc)

#define LSEEK dolseek

#define ROPEN(fd, filename)

fd = doopen(filename, rflags,mode)

#define WOPEN(fd, filename)

fd = doopen(filename, wflags,mode)

#define LSIZE(fd, newsize)

call dolsize(fd, newsize)

#define CREAD(fd, ibuffer,nbytes)

call doread(fd, ibuffer, nbytes)

#define CWRITE(fd, ibuffer, nbytes)

call dowrite(fd, ibuffer, nbytes)

#define CCLOSE(fd)

call doclose(fd)

�

�

�

