
ORNL/TM-12744

Engineering Physics and Mathematics Division

Mathematical Sciences Section

DOLIB: DISTRIBUTED OBJECT LIBRARY

E.F. D'Azevedo
C.H. Romine

Mathematical Sciences Section

Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

Date Published: October 1994

Research supported by the Applied Mathematical Sci-
ences subprogram of the O�ce of Energy Research, U.S.
Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

managed by
Martin Marietta Energy Systems, Inc.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-84OR21400

Contents

1 Introduction : 1
2 Previous Work : 2
3 User Interface : 3

do axpby : 4
do declare : 7
do destroy : 9
do disable : 10
do wait : 11
do enable : 12
do gather : 13
do init : 16
do isavail : 17
do scatter : 18
do gsync : 19
do check : 20
do setchsize : 21

4 Implementation Details : 22
4.1 Caching : 23
4.2 Accessing a Global Shared Array : : : : : : : : : : : : : : : : : : 25
4.3 Reclaiming Memory : 26

5 Performance of DOLIB on Intel iPSC/860 : : : : : : : : : : : : : : : : : 26
6 Implementation of DOLIB using Polling : : : : : : : : : : : : : : : : : : 27
7 Summary : 29
8 Obtaining the Software : 29
9 Appendix : 30
10 References : 39

- iii -

DOLIB: DISTRIBUTED OBJECT LIBRARY

E.F. D'Azevedo

C.H. Romine

Abstract

This report describes the use and implementation of DOLIB (Distributed

Object Library), a library of routines that emulates global or virtual shared

memory on Intel multiprocessor systems. Access to a distributed global

array is through explicit calls to gather and scatter. Advantages of us-

ing DOLIB include: dynamic allocation and freeing of huge (gigabyte) dis-

tributed arrays, both C and FORTRAN callable interfaces, and the ability to

mix shared-memory and message-passing programming models for ease of

use and optimal performance. DOLIB is independent of language and com-

piler extensions and requires no special operating system support. DOLIB

also supports automatic caching of read-only data for high performance.

The virtual shared memory support provided in DOLIB is well suited for

implementing Lagrangian particle tracking techniques. We have also used

DOLIB to create DONIO (Distributed Object Network I/O Library), which

obtains over a 10-fold improvement in disk I/O performance on the Intel

Paragon.

- v -

1. Introduction

Distributed memory multiprocessors have proven to be scalable and o�er high

performance. However, the limited memory on each processor node generally

requires programers to perform their own data decomposition, carefully moving

needed data among nodes by explicit message passing. Writing parallel applica-

tion code using message passing is both intricate and error prone. Virtual shared

memory enables a programmer to make full use of the total aggregate (gigabyte)

memory resources while avoiding the di�culties of message passing.

DOLIB (Distributed Object Library) supports virtual shared memory on the

Intel Paragon and iPSC/860 distributed memory supercomputers. DOLIB enables

all processors to operate directly on any part of a distributed global array through

explicit calls to gather and scatter. Advantages of using DOLIB include: dy-

namic allocation and deallocation of huge (gigabyte) distributed arrays, both

C and FORTRAN callable interfaces, and the ability to mix shared-memory and

message-passing programming models for ease of use and optimal performance.

DOLIB is independent of any language or compiler extensions, and requires no spe-

cial operating system support. DOLIB supports automatic caching of read-only

data for high performance.

Section 2 discusses previous work related to DOLIB. In section 3, we describe

the user interface in the form of manual pages for the DOLIB procedures. In

section 4, we provide implementation details of DOLIB, to aid the programmer in

optimizing the use of DOLIB's global arrays. Section 5 illustrates the e�ectiveness

and ease of use of DOLIB with a parallel matrix-matrix multiply. We have also

used DOLIB to create DONIO, the Distributed Object Network I/O Library; details

can be found in D'Azevedo and Romine [1]. DONIO obtains more than a 10-fold

improvement in performance of concurrent disk I/O on the Intel Paragon. Finally,

section 7 gives a short summary and a preview of upcoming developments in

future versions of DOLIB.

- 2 -

2. Previous Work

The performance of virtual shared memory on a distributed memory system re-

quires an e�ective caching strategy. Thus, much of the research into virtual

shared memory, such as Li [2], Li and Hudak [3], and Stumm and Zhou [7], con-

cerns intricate network protocols that maintain cache coherency in the presence

of multiple concurrent updates.

Shiva [4] is a shared virtual memory system for the Intel iPSC/2 hypercube

multiprocessor. Shiva uses the Memory Management Unit (MMU) page fault

mechanism on each Intel i386 node to generate memory requests for remote pages.

The implementation requires low level hardware and operating system support.

The CHAOS library [6] is an attempt to provide support for the parallel solu-

tion of irregular problems; that is, problems whose communication patterns are

not easily predictable. CHAOS is a runtime library that can analyze the pattern of

indirect addressing of arrays (such as x(ia(i)) = x(ia(i)) + y(ib(i)), and

automatically devise an optimized schedule of communication. CHAOS supports

irregular assignment of data arrays to processors by using a globally accessible

translation table to describe the location of elements of the array. The loop itera-

tions are automatically partitioned (or repartitioned) and assigned to processors

(based on trying to optimize the resulting load balance and communication vol-

ume). A preprocessing phase constructs the required communication schedules

for the given distribution of workload and data.

DOLIB avoids the complexity of cache coherency by supporting a restricted

virtual shared memory. Speci�cally, DOLIB assumes that any global array with

caching enabled contains read-only data. If the array is updated, it is the pro-

grammer's responsibility to ush the cache to prevent erroneous results. In many

important applications such as distributed �nite element matrix assembly, paral-

lel sparse matrix factorization and Lagrangian particle tracking, cache coherency

is not an issue. For example, global data such as a ow �eld typically remains

constant throughout a time-step for Lagrangian particle tracking. At the begin-

ning of the next time step, the cache can be ushed to prepare for recomputing

- 3 -

the ow �eld.

In section 4.1, we describe how caching is implemented in DOLIB, and discuss

the DOLIB routines available to the user to control the cache.

3. User Interface

This section provides details on the syntax and behavior of each of the DOLIB

primitives. They form the manual pages for DOLIB.

- 4 -

do axpby

do axpby performs a vector update y(list(:)) � � x(:) + � � y(list(:)) op-

eration into the global shared array y.

Synopsis

void do iaxpby(int Iaf, int nsize, int *list,

int *xarray, int ialpha, int ibeta)

void do daxpby(int Iaf, int nsize, int *list,

double *xarray, double dalpha, double dbeta)

void do biaxpby(int Iaf, int nsize, int start,

int *xarray, int ialpha, int ibeta)

void do bdaxpby(int Iaf, int nsize, int start,

double *xarray, double dalpha, double dbeta)

subroutine doiaxpby(Iaf, nsize, list, xarray,

ialpha, ibeta)

integer Iaf, nsize, list(nsize), xarray(nsize)

integer ialpha, ibeta

subroutine dodaxpby(Iaf, nsize, list, xarray,

dalpha, dbeta)

integer Iaf, nsize, list(nsize)

real*8 xarray(nsize), dalpha, dbeta

subroutine dobiaxpby(Iaf, nsize, start, xarray,

ialpha, ibeta)

integer Iaf, nsize, start, xarray(nsize)

integer ialpha, ibeta

- 5 -

subroutine dobdaxpby(Iaf, nsize, start, xarray,

dalpha, dbeta)

integer Iaf, nsize, start

real*8 xarray(nsize), dalpha, dbeta

Input parameters

Iaf { Iaf is the array descriptor obtained from do declare.

nsize { nsize is number of items involved in the vector update

operation.

list { list holds the index list for the vector update opera-

tion, for those versions of axpby that use it.

start { start is the starting index into the global array refer-

enced by Iaf for the vector update operation, for those

versions of axpby that use it.

xarray { xarray is the (local) bu�er area that holds the values

for the vector update operation.

ialpha, dalpha { ialpha, dalpha is the scaling in xarray.

ibeta, dbeta { ibeta, dbeta is the scaling in the global array.

Description

do axpby (and all of its variants) performs a distributed vector update

operation into the global shared array out of the speci�ed bu�er. The

index set is described in list (do daxpby), or is derived as a contiguous

block of nsize elements starting at index start (do bdaxpby). It is an

error to have nsize � 0.

The axpby operation can be used in assembly of �nite element matrices

into a global sti�ness matrix. The accumulation of individual entries is

performed as a critical section by the owner of the data page and hence

eliminates the need for exclusive access or locking of the global array.

- 6 -

Note that the scatter operation can be implemented as a special case of an

axpby update with � = 1, � = 0.

This is not a synchronous call. The calling process does not wait (block)

until the axpby request is completed. Note that it is an error to access past

the declared array size, gsize, set in do declare.

- 7 -

do declare

do declare allocates a distributed global shared array and returns a de-

scriptor to the distributed object. An implicit global synchronization is per-

formed.

Synopsis

void do declare(int *Iaf, char *name, int gsize,

char *ctype, int pagesize, int blocksize)

subroutine dodeclare(Iaf, name, gsize, ctype,

pagesize, blocksize)

integer Iaf, gsize, pagesize, blocksize

character*(*) name, ctype

Input parameters

name { name is a null terminated character string that distin-

guishes the global array declared. It is used for dis-

playing informative error messages. A null terminated

string can be generated as name = "arrayname" //

char(0) in FORTRAN.

gsize { gsize is the number of items (not bytes) in the global

array.

ctype { ctype is a null terminated character string that de-

scribes the type of the global array. Valid string val-

ues are \int" or \integer", \double", \real*8" or

\double precision" and \char" or \character" (all

either lower or upper case).

pagesize { pagesize is the number of items in a page.

blocksize { blocksize is the number of pages in a block. Note

there are blocksize*pagesize entries in a block.

- 8 -

Output parameter

Iaf { Iaf is a descriptor to the global shared array.

do declare returns a positive value in Iaf on success.

Discussion

do declare allocates a distributed global shared array and returns a de-

scriptor (positive integer) to the distributed object. The array is composed

of �xed-size pages grouped as blocks. If enabled, caching is performed on

a page as a unit. The blocks are distributed among all processors in wrap-

mapped fashion. Actual storage is obtained by malloc() in the C language.

Important note: indexing conforms to the conventions of the language be-

ing used. That is, a global array is indexed with 1:gsize in FORTRAN,

0:(gsize-1) in C. The region of memory is not initialized in any way |

assume it is garbage.

All processors must participate in do declare. An implicit global synchro-

nization is performed.

- 9 -

do destroy

do destroy deallocates global shared resources associated with the array de-

scriptor. An implicit global synchronization is performed.

Synopsis

void do destroy(int Iaf)

subroutine dodestroy(Iaf)

integer Iaf

Input parameters

Iaf { Iaf is the array descriptor obtained from do declare.

Description

do destroy deallocates the global shared resources associated with the ar-

ray descriptor Iaf. Memory is returned to the heap by free() in the C

language.

All processors must participate in do destroy. An implicit global synchro-

nization is performed.

- 10 -

do disable

do disable disables caching of data pages associated with the global array.

Synopsis

void do disable(int Iaf)

subroutine dodisable(Iaf)

integer Iaf

Input parameters

Iaf { Iaf is the array descriptor obtained from do declare.

Discussion

DOLIB supports automatic caching of data pages to reduce communication

and enhance performance. do disable disables caching of data pages in

the global array associated with descriptor Iaf. All data pages associated

with global array descriptor Iaf in the cache are purged.

Important note: it is the programmer's responsibility to disable caching

while the global array can be asynchronously updated. There is no im-

plicit enforcement of cache coherency since only unmodi�ed read-only pages

should be cached.

Purging of data pages in the cache can be done by calling do disableor

by setting the cache size to be zero with do setchsize. Caching can be

turned on by calling do enable.

- 11 -

do wait

do wait blocks and waits till the asynchronous gather request is satis�ed.

Synopsis

void do wait(int reqid)

subroutine dowait(reqid)

integer reqid

Input parameters

reqid { request descriptor returned from an asynchronous

gather operation such as do bgather or do agather.

Description

do wait blocks and waits until the data requested by an asynchronous

gather has been copied into the user bu�er. The request id reqid is re-

leased and invalidated after return from do wait. Calling do wait with an

invalidated request id is an error.

- 12 -

do enable

do enable enables caching of data pages associated with the speci�ed global

array.

Synopsis

void do enable(int Iaf)

subroutine doenable(Iaf)

integer Iaf

Input parameters

Iaf { Iaf is the array descriptor obtained from do declare.

Discussion

DOLIB supports caching of commonly used data pages to reduce communi-

cation and enhance performance. do enable enables caching of read-only

data pages in the global array associated with descriptor Iaf. Caching is

performed on a page (determined by pagesize in do declare) as a unit.

Important note: It is the programmer's responsibility to ensure only read-

only unmodi�ed data is cached. There is no implicit enforcement of cache

coherency since only unmodi�ed read-only pages should be cached. Al-

though not required, a global synchronization (do gsync) is strongly rec-

ommended before calling do enable to ensure correctness.

Purging of data pages in the cache can be done by calling do disableor by

setting the cache size to be zero with do setchsize.

- 13 -

do gather

do gather performs a gather operation out of the global shared array into

the speci�ed bu�er.

Synopsis

void do gather(int Iaf, int nsize, int *list, void *buf)

subroutine doigather(Iaf, nsize, list, buf)

integer Iaf, nsize, list(nsize)

integer buf(nsize)

subroutine dodgather(Iaf, nsize, list, buf)

integer Iaf, nsize, list(nsize)

real*8 buf(nsize)

Input parameters

Iaf { the array descriptor obtained from do declare.

nsize { number of items to be collected in the gather operation.

list { the index list for the gather operation.

buf { the bu�er area to hold the result of the gather operation.

Description

do gather performs a collect operation out of the global shared array into

the speci�ed bu�er. The index set is described in list.

This is a synchronous call. The calling process waits (blocks) until the

gather request is completed. Note that it is an error to attempt access

beyond the declared array size, gsize, set in do declare.

- 14 -

do bgather

do bgather performs an asynchronous block gather operation out of the

global shared array into the speci�ed bu�er.

Synopsis

int do bgather(int Iaf, int nsize, int istart, void *buf)

integer function dobigather(Iaf, nsize, istart, buf)

integer Iaf, nsize, istart

integer buf(nsize)

integer function dobdgather(Iaf, nsize, istart, buf)

integer Iaf, nsize, istart

real*8 buf(nsize)

Input parameters

Iaf { the array descriptor obtained from do declare.

nsize { number of items to be collected in the gather operation.

istart { the starting index for the gather operation. Indices

range from istart to istart + nsize - 1 are col-

lected.

buf { the bu�er area to hold the result of the gather operation.

Description

do bgather performs an asynchronous block gather operation out of the

global shared array into the speci�ed bu�er. The index set ranges from

istart to istart + nsize - 1. This is an asynchronous call with the

function returning an integer request descriptor to be used with do isavail

and do wait. The bu�er buf should be treated as invalid until either

- 15 -

do isavail returns .true. or 1, or until do wait is called. The call-

ing process returns immediately without blocking. It is an error to attempt

access beyond the declared array size, gsize, set in do declare.

- 16 -

do init

do init enables emulation of global shared memory. An implicit global

synchronization is performed.

Synopsis

void do init(int myid, int nproc)

subroutine doinit(myid, nproc)

integer myid, nproc

Input parameters

myid { the unique identi�er for each processor, 0 � myid �

(numproc� 1). On Intel systems, myid can be obtained

from the NX routine mynode().

nproc { nproc is the total number of processors. On Intel sys-

tems, numproc can be obtained from the NX routine

numnodes().

Discussion

do init initializes the DOLIB library and enables the emulation of global

shared memory. do init must be called before any use of DOLIB routines.

An implicit global synchronization is performed.

- 17 -

do isavail

do isavail checks whether the data requested by an asynchronous gather

are available.

Synopsis

int do isavail(int reqid)

logical function doisavail(reqid)

integer reqid

Input parameters

reqid { request descriptor returned from an asynchronous

gather operation such as do bgather.

Description

do isavail returns .true. or 1 if the data requested by an asynchronous

gather are available. The request descriptor reqid is released and is invalid

as soon as do isavail returns .true. or 1. Calling do isavail with an

invalid request descriptor is an error.

- 18 -

do scatter

do scatter performs a scatter (distributed copy) operation into the global

shared array out of the speci�ed bu�er.

Synopsis

void do scatter(int Iaf, int nsize, int *list, void *buf)

subroutine doiscatter(Iaf, nsize, list, buf)

integer Iaf, nsize, list(nsize)

integer buf(nsize)

subroutine dodscatter(Iaf, nsize, list, buf)

integer Iaf, nsize, list(nsize)

real*8 buf(nsize)

Input parameters

Iaf { the array descriptor obtained from do declare.

nsize { number of items involved in the scatter operation.

list { the index list for the scatter operation.

buf { the bu�er area that holds the values to be scattered.

Description

do scatter performs a distributed copy operation into the global shared

array out of the speci�ed bu�er. The index set is described in list. It is

an error to have nsize � 0.

This is an asynchronous call. The calling process does not wait (block) until

the scatter request is completed. Note that it is an error for do scatter to

attempt to access beyond the declared array size, gsize, set in do declare.

- 19 -

do gsync

do gsync performs an explicit global synchronization of all the processors.

When the do gsync operation is completed, all previously called DOLIB op-

erations are guaranteed to have completed.

Synopsis

void do gsync()

subroutine dogsync

Discussion

The do gsync routine synchronizes the processors and ensures that all ac-

tive or pending DOLIB routines (including all do gather, do scatter, and

do axpby operations) have completed. do gsync is useful for avoiding po-

tential race conditions (such as when a do scatter is immediately followed

by a do gather).

Application codes can freely mix DOLIB with other parallel programming

primitives (such as PICL and PVM calls) when desired; however, before mak-

ing calls to routines in these libraries, do gsync should be called to purge

processor bu�ers of any messages relating to DOLIB.

- 20 -

do check

do check causes the calling processor to check its message queue for any

pending DOLIB requests. If any are found, they are processed before do check

returns.

Synopsis

void do check()

subroutine docheck

Discussion

The do check routine causes the calling processor to satisfy all pending

DOLIB requests in its message queue. do check is a no-op in the Intel

multiprocessor version of DOLIB, since the interrupt handler causes all in-

coming requests to be processed. However, for the polling version of DOLIB

(see section 6), do check is provided so that the programmer can prevent

a starvation condition or increase the frequency with which DOLIB requests

are handled to enhance performance.

- 21 -

do setchsize

do setchsize sets the size of the cache in terms of number of pages to be

cached. do setchsize returns the previous cache size.

Synopsis

int do setchsize(int npages)

integer function dosetchsize(npages)

integer npages

Input parameters

npages { npages is the size of cache in terms of number of pages

to be cached.

Discussion

DOLIB supports automatic caching of commonly used data pages to re-

duce communication message tra�c and enhance performance. A common

shared cache pool is used even though page size for each global array may

be di�erent. A larger cache would yield a better \hit ratio" but require

more memory and entail a higher overhead for associative searching. The

programmer can set the cache size appropriate for a speci�c application for

optimal performance.

Note setting the cache size to be zero is a fast way of purging the entire

cache.

- 22 -

4. Implementation Details

DOLIB is designed to provide support for globally shared arrays in a distributed-

memory environment. In this section, we describe some of the design decisions

made that may a�ect the performance of application codes that use DOLIB.

DOLIB views a large global array as composed of �xed size pages stored in

a block wrapped fashion across all processors. This page structure simpli�es

caching, which is vital for good performance. The restriction to a block wrapped

mapping allows DOLIB to easily �nd the location (processor number and machine

address) of any array element. Pages can be easily malloc'ed or free'ed.

DOLIB for the Intel iPSC/860 and Paragon machines is implemented using

the IPX (Inter Process eXecution) [5] system developed at Brookhaven National

Laboratory.1 This version of DOLIB (and IPX) relies heavily on a reliable interrupt

mechanism provided by hrecv on Intel multiprocessors. If a processor makes a

call to do gather, DOLIB �rst determines where (on which other processors) the

requested data reside. For example, suppose that processor A requires data

residing on processors B and C. do gather causes processor A to send message

requests that interrupt processors B and C from regular computation. These

processors package the requested data and send reply messages back to Processor

A. They then exit this \interrupt" mode and resume regular computation. At no

time is the thread of regular computation \aware" of the interruption. However,

when the interrupt mode is entered and assumes control of the processor, there

may be two detrimental e�ects on the regular computation. First, data that

reside in the hardware cache may be discarded during interrupt processing, thus

increasing memory access time when regular computation is resumed. Second, if

the regular computation involves pipelined oating point operations, the pipeline

will be interrupted, thus increasing the overhead in reloading the pipe when

regular computation is resumed.

The do scatter operation involves a similar sequence of messages as the

1IPX is available by anonymous FTP from the site msg.das.bnl.gov under the directory

/pub/ipx.

- 23 -

do gather.

The important facility provided by Intel's hrecv primitive is that all such

signals are caught. For example, if processor B in the example above receives

another interrupt while processing the one from processor A, the new interrupt is

queued and then processed before processor B returns to normal execution mode.

We will discuss these operations in more detail later in this section.

We have also developed a version of DOLIB (based on a polling version of IPX)

that does not require a preemptive interrupt mechanism. In section 6, we discuss

the implementation of DOLIB in the absence of such reliable signal handling.

DOLIB must be initialized with a call to do init before any other DOLIB calls

can be made. The DOLIB routine do declare de�nes a new global shared array.

The user provides: the global array size (total number of elements); the data type

(double or real*8, int or integer, char or character); the number of data

items per page (page size) and the number of pages per block (block size); and a

name for the array (to allow for useful error messages), though accessing the array

is always done through the array descriptor that is returned from do declare.

Since memory for the new global array is immediately allocated and the values of

the resulting local data addresses are shared among the processors, do declare

implicitly synchronizes the processors. Thus, all processors must participate in

the do declare operation.

4.1. Caching

Caching is disabled by default when an array is declared. The DOLIB routine

do enable enables caching of the indicated array. There is a single cache for all

the global arrays that have had caching enabled. The DOLIB routine do setchsize

can be used to specify the maximum size (number of cache pages) in the cache,

which currently defaults to 128. The do setchsize function returns the previous

cache size. Note that for a given amount of memory there is a tradeo� between

the number of cache pages allowed and the size of each page in the array. Both

are chosen at run time, allowing the user to optimize the use of the cache for the

- 24 -

given application. Moreover, since the pagesize of a global array is set when it is

declared, the pages in the cache may be of di�erent sizes. For the Intel iPSC/860

and Paragon machines, a page size of 8Kbytes is reasonable.

Important note: Some patterns of accessing a global shared array may be

unexpectedly memory-intensive. For example, consider a do gather operation

in which a single element of every page in the array is requested. The page

containing each element is returned to the requesting processor, causing a copy

of the entire global array to be temporarily created. For large arrays, such an

operation may overow the available memory, causing an error.

DOLIB makes no attempt to maintain cache coherency across processors. It is

the user's responsibility to ensure that any information that is cached is read-only.

The user may ush the cache pages associated with any given array by calling

do disable. No implicit synchronization is done in do disable, though the

utility of selectively disabling caching of an array on some processors is unclear.

To illustrate the utility of do enable / do disable, consider the problem of

tracking particles along characteristics of a changing ow �eld, where the ow

�eld is stored in a global shared array. Throughout a given time step, the ow

�eld is assumed constant (and hence, read-only data). After all particles have

been tracked in the given time step, the ow �eld must be updated for the next

time step. Since the ow �eld is no longer read-only data, the cache should be

purged of the ow �eld by calling do disable. After the new ow �eld has been

computed and stored in the global array, caching can be re-enabled for the ow

�eld with do enable.

To purge the entire cache without the necessity of disabling caching on each

global array individually, the user can simply set the cache size to 0 using

do setchsize (the previous value is returned by the function), and then reset it

to its previous value.

- 25 -

4.2. Accessing a Global Shared Array

The main DOLIB routines that access the globally shared arrays are do gather,

do scatter and do axpby. The do axpby routine implements the operation y

�x+�y, where � and � are constants, y is a globally shared array in DOLIB, and x

is a local vector. do axpby is a powerful and exible primitive, and is commonly

used in such contexts as �nite element matrix assembly.

When a processor (say, processor A) calls the do gather routine requesting a

list of elements from a global shared array, the index list is processed to determine

where the requested data reside. (If one of the contiguous block versions is called,

the starting index and number of items is treated similarly). Items that are not

local to processor A are obtained from other processors using the IPX get array

call. The information exchanged among the processors during the do declare

allows processor A to compute the machine address on the remote processors

where the data reside. Using this address, the get array call interrupts the

remote processor, forcing it to return a message containing a copy of that data.

DOLIB provides both synchronous and asynchronous versions of the gather

operation. The synchronous version causes the calling processor to block until

the gather has been completed. The asynchronous version returns control imme-

diately to the calling processor, providing a request descriptor as return value.

The calling processor can then query the status of the asynchronous gather us-

ing do isavail (with the request descriptor) to determine whether the gather

has been completed. Calling do wait will force the processor to block until the

speci�ed gather has been completed. The asynchronous call is provided to allow

for overlapping of communication with computation; however, the user should be

aware that there is some overhead associated with creating a request descriptor

and allocating memory to contain the returned pages. The asynchronous version

may be more expensive overall in cases where there is little chance of overlapping

communication with computation.

Given a list of values for the local array x and a corresponding list of array

indices for the global array y, do axpby accumulates the updated values to the

- 26 -

appropriate location in the global array. Global array references that reside on

the calling processor (say, processor A) are done directly by assignment to mem-

ory; the others require message passing, as follows: Processor A determines the

owner processor id, block number, page number and page o�set for each array

reference, grouping those belonging to the same processor for e�ciency. Then A

sends an interrupt message to each such processor (say, B and C), followed by

a message containing the necessary values and indices. The interrupt message

induces processors B and C to complete the do axpby operation with the values

contained in the second message.

The procedure for implementing do scatter is identical to that of the do axpby

routine. Indeed, the DOLIB do scatter routine is simply a do axpby call with

� = 1 and � = 0.

Warning: If a do scatter operation is immediately followed by a do gather

operation, a race condition may ensue, and old values (before the do scatter

has completed) may be returned to the do gather call. A do gsync should be

called in between the do scatter and do gather to prevent this type of error.

4.3. Reclaiming Memory

One major advantage of DOLIB is the ability to dynamically create and destroy

global shared arrays. When an array is no longer needed, do destroy will free all

memory allocated to the array, including cache pages associated with the given

array. To avoid inconsistent views of the array, the processors are �rst synchro-

nized (to ensure that any outstanding gather requests are satis�ed), and then

the data structures for the array are destroyed. This implies that all processors

must participate in the do destroy operation.

5. Performance of DOLIB on Intel iPSC/860

DOLIB is currently implemented using the IPX message system developed at

Brookhaven National Laboratory. IPX relies heavily on the hrecv() preemptive

- 27 -

interrupt capability on Intel multiprocessors. Access cost to emulated shared

memory is due in part to the overhead in DOLIB, IPX and the underlying NX

message delay. In this section, we illustrate the performance and use of DOLIB in

the context of a parallel matrix-matrix multiply algorithm. The RATFOR source

is included in the Appendix.

The algorithm computes the matrix product C = A � B where matrix A is

N �M and B is M �M on P processors. The computation proceeds by block

row partition of A among processors. Block columns in matrix B are gathered

to generate parts of matrix C by calling the BLAS routine dgemm. The volume of

communication for each processor is O(NM=P) for gathering matrix A, O(M2)

for gathering B and O(NM=P) for scattering results back to matrix C.

Tables 5.1 and 5.2 display the run time (in seconds) on an Intel iPSC/860

with 8Mbytes of memory on each node. The run times are measured by calling

the NX dclock() routine. The items gathA, gathB, scattC, dgemm denote the

maximum communication time among all processor to gather A, to gather B to

scatter C and the computation time in the level 3 BLAS dgemm. The total time is

the elapsed time from a gsync() at the start of the algorithm to another gsync()

at the end.

The matrix dimension N a�ects the data distribution of the global matrices

A and C since data pages are assigned to processors in a wrapped fashion. If

N is exactly divisible by P (mod(N;P) = 0), then all references to matrices A

and C are satis�ed locally on each processor without external communication.

This is reected in the faster times for the gather of A and scatter of C for

N = 1440; 19200 in Table 5.1 and N = 1920; 37440 in Table 5.2.

6. Implementation of DOLIB using Polling

The version of DOLIB for the Intel iPSC/860 and Paragon machines relies heavily

on the reliable interrupt handling capabilities of Intel's multiprocessors. We have

implemented a version of DOLIB that relies on explicit polling of the message queue

to service DOLIB requests. However, there are several requirements imposed on

- 28 -

Table 5.1: 16 nodes on ipsc/860

(N,M) gathA gathB scattC dgemm total time

(1440,1440) 1.1 15 2.1 12 36
(1441,1441) 4.2 16 4.2 12 42
(19200,160) 0.13 1.0 1.2 1.9 4.2
(19201,160) 2.7 1.4 2.0 2.0 7.9

Table 5.2: 32 nodes on ipsc/860

(N,M) gathA gathB scattC dgemm total time

(1920,1920) 1.5 29 2.9 15 61
(1921,1921) 6.2 30 12 15 75
(37440,160) 0.14 1.2 1.2 2.0 4.4
(37441,161) 3.6 2.3 2.1 1.9 9.2

the user of this version of DOLIB.

First, every DOLIB routine starts by checking its receive queue for DOLIB re-

quests that must be satis�ed. Hence, as long as all processors are executing DOLIB

routines on a regular basis, performance should be largely una�ected. However,

if any of the processors fails to call DOLIB routines, it will not check its receive

queue for DOLIB requests, thus starving any processors attempting to access its

array elements. Note that this is not a problem under the Intel version of DOLIB,

since the interrupt handler forces the processor to handle incoming requests.

The do check routine is provided to allow the programmer to force a processor

to check its input queue for DOLIB requests. The do check routine is a no-op

under the Intel version of DOLIB.

Our initial port of DOLIB to PVM (using a translation of IPX) is complete; how-

ever, because the IPX get array routine is unaware of data types and treats all

arrays as a sequence of bytes, DOLIB assumes a consistent integer and double pre-

cision format. Hence, currently only heterogeneous networks containing machines

that agree on these formats (such as Sun Sparcstations and IBM RS/6000's) are

- 29 -

supported. We are currently rewriting DOLIB to use the PVM3.3 message passing

library directly. When this is completed, DOLIB will provide a shared-memory

programming paradigm for a wide variety of platforms, including fully heteroge-

neous clusters of workstations.

7. Summary

We have described the design and implementation of DOLIB, a library of routines

that support virtual shared memory on the Intel family of distributed memory

machines. DOLIB provides access to globally shared arrays through the explicit

use of gather and scatter primitives. Globally shared arrays are dynamically

created and destroyed by the user application, thus allowing e�cient use of the

available aggregate memory on the multiprocessor. DOLIB also supports auto-

matic caching of read-only memory, to increase the e�ciency of global shared

memory by reducing the amount of message passing required.

We provided two illustrations of the use of global shared memory: a matrix-

matrix multiplication routine, and faster concurrent I/O using a library called

DONIO. These examples show that global shared memory can be an e�ective

means of providing the shared-memory programming paradigm on distributed

memory machines.

8. Obtaining the Software

To obtain the source code for DOLIB, the reader should send email to the authors:

efdazedo@msr.epm.ornl.gov or rominech@ornl.gov.

Acknowledgements

The authors would like to express appreciation to Bob Marr, Ron Peierls and Joe

Pasciak for the IPX package, which simpli�ed the development of DOLIB.

- 30 -

9. Appendix

In this appendix, we list FORTRAN source code to illustrate the use of the DOLIB

primitives. The source code given here is for the matrix-matrix multiplication

example discussed in section 5.

#include "stdinc.h"

#define logdev (10+myid)

#define DEFAULT_ISIZEB 8

/* *** */

/* perform matrix-matrix multiply with explicit gather */

/* *** */

program pllmat

{

intrinsic abs, max, min;

#define eps 1.0d-5

#define isnear(x,y) (abs((x)-(y)) <= eps*max(one,max(abs(x),abs(y))))

real8 cij, gcij;

#if AIX || IBM || RS6K || RIOS

#define EXTRA_UNDERSCORE 1

#endif

#ifdef PICL_VERSION

#ifdef EXTRA_UNDERSCORE

#define OPEN0 open0_

#define BCAST0 bcast0_

#define GSUM0 gsum0_

#define GMAX0 gmax0_

#else

#define OPEN0 open0

#define BCAST0 bcast0

#define GSUM0 gsum0

#define GMAX0 gmax0

#endif

#define IROOT 0

#define GMAX0_MSGTYPE 88888

#define GSUM0_MSGTYPE (GMAX0_MSGTYPE+1)

- 31 -

#define DOUBLE_TYPE 5

#define DOUBLE_BYTES 8

#define INTEGER_TYPE 3

#define INTEGER_BYTES 4

#define STOP(message) { call CLOSE0(); stop message; };

#define GDHIGH(dvalue) { \

call GMAX0(dvalue, 1, \

DOUBLE_TYPE, GMAX0_MSGTYPE, IROOT); \

call BCAST0(dvalue, DOUBLE_BYTES, DOUBLE_TYPE, IROOT); \

};

#define GISUM(ivalue) { \

call GSUM0(ivalue, 1, INTEGER_TYPE, GSUM0_MSGTYPE, IROOT); \

call BCAST0(ivalue, INTEGER_BYTES, INTEGER_TYPE, IROOT); \

};

#define DCLOCK CLOCK0

#define masktrap(mask) (mask)

#else

/* NX version */

integer mynode, numnodes;

external mynode, numnodes;

#define STOP(message) { stop message; };

#define GDHIGH(dvalue) { call gdhigh(dvalue, 1, dwork); };

#define GISUM(ivalue) { call gisum(ivalue, 1, iwork); };

#define DCLOCK dclock

integer masktrap;

external masktrap;

#endif

real8 dwork;

#define BDZERO(nsize, dvec) { call dcopy(nsize,dzero,0,dvec,1); }

integer dobdgather;

external dobdgather, dodgather;

integer oldsize, setchsize;

external setchsize;

integer oldmask;

STRING ctype;

STRING name;

- 32 -

STRING fmt;

integer pagesize, blocksize;

logical ismine;

integer irem, iwork;

integer myid, nproc, host;

real8 DCLOCK;

external DCLOCK;

real8 tstart, tend, ttotal, tmegflops;

real8 tstartA, tgatA, tstartB, tgatB, tstartC, tscatC,

tstartG, tgemm;

real8 tlocal;

integer indev, outdev;

parameter(indev = 5, outdev = 6);

real8 one, dzero;

parameter(one = 1.0, dzero = 0.0);

real8 alpha, beta;

character *1 transA;

character *1 transB;

integer iseed;

real random;

external random;

/* allocate 2Meg for local buffers */

integer maxmem;

parameter(maxmem = 2 * 1024 * 1024 / 8)

real8 dmem(maxmem);

integer imem(maxmem * 2);

equivalence(dmem, imem);

integer Iidx;

#define idx(i) imem((Iidx-1) + (i))

integer maxrequest;

parameter(maxrequest = 2 * 1024);

integer preid(maxrequest), reqid(maxrequest);

integer lastcol, nprefreq;

real8 ddummy;

integer i, j, k, ii, jj, kk;

integer isize, isizeA, isizeB;

integer istrtA, iendA, nsizeA;

integer istrtB, iendB, nsizeB;

integer nsize, ip, istrt, jstrtA, jendA, nreq, ncount,

- 33 -

ichunk, jstrtB, jendB, jsizeB, irow, icol;

logical spaceok;

integer Ifree, IA, IB, IC;

integer IAbuf, IBbuf, ICbuf;

integer nrowA, ncolA, nrowB, ncolB, nrowC, ncolC;

#define ALLOC(IA, isize) { \

IA = Ifree; Ifree = Ifree + isize; \

ASSERT(Ifree <= maxmem, 'insufficient memory',maxmem); \

}

#define FREE(IA, isize) { \

ASSERT(IA + isize == Ifree, \

' ** can only free last allocated array ', IA); \

Ifree = IA; IA = 0; \

}

#define IALLOC(Ip, isize) { \

ALLOC(Ip, ((isize/2) + mod(isize,2))); \

Ip = (Ip-1)*2 + 1; \

}

#define IFREE(Ip, isize) { \

ASSERT(mod((Ip-1),2) == 0, \

' ** IFREE: invalid Ip ', Ip); \

Ip = (Ip-1)/2 + 1; \

FREE(Ip, ((isize/2) + mod(isize,2))); \

}

#ifndef index2

#define index2(i,j, nrow,ncol) ((i)+((j)-1)*(nrow))

#endif

#define A(i,j) dmem((IA-1) + index2(i,j, nrowA,ncolA))

#define B(i,j) dmem((IB-1) + index2(i,j, nrowB,ncolB))

#define C(i,j) dmem((IC-1) + index2(i,j, nrowC,ncolC))

#define Abuf(i,j) dmem((IAbuf-1) + index2(i,j, nsizeA,ncolA))

#define Bbuf(i,j) dmem((IBbuf-1) + index2(i,j, nrowB,isizeB))

#define Cbuf(i,j) dmem((ICbuf-1) + index2(i,j, nsizeA,isizeB))

integer IAtmp, IBtmp, ICtmp;

#define Atmp(i) dmem((IAtmp-1)+(i))

#define Btmp(i) dmem((IBtmp-1)+(i))

#define Ctmp(i) dmem((ICtmp-1)+(i))

/* initialize */

#ifdef PICL_VERSION

- 34 -

call OPEN0(nproc, myid, host);

#else

myid = mynode();

nproc = numnodes();

#endif

call doinit(myid, nproc);

/* read in matrix sizes, may be rectangular matrices */

nrowA = 0;

ncolA = 0;

ncolB = 0;

if (myid == 0) {

write(outdev, *) ' Enter nrowA, ncolA, ncolB ';

read(indev, *) nrowA, ncolA, ncolB;

write(outdev, *) ' nrowA,ncolA,ncolB',

nrowA, ncolA, ncolB;

};

GISUM(nrowA);

GISUM(ncolA);

GISUM(ncolB);

nrowC = nrowA;

ncolC = ncolB;

nrowB = ncolA;

isizeA = nrowA / nproc;

irem = nrowA - isizeA * nproc;

if (irem != 0) {

isizeA = isizeA + 1;

};

istrtA = 1 + myid * isizeA;

iendA = min(nrowA, istrtA + isizeA - 1);

nsizeA = max(0, iendA - istrtA + 1);

isizeB = max(1, min(DEFAULT_ISIZEB, ncolB / nproc));

irem = ncolB - nproc * isizeB;

if (irem > 0) {

isizeB = isizeB + 1;

};

/* allocate global storage for matrices */

/* Note: null terminated strings even in Fortran */

pagesize = 1024;

blocksize = 1;

ctype = 'double precision' // char (0);

- 35 -

name = 'A(nrowA,ncolA)' // char (0);

pagesize = isizeA;

call dodeclare(IA, name, nrowA * ncolA,

ctype, pagesize, blocksize);

name = 'B(nrowB,ncolB)' // char (0);

pagesize = nrowB;

call dodeclare(IB, name, nrowB * ncolB,

ctype, pagesize, blocksize);

name = 'C(nrowC,ncolC)' // char (0);

pagesize = isizeA;

call dodeclare(IC, name, nrowC * ncolC,

ctype, pagesize, blocksize);

/* initialize matrices */

Ifree = 1;

ALLOC(IAtmp, nrowA);

iseed = 13;

doloop(j, 1, ncolA) {

ismine = (mod(j, nproc) == myid);

if (ismine) {

doloop(i, 1, nrowA) {

Atmp(i) = one / dble(i + j - 1);

};

istrt = index2(1, j, nrowA, ncolA);

call dobdscatter(IA, nrowA, istrt, Atmp(1));

}; /* end if (ismine) */

}; /* end do j */

FREE(IAtmp, nrowA);

ALLOC(IBtmp, nrowB);

iseed = 17;

doloop(j, 1, ncolB) {

ismine = (mod(j, nproc) == myid);

if (ismine) {

doloop(i, 1, nrowB) {

Btmp(i) = i + (j - 1) * nrowB;

};

istrt = index2(1, j, nrowB, ncolB);

- 36 -

call dobdscatter(IB, nrowB, istrt, Btmp(1));

}; /* end if (ismine) */

}; /* end do j */

FREE(IBtmp, nrowB);

ALLOC(ICbuf, nsizeA * isizeB);

BDZERO(nsizeA * isizeB, Cbuf(1, 1));

ALLOC(IAbuf, nsizeA * ncolA);

/* make sure all initializations to global matrix is complete */

tgatA = 0.0;

tgatB = 0.0;

tscatC = 0.0;

tgemm = 0.0;

call dogsync();

tstart = DCLOCK();

iendA = min(nrowA, istrtA + isizeA - 1);

nsizeA = max(0, (iendA - istrtA + 1));

/* perform gather */

tstartA = DCLOCK();

ichunk = 2 * nproc;

doloop4(jstrtA, 1, ncolA, ichunk) {

jendA = min(ncolA, jstrtA + ichunk - 1);

nreq = 0;

doloop(icol, jstrtA, jendA) {

nreq = nreq + 1;

istrt = index2(istrtA, icol, nrowA, ncolA);

reqid(nreq) = dobdgather(IA, nsizeA,

istrt, Abuf(1, icol));

};

doloop(j, 1, nreq) {

call dowait(reqid(j));

};

}; /* end do j */

tgatA = tgatA + (DCLOCK() - tstartA);

ALLOC(IBbuf, nrowB * isizeB);

doloop4(istrtB, 1, ncolB, isizeB) {

iendB = min(ncolB, istrtB + isizeB - 1);

- 37 -

nsizeB = (iendB - istrtB + 1);

ASSERT((1 <= nsizeB) & (nsizeB <= isizeB),

' ** invalid nsizeB ', nsizeB);

/* perform gather of B */

tstartB = DCLOCK();

/* one long continguous gather */

call dowait(dobdgather(IB, nrowB * (iendB - istrtB + 1),

index2(1, istrtB, nrowB, ncolB),

Bbuf(1, 1)));

tgatB = tgatB + (DCLOCK() - tstartB);

/* perform computation */

tstartG = DCLOCK();

alpha = 1.0;

beta = 0.0;

transA = 'N';

transB = 'N';

oldmask = masktrap(1);

call dgemm(transA, transB,

nsizeA, nsizeB, nrowB,

alpha, Abuf(1, 1), nsizeA,

Bbuf(1, 1), nrowB,

beta, Cbuf(1, 1), nsizeA);

tgemm = tgemm + (DCLOCK() - tstartG);

oldmask = masktrap(0);

/* scatter back into C */

tstartC = DCLOCK();

doloop(jj, 1, nsizeB) {

icol = istrtB + (jj - 1);

istrt = index2(istrtA, icol, nrowC, ncolC);

call dobdscatter(IC, nsizeA, istrt,

Cbuf(1, jj));

};

tscatC = tscatC + (DCLOCK() - tstartC);

}; /* end do istrtB */

FREE(IBbuf, nrowB * isizeB);

/* clean up */

- 38 -

FREE(IAbuf, nsizeA * ncolA);

FREE(ICbuf, nsizeA * isizeB);

tlocal = (DCLOCK() - tstart);

call dogsync();

tend = DCLOCK();

ttotal = tend - tstart;

if (myid == 0) {

write(outdev, *) ' total time is ', ttotal;

tmegflops = 1.0 d - 6 * nrowC * ncolC * ncolA;

write(outdev, *) ' aggregate MFLOP rate is ',

tmegflops / ttotal, ' on ', nproc, ' processors ';

};

GDHIGH(tgatA);

GDHIGH(tgatB);

GDHIGH(tscatC);

GDHIGH(tgemm);

GDHIGH(tlocal);

if (myid == 0) {

write(outdev, 9000) myid, tgatA, tgatB, tscatC;

9000 format('myid,tgatA,tgatB,tscatC', i4, 3(1 pg12 .2, 1 x));

write(outdev, 9010) myid, tgemm, tlocal;

9010 format('myid,tgemm,tlocal', i4, 2(1 pg12 .2, 1 x));

};

call dodestroy(IA);

call dodestroy(IB);

call dodestroy(IC);

STOP('ALL DONE');

}

end

- 39 -

10. References

[1] E. F. D'Azevedo and C. H. Romine, DONIO: Distributed object network

I/O library, Tech. Report ORNL/TM-12743, Oak Ridge National Laboratory,

1994.

[2] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessor, PhD the-

sis, Yale University, 1986.

[3] K. Li and P. Hudak,Memory coherence in shared virtual memory systems,

ACM Transactions on Computer Systems, 7 (1989), pp. 321{359.

[4] K. Li and R. Schaefer, Shared virtual memory for a hypercube multiproces-

sor, in The Proceedings of the Fourth Conference on Hypercubes, Concurrent

Computers and Applications, March 1989, Monterey California, Golden Gate

Enterprises, Los Altos, California, 1989, pp. 371{378.

[5] B. Marr, R. Peierls, and J. Pasciak, IPX { Preemptive remote proce-

dure execution for concurrent applications, tech. report, Brookhaven National

Laboratory, 1994.

[6] S. Sharma, R. Ponnusamy, B. Moon, Y.-S. Hwang, R. Das, and

J. Saltz, Run-time and compile-time support for adaptive irregular problems.

Submitted for Publication.

[7] M. Stumm and S. Zhou, Algorithms implementing distributed shared mem-

ory, IEEE Computer, (May 1990), pp. 54{64.

