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The purpose of this research is to understand language acquisitiom.
There has been a great deal of research on first language acquisition in
children, second language learning by adults, and learning of artificial
languages by laboratory subjecté. The principle goal of this research is
not gecting more experimental evidence. Rather it is td develop a working
computrer simulation model that can learn natural languages. The model
would attempt to explain the already available set of experimental facts.

It is also hoped that such a model would be a contribution to tHe artificial
intelligence goal of developing language understanding systems.

Some of the detailed plans of the research are described in the
accompanying grant proposal that was awarded by NIMd (grant number 1 RO 1
MH26383~01). The period of this award is May 1, 1975 to May 1, 1977. That
proposal states an intention to use Augmented Transition Networks as the
basic grammatical formalism. I have already completed some initial learning
programs using the augmented transition network formalism. The very earliest
of this work is describéd in the NIMH proposal. More recently I have decided
to try to develop a production system formalism asAan alternate to the

augmented transition network. There are three main reasons for this switch
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in representational formalism. First, I think it is easier to represent
the grammatical knowledge contained in highly inflected languages (eg.,
Finniéh, Latin) by production systems rather than augmented transition
networks. Second, T think it is easier to represent human information
processing limitations in terms of production systems, Third, I think
production systems serve as a ﬁeans‘of representing non-linguistic proced-
ures such as inference-making. Thefefore, a theory of ipduction of pro-
duction systems for language has the promise of generalizing to the induc;
tion of other human cognitive skills.

I have been using the SUMEX facility in a pilot project this
summer. 1 have been bringing up a2 version of my production system called
ACT on this facility. It is hoped that in a few months this program will

be in a sufficiently developed form that other SUMEX users may use that

t—

production systen. t uses an associative network representation as its
basic datz base, This is a variant of the HAM propositional network that

I developed earlier and is described in the accomﬁanying proposal (p. 23 -
27). 1In the ACT system various portions of the network are active at any
point.of time. The productions look for patterns of activation in the net-
work, If these patterns exist, the productions are executed causing exter-
nal actions to be taken, building network structure, and possibly changing
the state of activation of the network, Activation spreads associatively
through the network and thefé is also a dampening process which deactivates
network structure. A preliminary description of the ACT system is given

in the accompanying document "An Overview of ACT.” It is a chapter from a

forthcoming book. The most relevant section in that chapter is from pages

11 to 25.



7

It was originally projected that this simulation work would

o
L

performed on the Michigan Computer System. However, there are a number
advantages of the SUMEX-ALM facility. All the programming will occur
in LISP. The INTERLISP system in SUMEX, as surmised from my own experi-
entation, permits programming and debugging t© progress at least twice
as fast as with Michigan LISP. Also programs in INTERLIS? Qould be more
available to other A.L. users than programs in Michigan LISP. The Michigan
computer is isolated from the national A.I. community whereas I can take
advantage of the connections SOMEX-AIM has through the TYMNET and the
ARPANET. Finally, the éUMEX—AIM facility provides free éomputing resources
and so will relieve some of the-strain fron my tight resesarch budget.

1t is intended that there will be continued development and
testing of this prqduction system formalism as a model of human information
processing. There are plans to build substantial ACT production system

models for language generation and understanding.and for inference making.



C.3.

C.4.

C.5.

Responsas to SUMEX-ATIM Questionnaire

Read the accompanying proposal.

The research is currently supported by a grant from NIMH (grant
number 1 RO 1L MH 26383-01) for the period May 1, 1975 to May 1,
1977. The amount of the award for the first year is $20,000,
This is to pay for a programmer, computer time, and rental of a
terminal.

Read the accomparmying proposal.

It 1s expacted that this research will have some general contribution

to make to development of language understanding systems, modeling
human cognitive processes, and development of production systems.

None

There should be no difficulty in making my programs generalfy/
available to users of SUMEX-ATM. '

Yes
Yes
Read next to last paragraph in accompanying proposal.

The INTERLISP language on SUMEX is the principle requirement of my
research. I do not anticipate requiring any additional systems
programs not already available at SUMEX.

Estimated requirements per month:

100 connect hours
2 CPU hours e 7
R S
1500 file pages Lw}‘ 1 “? 5
s W
The principle times of use in Ann Arbor would probably be 0600-0900
and 1800-2100

1 intend to cowmunicate with SUMEX via the TYMNET. I would either
use the private node in Ann Arbor or the public node in Detroit.
The toll cost to Detroit could be met from my current grant as
could the cost of terminal rental.

Not really relevant
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Special Note
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I am in the second year of an exchange visitor's visa. I can renew

the visa for another year. My wife, an American citizen, is currently petitioning

to have my status changed to that of a permanent resident. Therefore, 1 )
will be able to be at the University of Michigan for the entire period of the
proposed research.



COPUTIR SDMUULATION OF LANGUAGE ACQUISITION

Most sicply stated, the purpose of this ressarch is to undersiend language
scquisition, There has been a great deal of research on first lenguage acqui-
sition in children, second language learning by adults, and learning of erti.-
ficial longuages by laboratory subjects. Tais research ic not principall:
concernad with getting more experimental evidence., ZRaiher it Is concerned with
developing an infTormation-processing modal thet can be usad to expizain the
already available sebt of experimental f&:ts. One of the orincipal concerns
governing trhe design of this model is just that it be zble to leera a natural
language. I will show that this, in itself, is a very significent goal.

or with. 2 set of 2

tool tc Zfzvelopn on

computer simuiatio gua cguis i =d LAS

(en acreonym for Languags Ac quls¢t101 §ystem) Most of the proposed budget is

concernad with supportin ”mfhe development of this program, Input to LAS con-

sists of sentences of the lenguage pairsd with repressntations of their
meaning. Therefore, it simulates langusge learning in siiuetions where a

learner cen figure out the meening of the sentence from conte"u. The simplest
case of such & situation would be one in which the learner is presented with
simple pictures end sentences describing them. The progranm counsiructs a
gramrar which allows it to go from sentences to representaticns ol their under-
lying meaning. The gramrar can also be used to generate sentences to convey
meanings. It is also heped that this program will meke a contribution to the
evolution of computer language understending systems. Thus, the researc
really has two purposes, onein‘psycnology and one in artificial intelligence,

I became interested in language acquisition as a conseguence of my WOrk
with & computer simulation model of human memory. This progrem is described
in a book by myself and Gordon Bower entitled H 1 The

iz

on-ansvaring. The
£ the nwzen fact-
expericants., A

c
computer progrem was an attempt to simulate sim: le cuesti
principal purpose of that research was to develo op &a 1
retrizvel system {called HAM) and test it in a seri
version of HAM is used within LAS. HAM's systex 1

understander waich was capable. of dealing with a res
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subset of English and which was capable of using memory to disambiguate and
to resolve reference. [Hevertheless, it was relsd inel Prlhlb‘f’ in its capa-
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hilities compared to the work of Schank (1873); Winograd (1972); or Woods {1970).
As o resulld of vy own experiences and sbudying the more sophisticated systens,
I became pessimistic about the value of representing humen languoge understand-
ing in terms of o computer program. To rapreseant the unbounded linguistic coa-
petence of the humen would seem to require alzost unlimited recms of computer
prozran, Rather, I decided that the only compact way to characteriz ne
lvqgulstlc competance of the human was to characterize the language acquisiZLou
era

ed the coapetence.

Outline of Provosal

marily with developing a systen
logically adegquate for language acquisition and only secondarily with e syste
that simuleted actual human performance. I do not think the latter is a real-
istic goal until we have a characterization of the sort of algorithms that are
adequate for natural language acquisition. Tnis emphasis on logical adequacy
is clear in the organization of the proposzl. I will first review the work
that has been done on computer language understanding. This is importent be-
ceuse LAS is a language understander as well as a learner. Then I will review
the formal results on grammar induction. Thnen LAS.1 will be descrited. LASI1
is a first pass rsion of the IAS progrzo adaguate to learn simple languages,
Then I will propose an extensive set of developzments to be added to the program,
eimed both et increasing its linguistic powers and making it a realistic sinu-
lation. In describing LAS.1 and the proposed extensicns, I will review reles-
vant research in the child language litersturs. Finally, I will propose a
series of experiments with artificial languages to check snec1f1c claims LAS
maxes about language learnapilityv.

b

The concern in this proposal will be pr
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V.

2. Computer uaﬂguage Understanding

Computers have been applied to natural language processing for 25 years,
There has been & succession of major reconcentuzlizations of the problem of
language understanding, each of which constitutes a clear advance over the
previous conceptions. However, any realistic assessment would concede that

we are very far from & general language understanding system of human capabdility.
The ergument has been advanced that there are fundamentel obstacles that will
prevent this goal from ever being realized (Dreyfus, 1972). These arguzents
ere shamefully imprecise and lacking in rigor. The best (e.g., Bar-Hillel,

1962) has to do with the extreme open-endednsss of language, that en effectively
unbounded varisty of knowledge is relevant to the understanding process. it is
boldly esserted, without proof, that it is not possible to provide the computer
with the requisite background knowledge.

In reviewing the vork on natural languzge systems, I will constantly
measure them with respect to the goal of general language understanding. I
appreciate that it i1s a legitimate artificizl intelligence goal to develop
a lenguage system for some special purpose application. BSuch atiempts are free
from the Dreyfus end Bar-Hillel criticisms. However, from eny psycnological
point of view these systems are interesting onliy as they advance our under-
standing of how lenguage is understood in general.



Hachine Traansletion
The first intensive applicat conce
with traanslation. Comzared to th , this
effort turn2d out to ba & dismal 1965
19866}, Today, it is fashionable then-c
impoverished conception of languags g 7 , 1973).
early attemphts took the form of subs u o 1 S across
This was augmented by use of surface structure and word zsscciaticns bvut ab no
point was the word abzndonad as the principal unit of m=zning. Rece=nt work
on lanzuage understanding (e.g., Schank, 1972; Winograd, 1973) has ebandon=d
the word s taz unit of meaning. It remains to be seen Whether curreni attempls
(e.g., Wilks, 1973) =t machine trenslation have better success.
Interactive Systens
The now popular task domain for applications of compuler§to languags is
in constructing systems that can interact with the usesr in nis oWn language,
Question- smaﬂing svsters are the most common; the user can ianterrogate the
dz its d owledge, Such systenms
v elr design--their
{ ce system. 1ne task
ranslate it into a
input is something
o zan internal repre
stion. iv will b
n

1

e on of the data base for the answer. Tne ipference
s critical in swering of gquesticns sincs many ansver will not
ectly stored but 111 have to be 1n&erre’ rom wnat is 1

parsing and inferencing rua into time problemns.
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The central time problem in parsing hes to do with the exirerme syntactic
end lexical ambiguity of natural language. Each word in 2 sentencs adnits of

n syntactic and sexantic interpretations where m on the average wey be as high
eas 10. If there ars n words, mi interpretations nust be considered elthough

only one is intended. Tha fect that langurage is so amplguous was surprising

Oy 9 S

discovery of the early machine attempis at parsing (e.z., Xuno, 1G¢ 5}). Taus,
there is exponential growth in processing time with sentence len ngtn. %o date,
no heuristics have been demonstrated tnat change in general this exponentia
Tunction of sentence length %o something closer to e linear function The

[rap

T
huzen can use general context to reduce ambiguity to something apa*oxl_at ing

the linear relation.

There is elso an exponential growth factor in the task of inference maXing.
Suppose there are r facts in the data base and the desired daduction 15 n steps
long. Then, there is something like mh possible combinations of Izcts to achieve
the desired decduction. This suggests that very deep inferencing (i.e., high n)
is @ifficult to acnieve and this is certainly true of our every-day reasoning.
However, it elso sug;ests that inference making should pecoms more difficult as
we know mora facts {i.e., high E) which is cleerly not the case. The provlen
fecing inference systems is to select only thoses fects that are relevant.

10



Regolution tnesren-proving (Robinson 1965} is +the most studied of the mechzni-
cal inference systems. It is also here that the mosi careful work has bean done
on heuristics for selecting fects frowm the data base. These methods include
semantic resolution (Slagle, 1965), lock resolution (Boyer, 1971), and linear
resolution {(Loveland, 1970; and Luckhan, 1670). In prazctical applications these
heuristics have served to considerably reduce the growth in computatiocn time.
However, ths dzmonstrations of the optimality of these heuristics ars tash~
speciilc. There are no gensral theorems sbout thelr ophimaiity. I suspect that
they do not in general deal effectively with the problems of exponential growth.

Althouzgn there are potentially sericus time problems both in parsing and
inferencing, thess problems have not surfaced in the past progrems as one might
have expectei. This is becauss these prograrms have all been rather narrowly
constrained, Thnesir language systems only neead to deal with & srall portion of
possible syntactic constructions znd possible word meanings. Also, because of

£

cbi
restrictions in the dozmain of discourse, only a restricted set o

are needead.

Sono o’ the interactive systems (ELIZA - Weizenbaum, 1966; PERRY - Colby &
s Y
o} riocus effort to édo a complete job of sentzance analysis.

Only s :icie;, analysiz was performed $0 permit sucecess in narrowly circum-
scribed tzsk domains, Sentences were generated by filling in pre-prograczed
frames with variable words. The awbition in programs like Colby's or Weisen-
baun's was o creats the anpearance of unde r-uandvng Weisanbaun's program
ci ST = n psycnotnerapist and Colby's & paranola patient.
VWh = errors of language understanding it was difficult
fo e possibility that these might Just be manifeste-

i ties of the simulations.

Other attempts made more serious efforts at language understanding. They
avoided tha time oroolens inherent in parsing and inferencing by dealing with
restricted task domains. Slagle's DEDUCOM (1965) deelt with simple set inclu-
sion problens; Green, Wolr, Chomsky & Lauonery (1963) with baseball questions;
Lindszy (1963) with kinship terms; KelLO%g (1968) with data management systems;
Woods (1963) with airlins schedules; Woods (1973) with lunar geology; Bobrow
{(156%) ana Charniak (19569 ) with word arithmetic problems; Fikes, Hart & liilsson
{1972) with a2 robot world:; Winograd (1973) with a blocks world. Other systems

like Green and Raphael (lj68), Coles (1949), Schank (1972), Schwarcz, Berger,
and Sirzmons {1969), fnderson and Bower (1973), Rumelhart, Lindsey end Norman
(1972), and Guillian (1969) have not been especially designed for specific task
domains but nonetheless succeed only because they worked with sericusly limited
dets bases and restricted classes of English input. Because the parser deals
with only certain word senses and certain syntactic structures lingulstic am-
biguity is much reduced. Those programs that use general inference procedures
like resolution thecrem proving are notably inefficient even with restricted
ata bases. Winograd made extensive use of the fazcilities in PLANIER for
directing inferencing with specific heuristic infocrmation. The validity of
these heuristics depended criticelly on the constraints in the task domain.

11
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;inonqu (1973) has combinad

% b‘w good task analyses, programming ski
powars of ranced progremming languzges to creaste the bdest exhant la:
standing sybten I have heerd it seriously claizsd that the Winograd
could we extended to beccze a general model of languszze understonding
is need=d would be to program in all the knowladge of =n adult 2nd ex
parsing rules to the point where they handied all Engliish senteaces.
ly, thiz would be a big task requiring hundreds of man-years ol wWorx,
is argued, no greater than the work that goes into writing big oparat
systems, Clearly, this eargument is faulty if only because it doszs no
the time problems in general infersacing and general tarsing. IlHoweve
21lso unclear whether human languegze understanding can o2 capturad in

rogran. Further, it is dublous vhether it is manageadle to do the b
hat is necessary to assure that all the specific plecess of knowledge
properly integrated and interact in the intendad ways. Our linguisti
tence is not a fixed object. This is clear over itne period of years
learn new grammatlcal styles, new words, and nev Ways or thinking. I
is also true over short spans of time. That is, the way humans deal wi
tine problems therent in parsing and inferencing is to adjust the pa
nfe

reacing according to context.

Language Acguisition as the Road to General Languege Understanding

The preceding remarks were meant to suggest how an adaplive language
system mignt orovide ths solution to the fundamental troblems 1n general
lanzuage understanding., Rather than defining and hand-programaing 211 the
reguisite xnowledge, wny not let the languags understanding systex discover
thot lnovlelss end wrugrad ibseill  clne Lar"uage acgquisition system is a

acnenized bookkeeping system for integrating =11 the knowledge required for
language understanding. 3By its very nature it treats linguistic knowledge es

s
& constantly chonging object. So we know it would change with a changing
linguistic cozmmunity. We might hope that it could adapt over short periods
(1ike hours) to its current context.

Learning systems are frequently regarded as the universal panacea for
all thet ails aritificial intelligence. Therefore, one should be rightfully
suspicious whether LAS will provide e viable route to the creation of a
general language understanding system. Certainly, the initial version of
LAS falls far short of the dessired goal. However, with our current state of
knowledge it is just not possible to evaluate LAS's pretensions as an eventuzl
language understanding system., It is only by systematic exploration and
developnent of LAS that we ever will be able to determine the visbility of
the learning approach,

Whatever the potential of the learning approach in artificizal intelligence,
clearly it is the only viable psychological means of characterizing human lin-
guistic knowledge. It would be senseless to provide z cetzlog of all the knov-
ledge used in language wnderstanding. A catalog of everything is a science of
nothing {a quote from T. Eever). Rather, we nust characterize the mechonism
that creates that knowledge and how that mechanism interacts with experience.

12



3
&y
14
I
o
)
(ST
o ot
ol
[
)
80
o
=
=
[S I el
w
=}
n
o
[
{0
" Y
o
- <
144
@] {
of e
G IRTS BRI T s
5’ Yy ¢ O
O o 3
R ~
_Q (D
£ - <
2 (D
O
o Foed
3o
[N ]
M b
W
e lRE)
QO
3
e

&)
H
¥
oot
at]
%

=

0
)
s
3
¢
=
%
4y

i
CONA, We wanulh &

L S5¥
elgorithm for inducing grammar. That is to say, some descriptions of gramn
inowledge are computationally easier to induce than others, even thougn tha
two formalisms may be equivalent with respect to the lznguage they describe.
Third, we want the forma lis; to be clossd with r zct to thc aaadeulO it

raXes about the interpretative system thai uses

understanding. This is because that interpretative ystem is uakan as innaue.
Thus, it is not possible to induce new programs for interpre '
rules, it is only possible to induce new gramszatical rules.

A zuiding consideration in this ressarch is that these dis

grazmatical formulation are satisfied by a finite-state transition network
representation. The provlem is that natural languages are fundementally wmore
comvlex than finite state languages. However, Woods has shown & way to keep
scne of the zdvantages of the finite stete representation, bubt achieve the
rower of o troncfarmetional orammar, Unnds! snomented transition n=bvorks
are similar to and were suggested by the network grammors of Thorne, Eratley
and Dewar (1968) end Bobrow end Fraser (1970). Transition networks are like
finite state grammuars except that one permitis as labels on arcs not only termin-
al symbols but also nzmes of other networks. Determination of whether the
erc should be tzkxen is evaluated by a subroubtine call to another network. This
sub-network will anslyze a sub-phrase of the linguistic string being analyzed
by the network that called it. The recursive, context-free aspect of lanzuage
is captured by one network's ability to csll another. Figure 1 provides an
exauple network taken from Woods' (1970} paper. The first network in Figure 1
provides the "mainline" network for analyz bg simple sentences. From this

r2inline network it is possible to call recursively the second network for
analysis of noun phrases or the third network for the analysis of prepositional
phrases., Wood (1970) describes how the networ& would recognize an illustrative
s

To recognize the sentence '"Did the red bam collepse?" the network is
started in state S. The first transition is the aux transition to
state qp permitted by the auxiliary "did." From state qp we see that
we can get to state g3 if the next hirg"” in the input string is an
NP.. To ascertain if this is the ca

+
|9
se, we call the state NP, Fron
state NP we can follow the arc labeled det to state gg because of the
From nere, the adje
u

determiner "the." ctive "red" causes a loop which
returns. to stete gg, and the subseguent noun "barn” causes a transi-
tion to state q7. Since state gy is 2 final state, it 1s possible

to "pop up" from the NP computation and continue the computation of
the top level S beginning in state qq which is at the end ol the P
arc. From q3'the verdb “collapse' ¢ fnlts a transition to the state

a
e
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FIG. i. A sample transition network, § is the start state. G4r Qs
. G,,Gy,G,.30d q, 4 are the final states. (From Woods, 1970.)
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q),, and sinca this state is final and "ogllzpse' is the last

word in the string, the siring is accepted as 2 sencence

{po. 521-592).

T have illustrated in Figure 1 what is known as & recursive transition
natquﬁ‘whlch is equivalesnt to a context-free phrase-structure granrar,
Woods' networks are in fact of much stronger compucgl‘O"" power — essenbizlily
that of a Turing Machins. This is becauss Woods parmits arvitrar 'y actions,
This gives the networxs the abllity of transformational grammars to peramute,
copy, and delete fragments of a sentence, Thus, with his network formalisms
Woods can darive ths desp st ' of a sentence, The problem with this
gremmatical representa®ioa is that it is too powerful and permits computation
of many things that are not part of a speaker's grazmatical compeiencs in
the LAS system all condit 2

s
ions and a2ctions on networkx arcs are teken from

i
small repertoire of operaticuns possible in the HAM memory gystem {see Ander-
YV m s
} L% a

son & Bowzr; 19?3 . Tris way some context-sensitive features can be intro-

duced into the languages without introducing psychologically unrea¢istic powers.,
In many ways the network formalisms of Woods are isomorphic in tneir

power and behzvi he program gramzars of Winograd. Howeve there is

one critical 4if The flow of coatrol is contalined in Wlko;r i's pro-

o

granm grammirs. particular oprogran is committed to a certain beha«

vior. This is se in the network formalism, The flow of control is
containec in en er which uses the grammatical kKnowledge contained in
the netwcris, Zting different interpretative systems the same net-
vork orar—ar snecificatisn can be used in different ways. Tris is eritical

to LAS's success vwhere threa different interpreters use the same grammaticael

formalisms to guide understanding, genervation, and leanguage inducticn.

3. Research on Grammar Induction

Apparently the modern work on the problem of grammar induction began with
the collzboration of M. Chomsky and G. Miller in 1959 (see Miller, 1967) There
have been significant formal results obtained in this {ield and it is essential
that we raview this research before considering [AS. The approach teken in this
field is well characterized by the opening remarks of a recent highly-articulate
review chepter by Biermann and Feldman (1972):
The grammatical inference problem can be described as follows: a
finite set of ymbol strings from some language E_and possibly a finite
set of strings from the complement of L are known, and & grammar for
the language 1s to be discovered . . . .
Consider a class C of grammars and 2 machine M. Suppose some
G € C 2nd some 1 (an information sequence) in I(L(G)) are chosen for pre-
sentation to the Hachine Mg, ...
Intuitively, M, identifies G if it eventually guesses only
one grammar and that grammar generates exactly L{G),

(pp. 31-33)

The sigrif'cant point to note sbout thls statement is that it is completely
abstracted away from the problem of a child irying to learn nis lenguage.
There hss been virtually no concern for algorithms that will efficiently

induce the subset of grammars that generate natural languages. The problea
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is posed in general terms. The characterizatic

witn inducing z characterization of the well—f

Howaver, tois is not the task wiich the child

manping between conceptualizations and strings

mist understand what 15 spoken te him and lear

If a characterization of tho well-formed strin

product of the mappling between seatences and m

in thz formal work on lenguaga induction, ther

about the contribubtion that semantics might have

The grammaticel inference problem as characterized by Biermenn and Feld-

man is without any practical solutions. Workedle solutions Qo not exist bacause

the set of possible lan&h»uas iz too unrestrictad. Worrxeble solutions are pos—
sible to practical problems only when it is possidle to greatly restirict the

candidate languazes or because important clues exist wnhich elimipate many a
priori possible lenguages. Chomsky (1965} argued essentially for tiais view

with respect to the problem of a child learning his first language. iHe suggested
that the child could take advantage of linguistic universals which greatly
restricted the possible languasges. I will argue trat such universals exist

in the form of strong constraints vetwean the structure of e sentence and the

senantic structure of the referent. These constraints provide cr
or the induction problem.

H

Gold's Work

Prahebly the mozt influential vaver in the field is by Cola {1957). He
provided an explicit criterion for success in a languége inducticn prodlem and
proceaded to Fformally determine which learner-teacher interacitiascould achleve
that criteriocn for which languaves Gold considers a languags to 2e identiflied

n

in the limit if aftier some finite time the learner discov
gensrates the strings of tne lenguage. He considers two in e
in the first the learner is presented with all the sentences of the lan;
and in the second the learner is presented with all stirings, sa
identified as sentence or non-sentence. Then Gold asXs this questio.: Suppose
the learner can assume the language comes from some formally cheracterized class
f languages; can he identify in the limit which language 1t is? Gold considers

he classical nesting of langusge classes ~ finite ¢ "i a
finite state}, context- f*ee context-sensitive, and or
clessic result is that if the learner is cnly given o
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The proof that the finite state class 1s not identifieble with onl
itive information is deceptively simple. Among the Tinite state languag
ere all languages of finitecardinelity (i.e., with only fi
At every finite point in the information seguence the learn
if the language is generated by one of the infinl e
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Algorithms Induction

One of the ezriy atitempts to provide a constructive algorithm was proposed by
Solomonoff (1964). That is, he attempted to define an algorithn which would con-
struct bit by bit the correct grammar rather than enumerating rossiole grammars.

LAS is a coastructive algorithm. His ideas were never programzed end nad thelr
logical flaws exposed by Shamir and Bar-Hillel (1962) and by Eorning (1969). In
part Solomonoff has served as a straw man that served to justify the enumsvative
approzch over the constructive (e.g., Horning, 1969).

Feldran aud his StLQ have carried the Gold analyses farther. Feldman (19707
provided some further def ions of la 1guages identifiability and proved Gold-liks
resulis for these, TFeldman con51dered not only the task of inferring a gremmar that
generacted the semple, E;: 2lso the tesk of inducing the most simdle gracmar., Grem- -
zar complexity was meazsured in terms of number of rules and thes conplexity of sen-
tence derivations. Horning (1969) provided procedures for inducing grammars whose
rules have different probebilities. Blermann (1972) provided e nuzber of efficient
constructive algorithms for inducing finite stiate grammars when the number of states
is known. This is o relatively tractable problem first formulsted in 1956 by Moore,"
however, Moore's elgorithms are nmuch less efficient than Biermann's.

[ L’)

}-J.

Pao (1969) formalized an elgorithm for finite state grammar irduction that
did not reauire the nusber of states to be known in advance. A sazple sat of
sentences was provided which utilized 211 the rules in the gramser. A ninimal
finite state network was constructed that generated exactly the sazmple set of
sentences. Then an attempt was made to generalize by merging nodes in the net~
work. The algorithm checked the consequences of potential genevalizations by

17
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Crespi~Reghizzi (1970} also obtained encouraging results whea his induction
progran was given informasion ahoubt sentence surface structure. He was interested
in the induction of oparator-precedence lenguages walch are a subset ol contedi-
free languzzes. For a special subset of operator precedence langiazes ha was
2ble to define an algorithm that worked with only positive inforraiicon. Dxcept
for finite cardinality languagzes, this is the only available result of success

with Just positive informetion.

I think the work of Pao and of Crespi-Regaizzi have promising aspects. They
have shown relatively efficient, constructive algoritnms are possible faor inter-
t lﬁn«;aqo classes if the algoritnms have access to informetion about the
n 's surface structure. Tne problem with thelr work is that this informa-

prOVLded in en ad hoc manner. It has the flavor of cnesating and cer--
is not the way things happen with respect to natural languaze in i

mtare bimes Lo A lnm mddasinbaren A bl mambaman may ho Infarrad har mnml

[ D L TR Ut A S T - = aLal - o

paring the sentence to its scmantic referent. Crespi-Reghizzil nhas also shown

how the properties of o restricted subclass of languages can be us2d to reducs
the relience on negative information. While natural languages Cartainly have
espects that can be best captured with context-sensitive grammaticael forralisms,
most context-sensitive languages are ridiculous candidates for & natural ldaguﬂge.
An efficient induction algorithm should not become bogged down =25 does CGold's
enumeration techanigque considering these absurd languages.

Grammar as a Mapping Between Sentence and Canception

There 1s one sens

e ch 211 the preceding work is irrelevant to the
tesx of inducing a naturs 2
o ~

wai e
a language.. They have as their goa1 the induction of
correct syntactic characterization of a ITarget languag But thiz is not
what naturel language learning is sbout. In learning a n&tural language the
oal is to learan a map that allows us to go Irom sentences to their corresponding
onceptual structures or vice versa. I argue that this task is easier than
1ing the syntactic structure of a natural langucge. This is not baczuse
re is any magic power in sexantics per se, but bzcause natural languzze
so structured that they incorporate in a very non-—-arbitrary manner the siruc-
ture of their semantic referemt, The importance of semantics has e
Torcefully brouzat home to psychologists by e pair of experizents
end Bregran (1972, 1973\ on the induction of artificiel langungas. They con-
pzrad languags learning in the situation where thelr sub; 1 11
forde strings of the languuge versus the situaticn winare

e they sav Wwell-7Tormed
strings plus pictures of the semaniic referent of these si
le t

rinzs. In eitner
2.
o

5
ect wnich sbrings

case, the criterion test was for the subject to be ab

18
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of the languzge were well-formad —— wthOdt aid of any refersnt pictures After
3300 training trials subjects in the no-referent condition were &b chance In
the criterion test whereas subjects in the referent condition were essentially
verfech.
The Role of Semantics

Results likxe those of Mossser and Bregman have left some believing that
there is some magic power in having a semantic referent. However, 1 will show
that there 1s no necessary advantage to having a sexantic referent. The re-
letionship betwaen a senbencs and its semantic referent could, in principle,
be an erviirery recursive relation. Inducing this relation is 2t least as
difficult as inducing an arbitrary recursive languags. This last statement is
in need of a proof which I have provided (Andersom, 19T75). It is too involved
to reproduce here, but basically it shows that an algorithm to induce an ar-
bitrary semantic relation beaiween refereunts and sentences, could s used to
identify an arbditrary languzge. Thus, we know from Gold's work that en induc~
tion algorithm for the semantic relation could not be more effective than tne
impossible enumeration algorithm for identifying an arbitrary langusss. Thus,
for it to b2 possibvle to induce the semaniic relation, there must be sirong
constraints on the possitle form of that semantic relaticn.

How dczs this semantic reflferent fac
at least three ways:  First, rules of n
with respect to single words but with r
traansitive verb which have & common S2uk c
determine the word classes. This is mu o]
syntzectic rules for each word separa tely. Se
aid in gensralizing rules. A general heurist
two syntacti 23

erged into s single rule. Third,

coxresponaeuce petwsen the
ni

of the sentenca
ture information.

Siklossy 's Vork

The only attempt to incorporate semantics as
was by Siklossy {(1971).
to learn languages from the language-through-picture
et al., 1981). The books in this series attempt to
senting pictures paired with sentences that describ
Siklossy 's progran, Zbie, used general pattern-mat
correspondences ootWAen the pictures (actually hand-
end the se The program does use informatio
to help induce the surface structure of the sentenc
of’ LAS. However, it remz2ins unclear exactly what
or wnhat kinds of lenguages the program can learn.
the program's behavior
Tions. As we will see,
it is to learn e langua
lows: Suppese Zble see

are very sparse wilth exanple
& program must have strong
ge. The few examples of gen
s the following three senten

19

a
ife attempted to write a pr

guide to grammar induction
ogram that would be able
es books {e.z., Richards
teach & language by pre-
e tha depicted situations.
caing technigues to find
encoded picture descriptions)
n in the picuoure encodings
e, somevwhat in the m manier
use Zole mzkes of semantics
Tne displayed examples of
es of it making generaliza-
powers of generalizetion if
eralization all work as fol-
1ces:

there is a non-arbitrary
strueture of the semantic relerent and the structure

3 cond, semanti
iz ic employed b
11y similar rules function to create the san
be m

= O

-
S

cnsidera
hat, if

semantic structure,

cn permits one to punciuate the sentence with surfac
The nature of this correspondence will be explain=d later.

ce
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Anderson

) Johq walls
2) Mary walks
3 John talXxs

Tt will generalize and assume Mary talks is an acceptable sentence, It dces potb

seem thabt semantics plays an important role in guiding these genaralizations,
Siklossy also provides no discussion of now his program's bv“a"10“ relates

to that of a huran learning a language., The cn2 examdle of an atienpt to simulate

child language lezrning is Kelley (1967). His program attempted to simulate the

initial grovwth of child utterances from on= werd, to two words, to three words.

Kelley claims to b2 making use of semantic information, but he never specifies

its role in the program's performance. In genaral the QEC&llS»OL the vrograem are

nct explaLned In ni 1

the program raver gets to the point of producing
unclear whether it could.

Y, Ratinnzle

A central assumphion in the LAS project is that a language learner can sowme-

times identify the nmeaning of sentences and that languaze learning takes oplece

in these circumsiazcas. The specific goal is to explain how the palring of the
sentence with its semantic referent permits langusge learning. Yhe form of this
explenation is to develop a2 computer program which cen learn & language given an
inout of seontences valred with -semantic intercretations. The ccomputer program
buiilds up & graozor that permits it to qu:r:tand and generate santences. Be-
cause of the inherent complexity, it is essential that this vheory of language
eccuisition take the form of a compute program. I will argue Turther for the
nead of a computer model after descrLblﬂg the current version of LAS.

This project does have as an ultimate gozl to provide a faithiful simulation

of child lunguage acauisition. One might question whether a systen constructed

Just to succeed at language learning will ha"e rnueh in common with the child's

I ro r-'ZLy suspact it will, provided we insist that the

ion pr ocessirv llmlcatlon" as a child an rovided
in

acguisition systen.
qysten have the sanme in

~

of the chlld. The co nolderablon unde* j*ng this OUtlﬂle c

that orecast 1is

that learning o natural language imposes very severe and highly unigque informa-

tion —Drocesgln~ ue*ﬂpds on any induction system and, consequently, there are
very severe limitations on the possible structures for a successiu systen.

A similar arbu.e:‘ has been . forcefully =dvanced Dy Simon (1909) ith respect

to the informaition-processing demands of various problem-solving tasks.

The curreat version of the program LAS. 1 worbs in an overly simplif
domain and mokes unreasonable assurpbtions sbout intormation-procsssing c
lNonetheless, i1t predicts many of the gross © atures o1 generalization and over-
generalization in child lﬂng’“"e le=zrnin: S in other espects.

a

is terribly "of{
It turns ous that many of its faillures of similatlon can be traced to the un-—
t sk do

realistic assumpiions it is making about task domain and inforzaiticn processing
abilities, Many of the propesed develovzments of the program have as thelr goal
the elimination of these unrealistic assuczticns. The assuxpbtions vere made to
nake the problem more tractable in a first-pass attempt.
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5. The Program LAZ 1

s small progrem that was put together

Tols section describes LAG 1, a relatively
in eizht montns. It has achieved success in 2 non-trivicl nztural language in-
duetion situation. Tais proposal will be principally concerned with extending
the power of LAS.1 and of producing a simulation waich is scmewhal more rezlistic
psycholozically. However, LAS.1 is e significant flrst step wnich 1s already

more successful than any of its predecessors. This sectlon will contain
descrivtions of the various aspects of the LaS. L sysbem. First, I will describe
the HAML 2 memory system which vprovides LAS with its semantic powers. Following -
this will be an e\positlon of LAS's network gramoar formalisms. With this as

ackground, the working parts of the LAS program will be described. These include

SPoAK wnich uses the network formalisms to genserate seatences, UNDZRSTALD which
uses the seme networks for sentence understanding, BRACIET which punctuates
sentences with thelr surfece structure by comparing them to theilr perceptuzl
referents, and SPZAL ES” which builds an initizl neitwork grammar to parse a
sentence, snd GENZRALIZE which generalizes the initial grezmar,
Overview of LAS

LAS is an interactive program written in Michigan LISP (Hafner & Wilcox,
197Lk). The program accects as input lists  vwords, which it treats as sentences,
and scene descriptions encoded in a variant of the HAM propositional languaogze

(see Anderson & Bower, 1973). It obeys commands to speak, understand, and learn.
The logical siructure of LAS is illustrated in Figure 2. Central to LAS is an
augmented trensition network grammar similer to that of Woods (1970). In response
to the ccmmand, LISTSN,. LAD EVORES Lis wLugtod UnDInCTaND. Thz Input to IiDER-
STAND is a sentence. LAS uses the information in the n=twork grammar to parse
the sentence and obtain a representation of the seﬂuence s meaning. In response
to the command, Speak, LAS evokes the progrzn SPEAK. PEAX receives a plcture
encoding and uses the 1nfor aulOﬂ in the nstwork grammar to generate a sentence
to describe the encoding. te that LAS is usiré the sane netwovk formalism
toth to speak and understvnd The principle rpose of SPEAK and UHDzZRSTAND

T

in LAS is to provide a test of the grammars induced by LEARNMORE.

-

te
st
iz

)

Tre philosphy behind the LEARNMORE prozram is to provide LAS with the

same information that a child has when he is lesrning a language through osten-
sion. It is sssumed that in this learning zmode the adult can both direct the
child's attention to what is being described and focus the child on that

spect of the situation which is being described. Thus, LEARNVORE 1s provided
with & sentence,a HAM description of the scene and an indicaticn of the main

roposition in the sentence. It is to »roduce zs output the network grammar
that will be used by SPEAK and UNDERSTAID. It is possible that the picture
description provides more information then is in the sentence. This provides
more informetion than is in the sentence. This provides no obstacles to LAS's
heuristics. In this particular version of LAS, it is assumed that it already
knows the meaning of the content words in the sentence. With this information
BRACKET will assign a2 surface structure to the sentence. SPEAKIEST will deter-
mine whether the sentence is handled by the current grammer. If not, additions
sre made to handle this case. These additions genergllvﬂ to other cases so
+hat LAS can understend meny more sentences than the ones it was explicitly
trained with.
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The SPAKTLST program wouwld pera a parsing network
adequate to handle all the seantences . Also it would
rmezke meny low-level generalizations ab 3 and Word classas,
This would permit LAS to succassiully many novel senbtences.
i er, many essenbial grammaltical ge ft to bz mado by the
progron GEIERALIZE. Princisally, GENE —ust recognize that nstworks and
wvords occurring ab various points in the e identical. Re=cognition
of idantical grammars is essenbial to identifyizng the recursive structure of
the language. GENERALIZE is a prograzm which is only callied afver falirly stable
networks =nd word classas have been dbuilt us. It is oanly at this point that *
it is safe 1o make these criticel generalizations.

The HAM, 2 Memory System

LAS. 1 uses a version of the HAM memory systen (ses Andﬁ*”on % Bower, 1973)
celled HAM, 2. HAM. 2 provides LAS with two essential features. First, it
provides a representational formalism for propositional Anowledge, This is

used for representing the comprehension output of UNDERSTAND, the to-be-spoken
input to SPEAX, the semantic information in long-term memory, 2nd synvactic in-
formation about word cl HAM: 2 elso contains a menory searching slgo
conditions. For in-

i

238
ritha MATCHY which is used
stance, the UNDERSTAID pro
ord for z parsing rule to anply. These che v the MATCIHL vrocess.

Tre same MATCHY process is used by the SPZiX prosr to determine whether the
sction essocianted with a parsing rule creates part of the to be ~-spoken struc-
ture. This MATCHL process is a variant cof the one descrived in Anderson and
Bower (1973; Ch. 9 & 12) and its details will not be discussed pere.

eatures pe true of a

(
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D‘H:m
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However, it would be useful to describe here the represente tional for-
malisms used by HAM. 2. Pigure 3 illustraies how the inTormation in the
sentence A red square is above the cir~?e ~ould be represented with the HAM, 2
network formalisms. There are four distinst pro“ositions predicated eboul the

wo nodes X and Y: X is red, X is a sauare, X is ebove Y, and ¥ is a circle.
Each prouovition is represented by a distinct Treg structure. Each tres struc-—
ture consists of a root proposition nods connected by an S link to a subject
node end by & P link to & predicate node. The prealcaue nodes cen be decom-

sed into a R link pointing to & relation nods end into a O link pointing to

en object node. The semantics of these represeatations are to be interpreted
in terms of simple set~theoretic noticas. The subject is a subset of the
predicate. Thus, the individual X is z subset of the red things, the square
things, and the things avove Y. The individuzl Y is a subset of the circular
things.

Jee

One other p irt eeds emphasizing ebout this representation. There is
a1 distinétion pmade bebween words and the concepts wnich they reference. The
words are con 1ected to their corresponding ideas by links labellad W. Figure
3 jllustrates all the network notetlon neszded in the curreit implementation
of LAS. Thnere are a number of respecis in which this represeatation is sim-
pler than the old HAM representation. Thers are not the means for represent—
ing the situation {time + vlace) in which such a faet is true or for exnbedding

L
one proposition within znother. Thus, we cannot e
tences as Yester day in my bedroom :
believes tnat e red sgp@Lu is avove the
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Pigure 3

RED SQUARE ABOVE

An example of 2 propositional network repre
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sentation in HAM.Z
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There are e number of motivations for the
tion. Anderson and Bower (3973) have cox ad
ber of assumptions about the psychological Tro
tions derived from the Anderson and Bower o
of human cognitive performances. However,

HAM's representation have not been empirically te
that recommends associati network rep
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ve res
has to do with the facility with which th
of this representaticn is particularly r
to do with the modulerity of the represe
as a network structure that can be acessed snd used,
structures

I have shown how the HAM, 2 reoresentation

input to SPEAK and the ouiput of UNDER
he semantic and syntectic information v
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o
and squar e are both sha nes red and blue are both color c
1.

ircle and red

ire
and plue belong bo the word class ¥CB.
\%

a2y
,uote the word class 1nfor nation is predic ted of the words while the categor-
ical information is predicated of the concepis ati achad to these words. Tne
categorical informetion would be used if s e only applied to

e O

m2 syntactic rul

shavnes or only to colors. The word class inforzation might be evoked if a
language arbltrarl*y applied one syntactic rule to one word class and grnother
rule to a different word class. Inflections are a common exsuple of syntactic
rules which apply to arbitrarily defined word clas

BAM. 2 has a small . = language of comzands which cause various memory
1inks to be built. The following four are 211l that are currently used:
1. (Ideate X Y} - create a W link from word X to idea Y.
2. {(Out-of X Y) - create a p*opoolbvon node Z. From this root node create
' a S link to X and a E_llnk to Y.
3. (Relatify X Y) - create en R link from X .
4. (Objectify X Y) - create an "0 link 7

These commands will appear in LAS's parsing networks to create memory
structures required in the conditions and actions. Often rather than mewmory
nodes, variables (denoted X1, X2, etc) will appear in these commands. If the
variable hes as its value a memory node that node is used in the structure
building. If the variable has no value, a memory node is created and assigned
to it and that node is used in the mencry opsvration.

To illustrate the use of these cocmands, the following is a listing of
the commands that would cresbe the siructure in Figure 3:

o



