Tropical Plant Physiology, Disease and Production Unit Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
 

Research Project: DEVELOPMENT OF VIRUS-RESISTANT PLANTS USING TRANSGENIC PLANT TECHNOLOGY

Location: Tropical Plant Physiology, Disease and Production Unit

Project Number: 5320-21000-011-13
Project Type: Specific Cooperative Agreement

Start Date: Sep 05, 2008
End Date: Jul 31, 2013

Objective:
The objectives of this cooperative research project are to: -Develop virus-resistant plants using transgenic plant technology. -Evaluate lines of transgenic lettuce and tomato for tomato spotted wilt virus (TSWV) resistance. -Develop orchid plants with resistance to cymbidium mosaic virus (CymMV).

Approach:
We will work towards developing virus-resistant plants, using transgenic plant technology. Tomato spotted wilt virus (TSWV) has worldwide impact, and particularly in the tropics and subtropics. We have cloned and sequenced several TSWV genes, and transferred them to lettuce plants. We will evaluate these lines for TSWV resistance. In addition, we will evaluate lines of transgenic tomato for TSWV resistance. These tomato plants were developed by the PBARC research group, and contain a gene for TSWV resistance bred in using conventional means, in addition to a TSWV transgene. After initial greenhouse evaluations, we will move the most promising lines on to field trials. TSWV is an extremely important plant virus in Hawaii and elsewhere, and the development of TSWV-resistant lettuce and tomato will greatly benefit agriculture in Hawaii and abroad. Work will also begin towards developing orchid plants with resistance to cymbidium mosaic virus (CymMV), the most important orchid virus worldwide. Most Hawaiian orchid growers that sell cut flowers specialize in a just a few Dendrobium varieties, and experience CymMV infection rates of over 90%. These growers have selected cultivars with good tolerance to virus infection, but they are now severely limited with regard to bringing in new cultivars, as well as selling potted plants. In addition, shipments of orchids from overseas are often infected with CymMV, so there is an influx of new CymMV strains to Hawaii. Recent techniques for engineering virus resistance in plants can provide resistance to multiple strains of a plant virus, and we have cloned and sequenced several of the Hawaiian isolates of CymMV. The availability of CymMV-resistant dendrobiums will benefit the orchid cut-flower growers directly, and will also aid the entire orchid industry by reducing the overall numbers of virus-infected plants. Documents SCA with U of HI -Hilo.

   

 
Project Team
Gonsalves, Dennis
 
Related National Programs
  Plant Genetic Resources, Genomics and Genetic Improvement (301)
  Plant Biological and Molecular Processes (302)
 
 
Last Modified: 10/18/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House