NRC INSPECTION MANUAL

INSPECTION PROCEDURE 71150

DISCREPANT OR UNREPORTED PERFORMANCE INDICATOR DATA

PROGRAM APPLICABILITY: 2515

CORNERSTONES: ALL

71150-01 INSPECTION OBJECTIVE

01.01 To obtain performance indicator (PI) data when (a) licensees do not provide PI data in accordance with the most current guidance, (b) reported PI data has major discrepancies, or (c) NRC loses confidence in the licensee's ability to collect and report PI data.

01.02 To utilize inspections in order to obtain sufficient insights on licensee performance in the absence of reliable PI data.

71150-02 INSPECTION REQUIREMENTS

02.01 <u>PI Review</u>. The following should be considered in addressing the objectives of this IP, depending on the specific circumstances:

- a. Ensure that licensees correct major discrepancies with reported data for one or more PIs, including the associated collection and reporting process.
- b. NRC can independently collect the PI data, if this appears to be feasible considering the number and specific nature of the PIs for which data is needed.
- c. When independent NRC collection of the data is not feasible, NRC should augment the baseline inspection program with additional inspection to provide insights on licensee performance to address the cornerstone attributes intended to be covered by the PI.
- d. Upon a determination that the PI is discrepant and the data unreliable, the NRC will inform the licensee by letter that it is entering the discrepant PI process and will modify the NRC web page to indicate that the PI is under review.
- e. Once the root cause(s) of the discrepant PI data have been identified and corrected, the data corrected, and the NRC has verified that the PI data can be collected and reported accurately, the NRC will inform the licensee by letter that it is exiting the discrepant PI process. The PI will then reflect the appropriate color based on licensee reporting, and oversight of the PI reporting will return to normal inspection per Inspection Procedure 71151.

IIPB

71150-03 INSPECTION GUIDANCE

Specific Guidance

03.01 PI Review

- a. A PI discrepancy is a difference between the number of occurrences of scrams, unplanned power changes, equipment/system unavailability/failures, etc., and what is being reported by the licensee in the quarterly PI data submittals. PI discrepancies may involve a licensee error in data collection and/or reporting, or an incorrect licensee interpretation of the PI guidelines in NEI 99-02. PI discrepancies are major when they may affect NRC response in accordance with the Action Matrix (IMC 0305 "Operating Reactor Assessment Program") because correction of the discrepancy results in a PI performance threshold being The current revision of NEI 99-02, "Regulatory Assessment exceeded. Performance Indicator Guideline", and the PI section of the reactor oversight process on the NRC's external web page indicates PI performance thresholds. This procedure may be used even if the PI data in question is outside of the PI data evaluation period.
 - b. NRC may have lost confidence in the licensee's ability to collect and report PIs due to a major discrepancy or recurring discrepancies. The issues may be identified by licensees or by NRC inspections in accordance with IP 71151, "Performance Indicator Verification." The region should attempt to resolve the issue with the licensee. If the region is unable to resolve the issue in a timely manner, this may constitute a loss of confidence in the licensee's ability to collect and report PIs, and meets the entrance criteria for implementation of this procedure.
 - c. The inspector should review licensee records to determine the pertinent PI data. IP 71151, Table 1 lists pertinent licensee records for NRC use in conducting independent verification of licensee reported PI data. These records can also be used for NRC independent collection of PI data. The level of effort for this should be weighed against that for conducting NRC inspections, as outlined in c. below. For example, the PI titled "Unplanned Scrams Per 7000 Critical Hours" requires data on the number of unplanned automatic and manual scrams while critical in the previous quarter and the number of hours of critical operation in the previous quarter. This data may be obtainable from licensee event reports, monthly operating reports, operating logs and NRC inspection reports.
- d. Attachment 1 is based on SECY-99-007, "Recommendations for Reactor Oversight Process Improvements," dated January 8, 1999, and describes the attributes considered in the development of each PI. IMC 2515, Appendix A (Attachment 2, "Cornerstone Charts") and Appendix B (Attachment 1, "Inspection Procedures to be Used for Assessing Extent of Condition") identify baseline and other inspections which assess these attributes.

Using the above documents as guidance, the region should develop an inspection plan to assess cornerstone attributes associated with the unavailable PIs. The plan should utilize this procedure to identify and appropriately address attributes covered by the baseline inspection program and other IPs. The plan should be implemented at a frequency as required to compensate for the lack of reliable PI data. Attachment 2 provides an example of a legitimate approach for developing an inspection plan if data is not available for a Safety System Unavailability PI, including the situation where the plant is in extended shutdown. Program office assistance should be sought in unique situations where the attached model or other guidance in this procedure does not seem appropriate.

- e. Upon the NRC determining the need for a discrepant PI inspection, a letter should be sent to the licensee informing them that the staff has lost confidence in their ability to report PI data accurately and/or in a timely manner, and the NRC will be conducting a discrepant PI inspection. The letter should also state that the NRC will modify the NRC web page to show the PI in question as discrepant (i.e., gray) and that the PI is under NRC review. Upon completion of the NRC inspection, and recalculation of the PI, if applicable, the PI will be assigned the color appropriate with the results of the inspection.
- f. Discrepant PI(s) that have inspection findings and/or apparent violations need to be documented in an inspection report along with their root causes and licensee planned corrective actions to prevent recurrence. Discrepant PI findings that also result in apparent violations (i.e., 10 CFR 50.9 violations) should be documented in a choice letter accompanying the inspection report containing the finding(s).
- g. The PI will remain discrepant and the NRC will control the PI until the NRC concludes the licensee can report the data correctly and a letter is sent to the licensee informing them that the NRC is exiting the discrepant PI process. At that point, the PI will reflect the data as determined under this process.

71150-04 RESOURCE ESTIMATE

NRC independent collection of PI data may require 100% review of applicable information. In some cases, NRC effort for 100% review would be similar to the sampling that is done in IP 71151. In other cases, conducting 100% review of applicable information would require significantly greater effort.

Resource estimates for NRC inspection in lieu of obtaining PI data should be based upon the underlying framework for the pertinent cornerstone, the existing baseline or other scheduled inspections that could provide potential insights into the cornerstone attributes, and the level of effort required by the region to achieve the inspection objective. Utilization of baseline inspections to provide PI insights generally requires resources in addition to those expended on the baseline program. Depending on the situation (such as the length of time that the PI data is discrepant or unreported), the level of effort may be expended in a concentrated period of time, spread out over an extended period, or conducted on an as needed basis. All of these considerations need to be included in the determination of the appropriate course of action. Because of the wide range of potential inspection activities, resource requirements for conducting this inspection may vary widely.

END

Attachments:

- 1. Measurement of Cornerstone Attributes Associated With Performance Indicators
- 2. Approach For Developing an Inspection Plan to Provide Insights on Licensee Performance in the Absence of a Safety System Unavailability Performance Indicator

ATTACHMENT 1

MEASUREMENT OF CORNERSTONE ATTRIBUTES ASSOCIATED WITH PERFORMANCE INDICATORS

INITIATING EVENTS: PIs: Unplanned Scrams per 7000 Critical Hours, Scrams with a Loss of Normal Heat Removal, and Unplanned Power Changes per 7000 Critical Hours

A. <u>Human Performance</u>

Human errors can cause initiating events, especially during plant operations, maintenance, calibration, and testing. Effective work planning/control limits human-induced initiating events. Pls for Scrams and Unplanned Power Changes capture human errors that cause initiating events during power operations.

B. <u>Procedure Quality</u>

Inadequate procedures can cause initiating events by inducing plant personnel to take inappropriate actions during plant operations, maintenance, calibration, or testing. This can occur due to a missing step, ambiguous/confusing language/organization, or typographical error. Pls for Scrams and Unplanned Power Changes monitor procedural inadequacies that cause initiating events.

C. <u>Equipment Performance</u>

Equipment failure or degradation can cause initiating events, such as reactor scrams during power operations and these are expected to originate primarily in balance-of-plant equipment while at power. To limit challenges to safety functions due to equipment problems, licensees should have preventive/corrective maintenance and other programs to achieve high availability/reliability of equipment that can cause initiating events. Initiating events caused by equipment performance will be captured by the Scram and Unplanned Power Changes PIs. In addition, licensees are required by the Maintenance Rule to monitor performance against criteria and goals for equipment that can cause initiating events.

D. <u>Design</u>

Inadequacies in either the design, as-built configuration, or post-installation testing of plant modifications can cause initiating events. Also, as plants age, the basis for original design and plant operation may be lost or forgotten such that an important design feature may be inadvertently removed or disabled during a plant modification. Design errors that result in initiating events will be revealed by the Scram and Unplanned Power Changes Pls.

MITIGATING SYSTEMS:

PIs: Safety System Unavailability (SSU) and Safety System Functional Failures (SSFF)

A. <u>Configuration Control</u>

This applies to equipment lineup during power operations. For those systems monitored, the SSU PI provides information on adequacy of configuration control, especially on licensee programs/practices to maintain critical safety functions with adequate margins. When safety systems are not available or system redundancy is degraded due to misaligned valves or switches, that unplanned unavailability will be captured by the PI. Inspections monitor plant configurations that affect mitigating system performance, especially for system restoration as part of maintenance rule (MR) verification.

B. <u>Equipment Performance</u>

The SSU and SSFF PIs monitor the availability and reliability, respectively, of systems which mitigate the impact of initiating events on plant safety. The PIs measure the adequacy of testing for functional availability/reliability. In addition, the performance of all structures, systems, and components (SSCs) important to mitigating system performance is monitored by licensees under the MR.

C. <u>Procedure Quality</u>

Maintenance and testing procedures influence the capability of mitigating systems to respond to initiating events. The quality of such procedures is indirectly confirmed by the performance of mitigating systems, as monitored by the SSFF PI and verification inspection of MR implementation.

D. <u>Human Performance</u>

Pre-event human errors are monitored by the SSU PI since errors in operating and maintaining equipment are reflected in system unavailability. Also, when mitigating system performance is degraded, human performance should be assessed by the licensee in it problem identification and resolution program and MR implementation.

BARRIERS: PIs: Reactor Coolant System (RCS) Specific Activity and RCS Identified Leak Rate

A. <u>Cladding Performance</u>

The RCS Specific Activity PI reliably indicates when nuclear fuel cladding has been compromised. Loose parts in the RCS, most importantly in the reactor vessel, can damage fuel cladding either by direct impact on the fuel pins or by limiting fluid flow past individual pins or assemblies. Loose parts can be introduced into the reactor vessel by poor maintenance practices or failures of internal structural components. The licensee's foreign material exclusion (FME) programs are intended to preclude loose parts in the reactor vessel.

B. <u>RCS Equipment and Barrier Performance</u>

The RCS Identified Leak Rate PI provides a direct measure of RCS barrier performance. The licensee's inservice inspection program monitors the condition of passive RCS pressure boundary components such as piping, welds, and valves because degradation can impact RCS strength margins. The baseline inspection program assesses this program. Active RCS pressure boundary components include safety relief valves, power operated relief valves, and reactor coolant pump or recirculation pump seals and associated seal cooling equipment. Failure of active components impacts RCS integrity, and availability/reliability of active components is ensured through the MR.

C. <u>Human Performance</u>

Nuclear fuel cladding integrity can be challenged by inappropriate human actions regarding reactivity manipulations, chemistry control practices, implementation of FME programs, and installing fuel assemblies, etc. Sometimes the inappropriate human actions result from failure to adhere to procedures. The RCS Specific Activity PI measures performance for this attribute. Licensee problem identification and corrective action programs identify adverse trends in the above human performance factors.

D. <u>Procedure Quality</u>

Procedures for activities affecting fuel cladding must be adequately established and maintained. Activities include reactivity control, FME, chemistry control, refueling, fuel handling, reactor vessel assembly, and physics testing. The RCS Specific Activity PI measures performance of this attribute. Adverse procedure trends are identified by licensee corrective action programs.

E. <u>Design Control</u>

The RCS Specific Activity PI measures performance of this attribute. Proper reactor core design assures that power operation will not challenge fuel cladding integrity. The core design analysis, including the core operating limits report and the reload analysis, establishes operational limitations for core power operation with margin to ensure thermal limits are not exceeded during anticipated transients. Startup physics testing verifies that the reactor core performs in accordance with the design analysis. This testing is conducted at low power so errors during testing would be unlikely to challenge established thermal limits and degrade fuel cladding.

F. <u>Configuration Control</u>

The RCS Specific Activity PI measures fuel cladding degradation which can be a result of the following activities. Abnormal control rod alignments or reactivity manipulations during plant operation can reduce margins to core thermal limits and challenge limits during transients. Misconfigured or malfunctioning reactivity control systems may lead to unacceptably high neutron flux. Inadequate water chemistry controls are usually identified by licensee self-assessment. Fuel loading errors should be detected during startup physics testing. Improperly placed or oriented fuel assemblies can lead to localized high neutron flux; they should be identified during independent verification prior to vessel reinstallation.

EMERGENCY PREPAREDNESS: PIs: Drill/Exercise Performance (DEP), ERO Drill Participation (ERO), Alert and Notification System (ANS) Reliability

A. <u>Facilities and Equipment</u>

The Alert and Notification System is a critical link for alerting and notifying the public of the need to take protective actions. Generally, the licensee maintains the ANS and state/local governmental authorities are responsible for activating it when necessary. The ANS PI measures the availability of this system. Licensee self-assessment addresses maintenance, surveillance, and testing of this equipment.

B. <u>Procedure Quality</u>

Emergency Plan Implementing Procedures (EPIPs) are used to classify events, notify governmental authorities, and develop/communicate protective action recommendations to offsite authorities. The quality of the EPIPs is reflected in the measured success rate indicated by the DEP PI.

C. <u>Emergency Response Organization (ERO) Performance</u>

The DEP PI assesses timely and accurate emergency classification of events, notification of offsite governmental authorities, and development/communication of protective action recommendations to offsite authorities. The ERO PI measures the percentage of key ERO members who have participated recently in proficiency enhancing drills, exercises, training opportunities, or in an actual event.

PUBLIC RADIATION SAFETY:

PI: Radiological Effluent Technical Specifications (RETS) / Offsite Dose Calculation Manual (ODCM) Radiological Effluent Occurrence

A. <u>Facilities, Equipment, and Instrumentation</u>

The RETS/ODCM Radiological Effluent Occurrence PI assesses the performance of the radiological effluent control program. Improper installation or modification, inaccurate calibration and reduced availability of meteorological systems, process radiation monitoring system (RMS) detectors, and sampling systems, and associated counting room equipment adversely affect licensee compliance with effluent regulatory limits. Similar issues affect the radiological environmental monitoring program (REMP) equipment. Radioactive waste processing, effluent sampling, and monitoring equipment and instrumentation are assessed by offsite doses and RMS operability and availability. Shipping packages not prepared in accordance with design requirements potentially result in exposures to the public. Unconditional release of materials from protected areas requires use of sensitive radiation survey equipment. Procedures should ensure adequate meteorological/radiation systems, transport packages, and counting room instrumentation.

B. <u>Program and Process</u>

Procedures must be adequately written and implemented to ensure effective radiological effluent processing and control/monitoring of liquid/gaseous releases. Procedures should ensure acceptable performance of meteorological instrumentation, radwaste processing, and process RMS equipment. Procedures should ensure proper evaluation of radwaste and material radionuclide quantities/types for shipping packages and surveys to ensure that package radiological doses and contamination levels are within regulatory limits. The RETS/OCDM Radiological Effluent Occurrence PI indirectly assesses the above procedures.

C. <u>Human Performance</u>

Human performance affects radwaste processing, effluent monitoring, and transportation activities. Human errors have contributed to incorrect release of radwaste tanks, inaccurate determination of RMS set points, and abnormal/unmonitored effluent releases to the surrounding environs. Health physics technician errors in radiation surveys have contributed to shipping container dose rates or contamination levels exceeding regulatory limits or improper unconditional release of contaminated solid materials. The RETS/OCDM Radiological Effluent Occurrence PI assesses human performance.

OCCUPATIONAL RADIATION SAFETY PI: Occupational Exposure Control Effectiveness

A. <u>Facilities, Equipment and Instrumentation</u>

Inoperable monitoring instrumentation and inadequate source term control can result in significant unplanned exposures. For selected facility areas (e.g., BWR Transverse Incore Probe drive room), reliable/accurate area radiation monitors can remotely identify transient high dose rate fields to reduce the potential for uncontrolled exposure. Chemical decontamination and proper shielding for equipment/systems having elevated source terms can preclude uncontrolled/unnecessary occupational exposures. Radiation protection systems and equipment should be properly maintained and calibrated. The Occupational Exposure Control Effectiveness PI measure the effectiveness of the facilities, equipment, and instrumentation.

B. <u>Program/Process</u>

Radiation protection procedures and proper implementation of program processes help control occupational exposures. Improper radiological surveillances have resulted in significant uncontrolled occupational exposure from direct exposure to radiation sources or intakes of radioactive material. Administrative and physical radiation protection controls prevent uncontrolled worker access to high radiation, significantly contaminated and airborne areas. Aggressive dose expenditure goals, combined with work planning, assessment of radiological conditions and adequate controls are necessary for an effective ALARA program. These activities are more significant during outages when personnel have increased activities with high radiation areas and contaminated systems. The Occupational Exposure Control Effectiveness PI measures the effectiveness of programs/processes.

C. <u>Human Performance</u>

Human performance can significantly affect occupational worker exposures during work activities conducted in elevated dose rate and contaminated areas. Inadequate performance by health physics technicians or workers can result in loss of the multiple radiation protection barriers established to prevent uncontrolled exposures. Adherence to proper radiation protection practices is necessary to implement an effective ALARA program.

PHYSICAL PROTECTION:

The objective of the physical protection cornerstone is to provide assurance that the safeguards program will function to protect against the design basis threat of radiological sabotage. The threat could come from either external or internal sources. Licensees can maintain adequate protection against threats through an effective security program that relies on a defense in depth approach.

Although the NRC is actively overseeing the physical protection cornerstone, the Commission has decided that the related performance indicator, inspection, and assessment information will not be publically available to ensure that potentially useful information is not provided to a possible adversary.

END

ATTACHMENT 2

APPROACH FOR DEVELOPING AN INSPECTION PLAN TO PROVIDE INSIGHTS ON LICENSEE PERFORMANCE IN THE ABSENCE OF A SAFETY SYSTEM UNAVAILABILITY (SSU) PERFORMANCE INDICATOR (PI)

IMC 2515, Appendix A (Attachment 2, "Cornerstone Charts") and Appendix B (Attachment 1, "Inspection Procedures to be Used for Assessing Extent of Condition") identify baseline and other inspections which assess attributes associated with PIs. The following baseline and other IPs were identified from these documents, and provide insights regarding SSU data for the reference system (such as equipment failures or human errors that make a system train unavailable).

In developing an inspection plan, consideration should be given to the length of time that the PI will be unreported or unreliable. This would result in applying a range of inspection activities. The below discussion indicates that generally baseline inspection sample sizes are increased to provide insights regarding SSU. The increases may be negligible if the overall sample population is small, or if it is decided to decrease resources due to the above aspect regarding range of inspection activities.

A. Configuration Control

Increase the sample size described in IP 71111.04, "Equipment Alignment", to address the reference system, including a complete system walkdown. Review: (1) documents to determine correct system lineup; (2) outstanding maintenance work requests on the system and any deficiencies affecting the ability of the system to perform its function; and (3) outstanding design issues including temporary modifications, operator workarounds, and items tracked by engineering. The system walkdown should identify if there are any discrepancies between existing and correct lineup, e.g., valve positioning. During extended shutdown, focus on safety-related components required for shutdown, mode changes, and infrequently performed operations.

B. Human Performance

IP 71111.14, "Personnel Performance During Nonroutine Plant Evolutions and Events", reviews personnel performance indicated by LERs, non routine/transient operations and reactor trips. Increase the sample size to address the reference system. Determine whether operator responses to these nonroutine plant evolutions/events were in accordance with procedures and training.

IP 71111.16, "Operator Workarounds", addresses the potential effects of operator workarounds on the functionality of mitigating systems. The sample size should be increased to address the reference system. Determine whether there are any operator workarounds which affect that system's functional capability or human reliability in responding to an initiating event, such as the operator's ability to implement abnormal/emergency operating procedures. Review cumulative effects of operator workarounds on (1) reliability, availability, and potential for misoperation of the system; (2) increase in initiating event frequency or effect on multiple mitigating systems; and (3) ability of operators to respond correctly and timely to plant transients/accidents.

C. Equipment Performance

The annual review for IP 71111.07, "Heat Sink Performance", requires observation of one or two heat exchanger performance tests/inspections. If the reference system contains a heat exchanger, the sample should include one performance test/inspection for that heat exchanger. Verify that: (1) test acceptance criteria/results considered differences between testing/design conditions; (2) inspection results are evaluated against acceptance criteria; (3) test/inspection frequency is sufficient to detect degradation prior to loss of design basis heat removal capability; and (4) test results considered test instrument inaccuracies.

IP 71111.12, "Maintenance Rule Implementation", reviews the licensee's implementation of the maintenance rule (MR) for structures, systems and components (SSCs) with performance problems. Increase the sample size to address the reference system. Review: (1) inclusion of safety-related and nonsafety-related SSC within MR scope in accordance with 10 CFR 50.65(b); (2) characterizing failed SSCs as functional failures, maintenance preventable functional failures, or repetitive maintenance preventable functional failures, or repetitive maintenance preventable functional failures for SSCs as related to risk significance; and (4) monitoring performance/condition of SSC against goals in accordance with 10 CFR 50.65(a)(1). If problems/failures occur due to a specific maintenance activity, observe performance of specific maintenance activities in accordance with IP 62700, "Maintenance Program Implementation".

IP 71111.17, "Permanent Plant Modifications", focuses on modifications to risk significant SSCs. The sample size should be increased, if applicable, to include the reference system. Permanent plant modifications include permanent plant changes, design changes, set point changes, procedure changes, equivalency evaluations, suitability analyses, calculations, and commercial grade dedications. Review the following: (1) design adequacy of parameters not verified by testing, e.g., design basis heat removal under abnormal conditions; (2) effect of modification activities on safety functions and emergency/abnormal operations; (3) whether post-modification testing confirms operability and maintains the plant in a safe configuration during testing; and (4) updating design and licensing documents and plant procedures to reflect the modification.

IP 71111.19, "Post-Maintenance Testing", selects post-maintenance testing activities on risk significant systems/components with recent maintenance performance problems. Increase the sample size to address the reference system. Witness tests and/or review test data to verify that components meet design/licensing bases requirements and commitments, and are capable of performing their safety functions. Consider the following post-maintenance test attributes: (1) control room/engineering personnel address effect of testing on the plant; (2) adequate test scope relative to maintenance work: (3) acceptance criteria consistent with design/licensing bases; (4) test equipment range, accuracy and calibrations; (5) consistency of actual test with procedure; (6) test data evaluation; and (7) correct system alignment after testing, including removal of test equipment.

The reference system may be selected for IP 71111.21, "Safety System Design and Performance Capability", provided that it meets the selection criteria for the inspection. In cases where another system is selected, IP 71111.21 may be augmented to address interfacing components from the reference system. Components from the reference system should be selected based on the following: (1) failure results in loss of system or train; (2) supports multiple systems or trains; (3) risk significant design features not validated by testing, (4) either passive or active; and (5) safety/non-safety related interfaces. Perform walkdowns to identify design, installation and operations problems. Perform a design review to verify that the reference system will function as required, including during transients and accidents. Determine whether the design bases are met by the installed and tested configuration.

IP 71111.22, "Surveillance Testing", selects risk significant surveillance testing, including inservice testing (IST) of pumps/valves based upon component performance history or recent corrective/preventive maintenance. Increase the sample size to address the reference system. Witness surveillance tests and/or review test data to verify that SSCs meet Technical Specifications, UFSAR and licensee procedures, and are capable of performing their intended safety functions. Surveillance test attributes for consideration are similar to those for IP 71111.19, "Post-Maintenance Testing" (above). For additional guidance on IST inspection refer to IP 73756, "Inservice Testing of Pumps and Valves" and NUREG-1482, "Guidelines for Inservice Testing at Nuclear Power Plants".

IP 71111.23, "Temporary Plant Modifications", reviews temporary modifications potentially affecting the design basis or functional capability of risk significant mitigating systems. Increase the sample size, if applicable, to include the reference system. Temporary modifications include jumpers, lifted leads, temporary systems, repairs, design modifications and procedure changes which can change plant design or operations. Review temporary modifications and associated 10 CFR 50.59 screening against design bases documentation. Verify that modifications have not affected system operability/availability. See IP 71111.17, "Permanent Plant Modifications" (above) for additional attributes that may be significant for the particular modification. Review/verify the following: (1) correct installation of temporary modification; (2) impact of temporary modifications.

END