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Conversion Factors, Datums, and Abbreviations

Multiply By To obtain
Length
centimeter (cm) 0.3937 inch (in.)
millimeter (mm) 254 inch (in.)
centimeter (cm) 0.0328 foot (ft)
meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)
Area
square kilometer (km?) 247.1 acre
square kilometer (km?) 0.3861 square mile (mi?)
Volume
liter (L) 33.81 ounce, fluid (fl. oz)
liter (L) 61.02 cubic inch (in®)
Mass
gram (g) 0.0353 ounce, avoirdupois (0z)
kilogram (kg) 2.205 pound, avoirdupois (Ib)

Vertical coordinate information is referenced to the North American Vertical Datum of 1988
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).
Altitude, as used in this report, refers to distance above the vertical datum.

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (uS/cm at
25 °C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L)
or micrograms per liter (pg/L).

Abbreviations:

mg/L  milligrams per liter
mg/kg  milligrams per kilogram
L/mg liters per milligram

L/min liters per minute
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Methodology to Evaluate the Effect of Sorption in the
Unsaturated Zone on the Storage of Nitrate and Other lons
and Their Transport Across the Water Table, Southern

New Jersey

By Timothy J. Reilly and Arthur L. Baehr

Abstract

A new field-based approach for determining sorption in
the unsaturated zone and its effect on the storage of ions and
their transport in recharge to ground water has been dem-
onstrated for a small agricultural watershed in the Coastal
Plain of southern New Jersey. Moisture-content and chemi-
cal-concentration data obtained from unsaturated-zone-core
and shallow-ground-water samples were used to estimate the
mass flux of chemical constituents across the water table, as
well as sorption coefficients (K ). The selectivity order of the
K, values for cations is consistent with the expected selectiv-
ity order: for example, Na* > Mg** > Ca** for sands. Although
calculated sorption coefficients, as expected, were greater for
cations than for anions, sorption had a substantial effect on the
transport of anions through the unsaturated zone; in particular,
average K values for NO, were 0.22 liters per milligram for

sands and 0.62 liters per milligram for finer grained sediments.

The unsaturated zone in the study area is a large reservoir for
nitrogen. Models that do not account for sorption are likely to
result in unrealistic predictions of contaminant transport rate
and provide overly optimistic expectations for natural cleans-
ing in this watershed and those in other similar hydrogeologic
settings.

Introduction

Contamination of ground water as a result of fertilizer
application is a well-documented occurrence around the world
(Spalding and Exner, 1993; Nolan and Stoner, 2000; Fields,
2004; Norse, 2005). This problem is of particular concern in
settings like southern New Jersey, where rural homeowners
derive drinking water from wells screened in the same surfi-
cial aquifers that are affected by local agriculture. The U.S.
Environmental Protection Agency (USEPA) has established a
maximum contaminant level for nitrate-nitrogen (NO,-N) of
10 mg/L in public water systems (U.S. Environmental Protec-

tion Agency, 2001). This regulation was established primarily
to prevent methemoglobinemia (“blue baby syndrome”) in
infants (Craun and others, 1981). In addition, recent studies
have linked NO,-N contamination with an increased incidence
of bladder and ovarian cancer (Weyer and others, 2001; Ward
and others, 2005). Information about the transport and storage
of nitrate in the unsaturated zone is needed to evaluate its
effect on ground-water quality.

Agronomists and soil scientists routinely monitor the
nitrogen content of the root zone underlying farm fields so
that fertilizer application practices can be managed to maintain
profitability and minimize leaching to ground water. Preferen-
tial flow (Ghodrati and Jury, 1990; Kung, 1990; Flury and oth-
ers, 1994; Lee and others, 2001; Ohrstrom and others, 2002),
chemical loading (Cambardella and others, 1999; Shepard and
others, 2001; Al-Jabri and others, 2002), and denitrification
(Tindall and others, 1995; Jacinthe and others, 2000; Tesori-
ero and others, 2000; Siemens and others, 2003) have been
assessed to help refine these agricultural practices. Because
plant-fertility studies rather than regional water-quality issues
have driven much of the soil and shallow-unsaturated-zone
transport research, information about the effects of the hydrau-
lic and geochemical properties of the lower unsaturated zone
(the area between the root zone and the water table) on nutri-
ent cycling and loading (mass flux) to ground water is limited
(National Research Council, 2004). The spatial variability
of these properties becomes important when the focus is on
regional water quality rather than evaluation of farming prac-
tices. For example, information on the spatial variability of the
mass flux of chemical constituents to the water table is needed
to evaluate loading to the underlying unconfined surficial
aquifer because land use, farming practices, and unsaturated-
zone geology, all of which affect the amount and quality of
recharge, vary within the watershed (Baehr and others, 2003).

The lower unsaturated zone, in addition to being the
conduit from the root zone to the shallow aquifer system, can
be an important reservoir for nitrogen and requires consider-
ation in nutrient budgets. Klein and Bradford (1979) collected
sediment samples from 13 test holes on plots in a variety of
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land-use areas (agricultural, urban, vacant, and feedlot) in San
Bernardino, California, to determine the amount of nitrate
stored in the unsaturated zone. Although nitrate concentrations
were highest at the surface at most of the sites, substantial
concentrations of nitrate (approximately 2-30 mg/kg) were
common at depths up to 37 m, especially at the irrigated agri-
cultural sites. In similar studies of agricultural land in Great
Britain (Foster and others, 1982), pore-water nitrate concentra-
tions of 10 to 20 mg/L persisted to depths greater than 9 m.
The storage of chloride, sulfate, and other cations in the lower
unsaturated zone also was noted. In other recent studies, sub-
stantial nitrate reservoirs have been documented in the lower
unsaturated zone beneath a Minnesota corn field (Delin and
others, 1997), Argentine farm land (Costa and others, 2002),
and North American deserts (Walvoord and others, 2003).

Sorption of nitrate and the resultant increase in ion-stor-
age capacity in the lower unsaturated zone, although well doc-
umented, commonly is neglected in unsaturated-zone transport
models. Anion sorption has been measured in tropical soils
(Sollins and others, 1988) and soils in the southeastern U.S.
(Eick and others, 1999) and Middle Atlantic (Toner and others,
1989). In some soils, the surface charge is permanent—that
is, a net negative charge exists as a result of the structural fea-
tures of the clay particles and persists irrespective of pH and
aqueous-phase composition. Anion sorption in these soils—for
example, 2:1-layer silicate clays (illite, vermiculite, and smec-
tite) and 2:2-layer clays (chlorite) —would be anticipated to
be minimal. In contrast, variably charged soils are character-
ized by a surface charge that is pH- and solution-dependent.
Anion sorption in these soil types could be substantial, as a
positive charge can result from protonation and deprotonation
of surface hydroxyl groups that occur at the edges of 1:1-layer
silicate clays (kaolinite), on less-ordered aluminosilicates,
on crystalline hydroxides and oxides of Al (gibbsite) and Fe
(goethite, hematite), and on organic matter (Sollins and others,
1988). Sorption of anions can result from association with
the cations in a secondary layer or an outersphere complex
(Sparks, 2003). Other studies in which anion sorption has been
documented include Sing and Kanehiro (1969), Kinjo and
Pratt (1971), Hingston and others (1972), and Espinoza and
others (1975).

To address these issues, the U.S. Geological Survey
(USGS), as part of its Toxic Substances Hydrology Program,
initiated a study to investigate the effect of sorption in the
lower unsaturated zone on the storage of chemical constitu-
ents, particularly nitrate, and their transport across the water
table.

Purpose and Scope

This report describes a field-based methodology devel-
oped to evaluate the flux of nitrate and other ions across the
water table in a small agricultural watershed in the New Jersey
Coastal Plain. This methodology is unique in that ion-concen-
tration data from the shallow ground water are coupled with

ion-concentration data from the lower unsaturated zone to
estimate the flux and partitioning of chemicals simultaneously.
Recharge, as well as chemical storage and sorption within

the lower unsaturated zone, is quantified. Storage, sorption,
and mass flux are documented to assess the physical/chemi-
cal assimilative capacity of the entire unsaturated zone and
the effect of sediment variability on the distribution of nitrate
loading to the underlying aquifer.

Description of Study Area

The study was conducted primarily within a 8-km?
agricultural watershed overlying the unconfined Kirkwood-
Cohansey aquifer system in Upper Deerfield Township, New
Jersey (fig. 1). Nitrate contamination of shallow ground water
in the agricultural region that encompasses this watershed
is a serious problem (Ayers and others, 2000). As part of
the USGS’s National Water-Quality Assessment (NAWQA)
program, shallow monitoring wells installed in the region
were sampled from 1996 to 1998. The median concentration
of nitrate was 13 mg/L, which exceeds the USEPA maximum
contaminant level of 10 mg/L (Stackelberg and others, 1997;
Ayers and others, 2000). In addition to the samples collected
at the Upper Deerfield Township sites, samples were collected
at three sites in undeveloped areas within the New Jersey Pine-
lands, a portion of the 4,450-km? Pinelands National Reserve,
a protected area in southern New Jersey (New Jersey Pine-
lands Commission, 2004). The Pinelands sites were selected to
provide background concentrations of the constituents studied
(fig. 1).

Most of the sediments that comprise the unsaturated zone
and the unconfined Kirkwood-Cohansey aquifer system in
the study area are made up of the Bridgeton Formation. This
formation is characterized by coarse, pebbly, orange sands
deposited under continental conditions during the late Tertiary
and Quaternary Periods (Zapecza, 1989). Distinctive strata
local to this study area have been documented by Baehr and
others (2003).

Methods of Sample Collection and
Analysis

Unsaturated-zone sediment samples were collected at 14
sites in the study area using a Geoprobe direct push system.
Sites were selected to provide areal coverage of the study area.
Cores were obtained by driving a core barrel through sedi-
ment with a high-frequency (30 Hertz) pneumatic hammer.
The cores were contained in 3.8-cm-diameter by 120-cm-long
acrylic core liners. After the altitude of the water table was
determined with a steel measuring tape, a 120-cm-long Geo-
probe retractable stainless-steel 10-slot well screen (Geoprobe
model SP-15) was driven to the water table to create a tempo-
rary well at each site. Temporary wells were installed at the
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shallowest possible depth to allow sampling at the water table.
The median depth below the water table of the top of the well
screen was 0.305 m and the median screen length was 0.76 m.
At each site, one ground-water sample was collected by insert-
ing a 0.64-cm-diameter PVC tube through the annular space
of the driving rods to the bottom of the screen. The temporary
well was developed and sampled at 1 L/min using a peristaltic
pump. Development criteria included purging fine particles
from the screen and pumping until temperature, specific con-
ductance, and pH readings stabilized. Ground-water samples
were analyzed at the USGS National Water Quality Labora-
tory (NWQL) in Denver, Colorado.

Moisture content was determined gravimetrically on
four or five 30-g sediment samples collected approximately
every 60 cm along the length of each core. Soil horizons and
stratigraphy were determined by visual inspection. Samples
were collected from selected layers (the upper soil zone and
the lowermost part of the unsaturated zone at a minimum) for
particle-size measurement and chemical analysis. Particle-
size distribution was determined by optical diffraction using a
Coulter LS-230 particle-size analyzer. These data are summa-
rized in appendix 1A (at the end of the report).

Sediment samples were analyzed at the Rutgers Univer-
sity Soil Testing Laboratory in New Brunswick, New Jersey
(Rutgers STL), to determine the concentrations of compounds
in the unsaturated zone. Sediments were dried as part of all
procedures. Therefore, the constituent concentrations reported
(app. 1A) are total concentrations (aqueous and extractable-
adsorbed mass partitions). Nitrate (NO, as N), ammonium
(NH,*), organic nitrogen plus ammonium (TKN), calcium
(Ca*), magnesium (Mg**), sodium (Na*), and potassium (K*)
extractions were analyzed using a Technicon AutoAnalyzer
II continuous flow analysis system (Mann, 1963; Markus and
others, 1985; Mulvaney, 1996; Sumner and Miller, 1996).
Organic-matter concentrations were determined using a modi
fied Mebius procedure (Nelson and Sommers, 1982).

Split samples were analyzed at a USGS research labora-
tory in Lakewood, Colorado, to determine concentrations of
NO, as N, sulfate (SO, "), and chloride (CI') using ion-chroma
tography techniques (Richard Healy, U.S. Geological Survey,
written commun., 2004; McMahon and others, 2003). Nitrate
concentrations, therefore, were determined by two methods.
At the Rutgers STL, a 0.5-M (molar) sodium chloride (NaCl)
solution was used to extract NO, as N (as well as NH,*) from
sediment—a standard procedure commonly used by soil
scientists (Mulvaney, 1996). At the USGS research laboratory,
deionized water was used for extraction of NO, as N, SO,
and CI' (McMahon and others, 2003) because the high ion
concentrations that would result from using the 0.5-M NaCl
solution would interfere with subsequent chromatographic
analyses.

For samples in which both laboratories detected nitrate,
the method employed by the Rutgers STL removed, on aver-
age, approximately four times more nitrate than the method
used by the USGS research laboratory (app. 1, figure 1-1).
This discrepancy results from the lower extraction efficiency

of deionized water compared to the 0.5-M NaCl solution. The
nitrate content not extractable with deionized water may be
bound in clays (Herbel and Spalding, 1993) or sorbed strongly
on sediment with a large anion-exchange capacity (Brem-

ner, 1965). The nitrate concentrations reported by the USGS
laboratory are presented here to demonstrate that the use of
different solvents for nitrate extraction have differing efficien-
cies and can produce substantially different reults; however,
because the focus of this study is the total nitrate stored in the
unsaturated zone, only data from the Rutgers STL are ana-
lyzed in the subsequent discussion. Only data from the USGS
research laboratory are available for SO,~, and CI'; therefore,
sediment concentrations reported for SO, and CI likely
underestimate actual concentrations, and reported K estimates
for these constituents likely are lower than actual values.

Effect of Sorption on Transport and
Storage

The effects of sorption on storage in the lower unsatu-
rated zone and transport across the water table are evaluated
to assess the physical/chemical assimilative capacity of the
entire unsaturated zone and to determine the effect of sedi-
ment variability on the movement of selected constituents to
the underlying aquifer. Background concentrations of selected
constituents in precipitation and in an undeveloped area are
documented to evaluate atmospheric loading to the unsatu-
rated zone.

Calculation of Mass Fluxes and Sorption
Coefficients

Chemical concentrations determined from analysis of
sediment samples are combined with calculated flow rates to
determine mass fluxes to the underlying unconfined Kirk-
wood-Cohansey aquifer system. Unsaturated-zone sorption
coefficients are calculated based on differences in chemical
concentrations between the lower unsaturated-zone sediments
and samples of the shallow ground water beneath them.

Mass Flux of Chemicals Across the Water Table

Estimates of the mass flux of chemicals across the water
table are summarized in table 1. The flux estimates were cal-
culated by using the following equation:

J=4qC , ey

where J is the mass flux (mg/cm?/yr), ¢ is the recharge
rate (cm/yr), and C is the concentration (mg/cm?) in the aque-
ous phase. Because ground-water samples were collected at
the water table, values of C are the ground-water concentra-
tions reported in appendix 1. This method of approximating



the concentrations of chemical constituents in recharge is
conservative because chemical transformations near the water
table are assumed to be negligible.

Data on sediment texture and water content in the lower-
most portion of the unsaturated zone were used in conjunction
with Darcy’s Law to approximate g. Darcy’s Law for unsatu-
rated flow is

g=—K|1-— @)

dy }

where K is conductivity (cm/d), ‘¥ is the matric poten-
tial (cm), and z is the vertical coordinate (cm and positive
upward). The functions K and ¥ were estimated using the
particle-size and moisture-content data with the pedotransfer
functions of the ROSETTA model version 1.0 (U.S. Depart-
ment of Agriculture, 2004). Moisture content was measured
throughout the unsaturated zone approximately every 60 cm.
This spacing was determined to be too large to determine the
matric potential gradient; therefore, the unit gradient approxi-
mation

q=-K (3)

was employed. ROSETTA employs the van Genuchten-
Mualem model (van Genuchten, 1980) to calculate K. The
average moisture content of the lowermost layer of the unsatu-

Table 1.
2003-04.

Effect of Sorption on Transport and Storage 5

rated zone at each site (app. 2) was used to define the required
moisture content. Portions of the lowermost layers subject to
increased moisture content as a result of capillary rise were
neglected in the calculation. The recharge calculations and site
information are summarized in appendix 2. The median value
of K calculated for the 11 sites in Upper Deerfield is

48.7 cm/yr (range, 9.1-314.4 cm/yr; standard deviation, 110.4
cm/yr). In water-budget studies previously conducted in
southern New Jersey, annual recharge ranges from 33.1 to 49.3
cm/yr (Baehr and others, 2003). Although the unit gradient
recharge values determined during this study vary substan-
tially, the median value is within the range of recharge values
calculated in earlier studies as part of annual water budgets for
the area and, therefore, is assumed to provide a realistic range
of the spatial variability of recharge in Upper Deerfield.

Unsaturated-Zone Sorption Coefficients

Mass partitioning between aqueous and adsorbed phases
in the lower layer of the unsaturated zone defines the mass of
chemical available to enter the aquifer with recharge water.
The sorption coefficient K, (L/mg) is defined as follows:

S=K,C )
where S (mg/kg of dry sediment) is the concentration
of the compound adsorbed onto solid surfaces and C (mg/L)

Mass flux of selected ions across the water table at 11 agricultural and 3 undeveloped sites in southern New Jersey,

[Mass flux (J) = qC; q, recharge rate; C, concentration; TKN, total Kjeldahl nitrogen; <, less than; --, not calculated. Values of C are from appendix 1; values
of q are from appendix 2; cm/yr, centimeters per year; (g/m?)/yr, grams per square meter per year |

Mass flux ((g/m?)/yr)
Site identifierand  q(cm/yr) NO;asN NH‘asN TKN Ca~ Mg+ Na+ S0,” Crr
land use
COI - nursery 86.6 10.3 <0.1 0.1 20.7 16.4 4.4 43.8 28.8
CO02 - former orchard ~ 314.4 10.6 1.5 22 53.1 9.0 9.1 124.9 14.0
CO03 - corn field 251.9 46.4 <0.1 0.3 98.5 32.0 6.4 103.0 71.6
C04 - open field 19.3 <0.1 <0.1 <0.1 0.6 0.9 6.2 2.8 11.0
CO05 - sod farm 9.1 0.7 <0.1 <0.1 1.8 0.7 0.3 4.7 0.9
C06 - sod farm 38.7 6.5 <0.1 <0.1 13.7 8.4 1.6 24.6 13.0
CO07 - sod farm 2174 60.3 <0.1 0.3 76.9 359 8.2 522 63.3
CO08 - residential 48.7 3.1 <0.1 0.1 5.4 1.4 3.1 7.9 6.7
C09- open field 166.5 29.0 <0.1 0.1 39.3 20.1 56.0 49.6 102.1
C10- open field 23.0 1.8 <0.1 - 5.1 1.6 0.9 10.0 2.9
C11- corn field 10.1 0.5 <0.1 - 2.5 1.7 5.4 1.5 16.6
Median 8.4 <0.1 0.2 13.7 84 5.4 24.6 14.0
P1 - Undeveloped <0.1 <0.1 - -- -- -- -- --
P2 - Undeveloped <0.1 <0.1 - -- -- -- -- --
P3 - Undeveloped <0.1 <0.1 - -- -- -- -- --
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is the concentration of the compound in the aqueous phase
within the unsaturated zone. The unsaturated-zone chemical
concentrations reported in appendix 1 are the total of adsorbed
plus aqueous phase partitions:

r=S+w, C, (®)]

where T is the total concentration (mg/kg of dry sedi-
ment) and w_is the average moisture fraction (L of water/kg
of dry sediment) of the lowermost layer. Equations (4) and (5)
yield the following formula for calculating K, from field data:

T
Kd :E _Wave (6)
As was the case for the computation of mass flux with
equation (1), the shallow-ground-water chemical concentra-
tions reported in appendix 1 were used to determine C in equa-
tion (6).The K, values calculated for each site are summarized
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Figure 2a. Sorption coefficients (K ) for cations in sands and in
finer grained sediments, Upper Deerfield Township, New Jersey.
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Figure 2b. Sorption coefficients (Kd) for anions in sands and in
finer grained sediments, Upper Deerfield Township, New Jersey.

in appendix 3 and are depicted graphically in figures 2a and
2b.

Variability in K, values for a given ion is expected as a
result of differences in sediment properties including texture,
pH, and surface chemical properties. Variability is also
expected because compound mixtures vary from site to site
and because compounds compete for sorption sites as they
migrate to the lower unsaturated zone. The lower unsaturated
zone contains little organic matter (app. 1); therefore, organic-
matter content does not contribute to sorption variability. Mea-
surement errors result in a random component of variability,
especially when the collection of field data is involved.

The K, values were calculated using field data and an
operational definition of sorption—that is, the adsorbed mass
is the portion of total mass that is not associated with water
moving across the water table. The calculated K, values are
consistent with the properties of the adsorbed ions and varia-
tions in sediment texture. The median K, values for cations are
approximately an order of magnitude greater than those for
anions (figs. 3a and 3b). This result is expected because the
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Figure 3a. Median values of sorption coefficient (K ) for cations

in sands, loamy sands and sandy loams, and all sediments, Upper
Deerfield Township, New Jersey.
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sediment surfaces are expected to have a net negative charge.
Median K, values for the finer grained sediments encountered
in the lower unsaturated zone (three loamy sands and a sandy
loam) are greater than the medians for the sediments at the
seven sites where the lower unsaturated zone consisted of sand
(figs. 3a and 3b). This result is expected because the surface
area is greater for finer sediments than for sands.

The cation sorption selectivity order, based on median K|,
values, is Na* > Mg** > Ca** for sands and Na* > Ca** > Mg**
for finer grained sediments. The observed order for anions
is SO, > NO, > CI' ; however, as discussed above, the K,
values for SO, and CI likely are underestimated. The order
for cations is consistent with the expected negative correla-
tion between K, and charge density (valence divided by ionic
radius) (fig. 4). Cations with a smaller charge density create a
smaller electrical field and are less likely to remain solvated
given the competition for complexation by a surface func-
tional group (Sparks, 2003). The change in order of Ca**and
Mg* between sediment types is not contradictory because
the charge densities for these divalent cations are similar. K,
values were not calculated for K* because its concentrations
in shallow ground water were not determined. K, values also
were not calculated for NH,* because its concentrations in
shallow ground water were below detection limits.

Background Concentrations

Representative concentrations of ions in precipitation
for 2000-03 are presented in table 2 with associated concen-
trations in unsaturated-zone sediments calculated according
to equation (5). Concentrations of ions in precipitation are
measured throughout the United States as part of the National
Atmospheric Deposition Program (NADP) (http://nadp.
sws.uiuc.edu/). The calculations show that precipitation is a
negligible source of Ca*™, Mg*, K*, NO,’, and CI" in unsatu-
rated-zone sediments. Precipitation probably contributes a
measurable concentration (on the order of 1-3 mg/kg) of Na*,
NH4*, and SO4-, but this input is small compared to most of
the concentrations measured in Upper Deerfield Township
(app. 1).

The sediment texture, moisture, and chemistry data and
shallow-water-quality data collected at the three sites in the
New Jersey Pinelands allow for evaluation of the combined
effect of background sources. Land at these sites is historically
undeveloped; therefore, measured concentrations of ions in the
lower unsaturated zone are limited to contributions from the
atmosphere, weathering, microbial respiration, and vegetation.
At these sites (P1, P2, and P3 in appendix 1), concentrations
of NO, Ca*™, Mg*, and Cl in unsaturated-zone sediments
were less than 1 mg/kg, indicating that background sources
of these ions do not contribute substantially to the concentra-
tions measured in Upper Deerfield Township. Concentrations
of NH,*, Na*, K*,and SO, at sites P1, P2, and P3 were greater
than those that can be attributed to precipitation, but less than
those measured in Upper Deerfield Township and associ-

Effect of Sorption on Transport and Storage 7

b=
= 6 T T
R A © Calcium
= O Magnesium
S 4+ A Sodium -
G 3
% o
o 2r O -
o
- 1 7
Z \ \ |

o 0 1 2 3 4
X

CHARGE DENSITY

Figure 4. Sorption coefficient (K ) as a function of charge density
for cations, Upper Deerfield Township, New Jersey.

Table 2. Concentrations of selected ions in precipitation and
their predicted contribution to the concentrations of selected
ions in the lower unsaturated zone, southern New Jersey,
2000-03.

[mg/L, milligrams per liter; mg/kg, milligrams per kilogram; L/mg, liters

per milligram; T, total concentration; K , sorption coefficient; W _, average
moisture fraction; <, less than]
lon Crecip T e fOrsands T 2for other
sediment types
(mg/L) (mg/kg) (mg/kg)
Ca*™ <0.1 0.1 0.4
Mg+ 0.05 0.1 0.1
Na* 0.4 1.2 3.1
K* 0.04 0.2} 0.2}
NH"as N 0.2 1.13 1.1°
NO, as N 0.3 0.1 0.2
SO,~ 1.6 0.9 1.4
Cr 0.5 0.1 0.2
! Cpx'eci = concentration in precipitation; values from http://nadp.sws.uiuc.

edu/isopleths/annualmaps.asp, accessed 1/25/2006

’T ..=&, +w )C - average K, values from appendix 3; w =

precip precip

0.06 for sands and 0.10 for sandy loams and loamy sand (see appendix 1A).

ave

3 No field K ’ values calculated for K* and NH A these estimates are
based on an assumed K, = 5.5 L/mg.

ated with agricultural land use. The concentrations of these
ions are assumed to be representative of in situ background
processes unrelated to local inputs at all of the study sites. The
near-ubiquitous occurrence of NO,", Ca**, Mg**, and CI"in the
unsaturated zone and shallow ground water in the study area is
attributed to agricultural land use. Background concentrations
of SO, and Na* also were small compared to the concentra-
tions observed in Upper Deerfield.
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Effect of Sorption on Transport of Chemicals
across the Water Table

In the absence of information pertaining to sorption (par-
ticularly for NO,” and other anions), a conservative assump-
tion would be that all chemical mass in the lower unsaturated
zone is partitioned entirely in the aqueous phase, and therefore
is available to recharge. The following ratio () can be used
to estimate the extent to which this assumption would cause
contaminant loading to the underlying aquifer to be overesti-
mated:

Y = T/Wave — Kd+wave

C w

ave

)

The value is the hypothetical unsaturated-zone aque-
ous concentration under the assumption that all mass resides
in the aqueous phase. This value is divided by C, the actual
unsaturated-zone aqueous concentration, to obtain y. Values
of 7y calculated (where possible) for the lowermost layer of the
unsaturated zone in Upper Deerfield Township are listed in
table 3.

Neglecting sorption would result in a gross overesti-
mation of the rate of mass transfer to the water table. For

Table 3.

example, the median y for NO, is 6.8, so the mass-transfer
rate would be overestimated by a factor of 6.8. Residence-time
calculations likewise would be affected, resulting in an under-
prediction of the time required for natural cleansing if the land
were to be reclaimed. Geochemical transport models that did
not account for the sorption of NO, to the sediments would be
highly inaccurate. Because 7y varies spatially with differences
in sediment properties and the mixture of compounds that
have migrated to the lower unsaturated zone, transport models
would yield inaccurate predictions of compound loading at
individual sites without specific information on sediment
properties.

In a previous study, a mathematical model of the local
ground-water flow system was used to evaluate the effects
of various nitrate-management options on the concentration
of NO; in streams and water-supply wells in the New Jersey
Coastal Plain (Kauffman and others, 2001). NO," concentra-
tions were simulated under the assumption of an immediate
ban on nitrate input and the conservative assumption that all
nitrate resides in the aqueous phase. Even under this most
optimistic assumption, NO,” concentrations were predicted to
remain elevated above background concentrations in streams
and wells for decades as a result of the time required for
ground water to flow through the aquifer.

Ratio (y') of the hypothetical aqueous concentration of selected ions in the unsaturated zone under the assumption that

all mass on the sediment resides in the aqueous phase to the actual unsaturated-zone aqueous concentration, Upper Deerfield

Township, New Jersey, 2003-04.

[--, the ratio cannot be calculated because the ion was not detected in the aqueous phase; *, the ratio cannot be calculated because the ion was not detected in
the lower unsaturated zone; #, the ratio is not reported because the ion concentration in ground water was very large]

Site identifier and land use Ca* Mg+ Na* CIr NO, asN S0,-
CO1 - nursery 66.6 9.9 109.9 52 2.5 --
CO02 - former orchard 60.5 37.1 105.7 3.6 19.4 6.2
CO03 - corn 11.9 6.5 104.8 2.7 4.6 5.6
C04 - open field 114.9 81.6 17.3 2.5 - 40.9
CO5 - sod farm 434 80.5 57.5 3.1 10.4 1.6
CO06 - sod farm 13.9 3.4 51.3 3.8 * 6.0
CO07 - sod farm 17.8 7.6 154.4 3.6 * 12.0
CO8 - residential 3.7 36.8 33.6 * * 16.5
C09- open field 5.5 17.6 2.0 1.0 * 10.5
C10- open field 46.8 374 151.2 10.2 8.7 13.4
Cl11- corn 354 14.6 6.9 # 5.0 14.3
Median 354 17.6 57.5 3.6 6.8 11.3
Loy = T1W4, _ Kit Ve

C w

T = total concentration (mg/kg of dry sediment)
w_ = moisture fraction (L of water/kg of dry sediment)

C = concentration in the aqueous phase (mg/L)
K, = sorption coefficient (L/mg).



Effect of Sorption on Unsaturated-Zone Storage

Sorption affects the storage capacity and residence time
of each compound in the unsaturated zone. The mass of a
compound stored within an interval of the unsaturated zone is
obtained as follows:

z

2
M[z],sz Tp, dz 8)
A
where M (g/m?) is the mass of the compound stored per
unit area over the depth interval [z AR T is the total concen-
tration of the compound sorbed to the sediment (g/kg) , and p,

is the dry bulk density of the sediment (kg/m?). The value

_ Mz 2y ©
S Z,7z,

is the average total concentration of the compound (g/m?)
for the interval [z,,z,] (table 4). The intervals defined were the
soil and the lower unsaturated zone —that is, the unsaturated
zone beneath the soil. Concentrations representative of the
soil layer were obtained at each site. For the lower unsatu-
rated-zone integration, if concentration data were not avail-
able for a distinguishable layer, then the concentration in an
adjacent layer was assumed. These calculations for the lower
unsaturated zone are limited in accuracy because the data col-
lected were insufficient to develop functional descriptions of
variations in concentration with depth; however, they provide
a scale for estimates of storage and residence time and a basis
for comparing the difference in sorption between compounds.

On the basis of median values (table 4), concentrations
of NO,, NH,*, SO,", and Na* in the soil layer and the lower
unsaturated zone are similar in magnitude. Therefore, storage
of these chemicals can be assumed, on average, to be approxi-
mately uniform throughout the unsaturated zone in Upper
Deerfield. For the cations Ca**, Mg**, and K*, concentrations
in the lower unsaturated zone are, on average, 12 to 20 percent
of those in soils. The results for CI' may be anomalous, as
concentrations in the lower unsaturated zone are higher, on
average, than those in soils.

Although NH_* is present throughout the unsaturated
zone (table 4), the recharge flux of NH,*is immeasurably
low at all sites (table 1). It is presumed that NH,* has a high
sorption coefficient as it is a monovalent cation, which renders
NH,*effectively immobile through the lower unsaturated zone.
Therefore, NH,* is presumed to reside in the lower unsatu-
rated zone because nitrogen was transported in a mobile form
and subsequently converted to NH,*. For example, a soluble
fraction of organic nitrogen (TKN) may travel through the
unsaturated zone and be subject to mineralization reactions at
depth, resulting in the observed accumulation of NH,*.
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Summary and Conclusions

Contamination of ground water as a result of fertilizer
application is of particular concern in settings like southern
New Jersey, where rural homeowners derive drinking water
from wells screened in the same surficial aquifers that are
affected by local agriculture. Information about the storage
of nitrate in the unsaturated zone and its transport across the
water table is needed to evaluate its effect on ground-water
quality. Because plant-fertility studies rather than regional
water-quality issues have driven much of the soil and shallow-
unsaturated-zone transport research, information is limited
about the effects of the hydraulic and geochemical proper-
ties of the lower unsaturated zone (the area between the root
zone and the water table) on nutrient cycling and loading
(mass flux) to ground water. To address these issues, the U.S.
Geological Survey (USGS), as part of its Toxic Substances
Hydrology Program, initiated a study to investigate the role of
sorption in the storage of chemical constituents, particularly
nitrate, in the lower unsaturated zone and their transport across
the water table to the unconfined Kirkwood-Cohansey aquifer
system.

The effects of sorption on storage in the lower unsatu-
rated zone and transport across the water table were evaluated
to assess the physical/chemical assimilative capacity of the
entire unsaturated zone and the effect of sediment variability
on the movement of selected chemicals to the underlying
aquifer. Background concentrations of selected chemicals in
precipitation and in an undeveloped area were documented
to evaluate atmospheric loading to the unsaturated zone.
Chemical concentrations determined from analysis of sedi-
ment samples were combined with calculated flow rates to
determine mass fluxes to the aquifer system. Unsaturated-zone
sorption coefficients were calculated based on differences in
chemical concentrations between the lower-unsaturated-zone
sediments and samples of the shallow ground water beneath
them. Mass partitioning between aqueous and adsorbed phases
in the lower layer of the unsaturated zone defines the mass of
chemical available to enter the aquifer with recharge water.

In this study, anion sorption accounted for a much greater
storage capacity for NO,", SO,~, and CI in the unsaturated
zone than would be calculated if mass were assumed to reside
only in the aqueous phase. The increased residence times
indicated as a result of this study imply that natural cleansing
of the unconfined Kirkwood-Cohansey aquifer system is likely
to take much longer than previously predicted. Similar results
are likely in comparable hydrogeologic settings throughout
the Atlantic Coastal Plain. Additional investigations of the
occurrence and phase-partitioning of compounds relevant to
the nitrogen cycle in the lower unsaturated zone and shallow
ground water and of the storage properties of the unsaturated
zone — particularly the anion-exchange capacity and kinet-
ics of nitrate remobilization—would permit a more through
evaluation of the long-term effects of agricultural land use on
ground-water quality.
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[a) CONCENTRATION OF NO3-N MEASURED USING

0.5-MOLAR NaCl, IN MILLIGRAMS PER KILOGRAM

Figure 1-1.  Relation between NO,-N concentrations measured
using 0.5-molar NaCl as an extractant and NO,-N concentrations
measured using deionized water as an extractant.
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Appendix 2. Summary of recharge estimates for selected sites, Upper Deerfield Township, New Jersey.

[vol/vol, volume per volume; cm/yr, centimeters per year]

Latitude Longitude Depthto water  Depth of lowermost Average
Site identifier (degrees, (degrees, table (meters  unsaturated-zone layer U(.:.AD!:ipcaurlttl:::t moisture content Z::i'::;?:
and land use minutes, minutes, below land (meters below land surface) sedi?nent type (6) for lowermost (emiyr)
seconds) seconds) surface) Top Bottom layer (vol/vol)

CO1 - nursery 393038.2 07514359 9.80 6.74 9.75 coarse sand 0.090 86.6
C02 - former 3931 11.7 07514 03.4 3.08 1.40 3.08 very coarse sand 0.118 314.4

orchard
CO03 - corn field 393238.8 0751347.7 10.09 7.68 10.09 very coarse sand 0.103 251.9
C04 - open field 3931047 07515424 2.59 0.87 2.44 very coarse sand 0.068 19.3
CO05 - sod farm 393109.8 0751507.6 5.32 4.11 5.32 loamy sand 0.240 9.1
CO06 - sod farm 393208.5 07513515 7.68 5.67 7.68 coarse sand 0.085 38.7
CO07 - sod farm 3930383 07514571 6.13 1.80 6.13 loamy sand 0.141 217.4
CO8 - residential 3930 13.0 07515284 4.93 3.66 4.93 very coarse sand 0.093 48.7
C09- open field 3930 33.1 07514 53.3 7.30 5.29 7.32 very coarse sand 0.120 166.5
C10- open field 3931014 07514169 6.89 2.13 6.89 loamy sand 0.121 23.0
C11- corn field 393110.7 07515193 5.68 4.15 4.57 sandy loam 0.247 10.1
Median 6.1 48.7
Appendix 3. Summary of sorption coefficients for selected ions in sediments, Upper Deerfield Township, New Jersey.
[K,, sorption coefficient; --, K cannot be calculated because ion not detected in lowermost unsaturated zone; #, negative K calculated]
Site identifier and land use Description of K, (lters per milligram)

lowermost layer Ca* Mg+ Na+ CI NO, asN S0,

CO1 - nursery coarse sand 3.23 0.44 5.37 0.21 0.07 --
CO02 - former orchard very coarse sand 4.65 2.82 8.18 0.20 1.44 0.41
CO03 - corn field very coarse sand 0.67 0.34 6.37 0.10 0.22 0.28
C04 - open field very coarse sand 4.65 3.29 0.67 0.06 -- 1.63
CO05 - sod farm loamy sand 0.78 0.15 3.03 0.17 -- 0.30
CO06 - sod farm coarse sand 0.15 2.00 1.82 -- -- 0.86
C07 - sod farm loamy sand 0.28 1.01 0.06 0.00 -- 0.58
CO8 - residential very coarse sand 5.12 9.60 6.82 0.26 1.13 0.07
C09- open field very coarse sand 1.20 0.47 10.97 0.19 -- 0.79
C10- open field loamy sand 2.59 2.06 8.50 0.52 0.44 0.70
C11- corn field sandy loam 5.34 2.11 0.91 # 0.62 2.06
Median — sands 0.78 1.01 3.03 0.13 0.22 0.49
Median — loamy sands and sandy loams 3.86 2.09 7.66 0.26 0.62 0.75
Median — all sites 2.59 2.00 5.37 0.19 0.53 0.64
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