Crop Bioprotection Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: PRODUCTION, STABILIZATION, AND FORMULATION OF MICROBIAL AGENTS AND NATURAL PRODUCTS

Location: Crop Bioprotection Research

Title: Evaluation of the desiccation tolerance of blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomyces)using a lab- scale, air-drying chamber with controlled relative humidity

Authors

Submitted to: Biocontrol Science and Technology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: June 21, 2007
Publication Date: September 19, 2007
Citation: Jackson, M.A., Payne, A.R. 2007. Evaluation of the desiccation tolerance of blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomyces)using a lab-scale, air-drying chamber with controlled relative humidity. Biocontrol Science and Technology. 17(7):709-719.

Interpretive Summary: The survival and shelf-life of biopesticides for use in controlling insects and weeds is often enhanced through drying. Our air-drying studies with the insect-killing fungus Paecilomyces fumosoroseus have shown that the relative humidity (RH) of the drying air can enhance the survival and shelf-life on this fungus. Drying air with RH above 40 percent supported high rates of survival (~80 percent) after drying and drying air with RH above 55 percent significantly improved the shelf-life of the fungus. The pH of the spent medium or the rinsing of spent media from the fungus prior to air-drying had no significant impact on survival. A lab-scale, air-drying chamber that delivers air flow over the sample and that can be operated at controlled-RH was developed and is described. These studies have provided researchers and biopesticide producers with air-drying conditions that improve biopesticide survival after drying and a lab-scale, drying chamber that allows researchers to screen potential microbial biopesticides amenable to air-drying.

Technical Abstract: The stabilization of living microbial agents for use as biological control agents is often accomplished through desiccation. The drying process must be conducive to the survival of the living microbial agent during desiccation and storage. Our air-drying studies with liquid culture-produced blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus have shown that the relative humidity (RH) of the drying air significantly impacts the desiccation tolerance and storage stability of these propagules. Drying air with RH above 40 percent was shown to support high rates of initial blastospore survival (~80 percent) after drying; and drying air with RH above 55 percent, significantly improved the shelf-life of the blastospore preparations. The pH of the spent medium or the rinsing of spent media from the blastospore preparation prior to air-drying had no significant impact of blastospore desiccation tolerance. A lab-scale, air-drying chamber that delivers air flow over the sample and that can be operated at controlled-relative humidity is described.

   

 
Project Team
Jackson, Mark
Dunlap, Christopher
Behle, Robert
Cossé, Allard
 
Publications
   Publications
 
Related National Programs
  Crop Protection & Quarantine (304)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   LABORATORY AND FIELD DEMONSTRATIONS OF WEED CONTROL PROPERTIES OF DRY FORMULATIONS OF MYCOLEPTODISCUS TERRESTRIS, A POTENTIAL FUNGAL BIOHER
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House