Plant Polymer Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: ADVANCED STARCH-BASED MATERIALS FOR NON-FOOD APPLICATIONS

Location: Plant Polymer Research

Title: POLY(LACTIC ACID) GREEN COMPOSITES USING OILSEED COPRODUCTS AS FILLERS

Authors

Submitted to: Industrial Crops and Products
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: April 13, 2007
Publication Date: July 1, 2007
Citation: Finkenstadt, V.L., Liu, C., Evangelista, R.L., Liu, L.S., Cermak, S.C., Hojillaevangelist, M.P., Willett, J.L. 2007. Poly(lactic acid) green composites using oilseed coproducts as fillers. Industrial Crops and Products. 26(1):36-43.

Interpretive Summary: This work characterized a novel green composite from alternate oilseed coproducts and poly(lactic acid) fabricated by twin-screw extrusion and injection molding. The composites showed similar mechanical properties to some conventional polymer composites, and are biodegradable and competitive in cost with comparable non-sustainable petroleum based products currently in the marketplace. The manuscript also discusses several technical issues such as the effect of the filler/matrix ratio on the structural and mechanical properties of resultant composites and provides useful information for the studies of other natural fiber-reinforced biobased polymer composites. The current study presents a new way to utilize agricultural by-products for the future profitability of the agriculture industry.

Technical Abstract: Poly(lactic acid), PLA, is a biodegradable polymer made from renewable resources with similar mechanical properties to polypropylene. PLA is more expensive than petroleum-based plastics, and the use of low-cost fillers as extenders is desirable. Agricultural co-products of the alternative oilseed crops, cuphea(C), lesquerella(L) and milkweed(M), were collected after the oil was recovered. PLA and various levels of coproduct (0-45% w/w) were compounded by twin-screw extrusion and injection molded. As coproduct content increased, tensile strength for all PLA composites decreased consistent with the Nicolais-Narkis model. PLA-C exhibited increased stiffness. In contrast, the modulus of PLA-M & PLA-L decreased slightly. Unexpectedly, PLA-M showed extensive stress-cracking under tensile stress and exhibited an elongation value 50% to 200% greater than the PLA control. Acoustic emission showed ductile behavior of the PLA-M composite.

   

 
Project Team
Willett, Julious - J L
Momany, Frank
Finkenstadt, Victoria
Shogren, Randal - Randy
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   DETERMINATION OF STRUCTURE-PROPERTY RELATIONSHIPS IN BIOLOGICAL MACROMOLECULES USING BIOPHYSICAL APPROACHES
   AGRICULTURAL POLYMERS FOR PREVENTION OF CORROSION ON METALS
   STARCH FOAM PRODUCTION BY EXTRUSION
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House