National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Linking Measures of Ecological Integrity with Ecosystem Processes in Mitigation Wetlands

WET 101

Presented by Siobhan Fennessy Kenyon College

Study Design:

- 10 natural and 10 restored (mitigation) wetlands
- biological assessments made based on vegetation community composition
- Ground water and surface water levels monitored
- ecosystem processes measured including biomass production, decomposition rates, and nutrient cycling rates.

Created wetland during drydown

Natural wetland during drydown

Theoretical models of ecosystem development

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, WET101_12

Where along the continuum do mitigation wetlands fall?

Least impacted

Most disturbed

Range of Natural Wetland Condition

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, WET101_12

Natural

Mitigation - creation

Mitigation - restoration

Site Selection

•Natural wetlands chosen over a range of condition

•Mitigation wetlands chosen over a range of ages (0-10 years)

Natural Wetland

Restored Wetland

March 31 - April 4, 2003 National Biological Assessment and Criteria Workshop, WET101_12

Core Elements of Wetland Structure and Function were Evaluated

- Hydrology
 - Water levels
 - Water chemistry
- Soil characteristics
- Vegetation community characteristics
- Biogeochemistry
- Plant-based biological indicators

Hydrological characteristics of natural and created wetlands

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, WET101_12

Created system: daily change in ground water levels (evapotranspiration)

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, WET101_12

Natural system: daily change in ground water levels (evapotranspiration)

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, WET101_12

Soil nutrient levels in natural and mitigation wetlands

Mean biomass accumulation by wetland type $(g/0.1m^2; n = 10)$

Aboveground plant tissue nutrient accumulation differs by wetland type

Litterbags incubating in wetland

Wetland function: Plant decomposition

Nutrient flux in decomposing litter: Nitrogen

March 31 - April 4, 2003 National Biological Assessment and Criteria Workshop, WET101_12

Nutrient flux in decomposing litter: Phosphorus

Using biological indicators to assess mitigation success: the FQAI

Using biological indicators to assess mitigation success: the VIBI

National Biological Assessment and Criteria Workshop, WET101_12 March 31 - April 4, 2003

A Comparison of the *Similarity* between Natural and Created Wetlands

Variation in FQAI-CC values by Aquatic Life Use category

Variation in decomposition rates by Aquatic Life Use category

Soil carbon content by Aquatic Life Use category

Note: insufficient data for "Wetland Habitat" category

Age of restoration project versus FQAI score

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, WET101_12

Conclusions

- Essentially all measures of biological integrity were lower at mitigation sites
- Plant species diversity higher in natural wetlands
- Biomass production and nutrient retention higher in natural sites
- Decomposition rates higher in natural wetlands
- Nutrient limitation in mitigation wetlands appears to be slowing success