National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

WET 101

Application of Wetland Bioassessment Protocols for Making Aquatic Life Beneficial Use-Support Determinations in Montana

Presented by Randy Apfelbeck Montana Department of Environmental Quality

Wetland Bioassessments

- Explain how Montana uses biological data to determine whether water quality standards are being achieved.
- Discuss how biological assessments are used within Montana's TMDL program.
- Discuss how Montana uses physical and chemical information (human disturbance gradient) to assess aquatic life uses.
- Provide an example of our assessment process for listing impaired waters (303(d) list).

APPLICATION OF BIOASSESSMENTS

 How are biological assessments used to determine if Montana's water quality standards are being achieved?

Water Quality Standards

• Clean Water Act (Section 101(a))

 restore and maintain the chemical, physical and biological integrity of the Nation's waters.

• Designates beneficial uses for all surface water, *including wetlands*.

Nondegradation

– Existing uses of state waters must be maintained and protected

Wetland Beneficial Uses

- Aquatic Life Use Support
 - Waters are suitable for the growth and propagation of fish and associated aquatic life, waterfowl and furbearers.
 - Bioassessments are very useful for assessing aquatic life beneficial uses because they are a direct measure of the health of aquatic communities.

Numeric Criteria

- Chronic and acute aquatic life standards.
- Changes in pH, turbidity and temperature are limited.

Narrative Criteria

- No increases are allowed above "*naturally* occurring" concentrations of sediment, settleable solids, floating solids, etc. which are *harmful, detrimental, or injurious to birds, fish or other wildlife.*
- Prohibition of *undesirable* aquatic life.
- *Pollution* resulting from non-point sources, including agriculture, construction, logging, and other practices must be minimized.

Naturally Occurring

 Refers to the chemical, physical and biological conditions or materials present from which man has no control, or from <u>developed</u> land where "reasonable" land, soil, and water conservation practices have been applied (17.30.602(18) ARM).

"Reasonable" Land, soil, and water Conservation Practices

- Means methods, measures or practices that protect existing and designated beneficial uses (17.30.602(23) ARM).
- Often determined by using reference condition

Reference Condition

- Reference condition is the *greatest potential* for a waterbody to support all of its beneficial uses given the *historical land use*.
- used to interpret narrative criteria and numeric criteria that limit how much a parameter can change from what would be naturally occurring.

Reference Condition (Primary Approach)

- Collecting baseline data from minimally impaired water bodies within the same region having similar geology, hydrology and morphology
- Evaluating historical data

• Using internal references or a paired watershed approach

Reference Condition (Secondary Approach)

Reviewing existing literature

Expert Opinion

Quantitative Models

How are biological assessments being used by Montana's TMDL Program?

What is a TMDL? (Total Maximum Daily Load)

• Technically, a TMDL is the total amount of a pollutant, per day, (including a margin of safety) that a waterbody may receive from any source (point, non-point, or natural background) without exceeding the *State water quality* standards.

What is a TMDL?

Practically, a TMDL is a component of a water quality restoration plan that is developed to *protect beneficial uses* which has quantifiable goals or endpoints.

Must be linked to pollutants (e.g. nutrients)
May not be useful for restoring wetlands that have physical, habitat or hydrologic impairments (pollution)

Application of Biological Assessments in the TMDL Program

Detecting impairment

- Direct measure of aquatic life use
- Interpretation of the biological data helps identify probable sources and causes of impairment

• TMDL

- Establish targets or restoration goals
- Effectiveness monitoring

303(d) List

- List of impaired waters that are not achieving State water quality standards and may require TMDLs
- There are currently eight wetlands on the 303(d) list.
- Biological data were used to assess aquatic life use support for 93% of the waters that have been placed on Montana's 303(d) list.

 How are biological data considered when making Montana's 303(d) listing decisions and what is sufficient credible data?

Sufficient Credible Data

"....chemical, physical, or biological monitoring data, alone or in combination with narrative information, that supports whether a water is achieving compliance with applicable water quality standards" (75-5-103(30) MCA)

....Must use all readily available data.

How does Montana assess aquatic life uses?

Landscape

Habitat

Chemistry

Biology

Sufficient Credible Data Categories for making ALUS Determinations

Biology
Physical/Habitat
Chemistry (e.g., Toxins)

Biological Data Category

- Biocriteria
 - Fish
 - Macroinvertebrate
 - Algae
 - amphibians
 - vegetation
- Fish populations
- Wildlife populations

Chemistry Data Category

- Numeric Criteria
 - Acute and chronic aquatic life standards
 - Dissolved oxygen
 - changes in pH, turbidity and temperature
- Narrative Criteria (reference condition)
 - Nutrients (chlorophyll)
 - salinity
 - Clean and contaminated sediment
 - Bioaccumulation

Physical/Habitat Data Category

- Habitat
- Hydrology
- Geomorphology
- Landscape (sources)

Landscape Data

- Percent land use/land cover
- Grazing intensity
- Fragmentation of riparian corridors

- Road density or number of stream crossings
- Number of irrigation withdrawals or miles of ditches

Functional Loss

Landscape - Physical Loss

Sufficient Credible Data

 How does Montana decide when there is a sufficient amount of data and information to make an ALUS determination?

Evaluate Data for:

- Technical Rigor of Methods
- Coverage / Quantity
- Quality
- Applicability to Present Conditions

Scoring Example: Biological Data

				Data
Score	Methods	Data Quantity	Data Quality	Currency
				Data no
	Visual		Unknown or	relevant; may
	observation;	Limited	low; no	have been
	no reference		specialist	significant
1				changes
			Low to	Data older
	1 group; use	Single time or	moderate;	than ideal;
	reference	single site	some specialist	likely still
2			guidance	accurate
	1 or moro		Moderate;	
		Target sites; 1	specialist	Decent data
	groups, use	season	makes	Recent uata
3	Telefence		assessment	
	2 or more		High; all work	
	groups; use	Broad Coverage	done by	Current data
4	reference		specialist	

Sufficient Credible Data for Making ALUS Determinations

- All available data are evaluated.
- Data are usually required from *at least two data categories*
- Minimum score of 6 required out of 12
- Data that scores 1 are not considered
- Assessments based on *reference condition* are generally scored higher.

Beneficial Use Support

 How does Montana make aquatic life use support determinations for 303(d) purposes?

Assessment Process

- Gather & Organize Data
- Evaluate Data Quantity & Quality

Beneficial Use Support Determination

Aquatic Life Use Support Determination

• Overwhelming Evidence Test

• Independent Evidence Test

• Weight of Evidence Test

Assessment Process (continued)

• Use Support:

Full
Threatened
Partial
Not Supporting
Application of Results

- 305(b) Statewide WQ Database
- 303(d) Impaired Waters List

Case Study Benton Lake National Wildlife Refuge

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, WET101_08

Benton Lake National Wildlife Refuge

- 5,600 acre saline marsh created by a glacier
- Established in 1929 to provide habitat for up to 100,000 ducks, 40,000 geese and 5000 swans
- Currently receives a large portion of its water from irrigation drainage
- The marsh is currently divided into separate units that are periodically flooded.
- Because there is no surface outlet, salts and contaminants are concentrated in the water.

Benton Lake National Wildlife Refuge (Example of Sufficient Credible Data)

- **Chemistry** (Score 3 of 4)
 - water column, sediment, and tissue data
- Physical/habitat (Score 2 of 4)

Visual habitat assessment with photo documentation and interpretations

• **Biology** (Score 3 of 4)

- Macroinvertebrate and algae bioassessment

- Substantial amount of waterfowl population data

Total Score = 8 (Sufficient Credible Data)

Benton Lake National Wildlife Refuge (Example of Aquatic Life Use-Support Determination)

• Chemistry

- High nitrates in water column
- High selenium in sediment and tissue

Physical/Habitat/Landscape

- Saline seeps were found within the watershed
- intensive agriculture occurs within watershed
- Water levels intensively managed to control salinity
- Biology
 - Algae biocriteria indicates moderate impairment Macroinvertebrates indicate slight impairment

Benton Lake NWR 303(d) listing

Weight-of-Evidence Test

- Chemistry and biology data indicate impairment
- Landscape information identifies probable sources
- Partial Support of Aquatic Life Use
- Probable Causes of Impairment
 - salinity, nutrients (nitrogen), selenium, noxious algae
- Probable sources of impairment
 - agriculture

• **Biological assessments directly measure** impacts to the aquatic life communities.

 Physical/habitat and chemistry assessments directly measure impacts from landscape disturbances and often provide valuable information concerning the probable causes and sources of impairment.

 Therefore, Montana DEQ is emphasizing a holistic approach for making ALUS determinations which usually entails consideration of data from *at least* two data categories.