National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

WET 101

Monitoring to Determine Aquatic Life Use Support

Presented by: Jan Stevenson, Michigan State University

Purpose of Tiered Aquatic Life Use Framework

Nationally consistent approach for:

- protection for excellent quality waters
- achievable goals for incremental restoration
- scientifically defensible benchmarks
- common framework for communication & evaluation public, stakeholders, across political boundaries

Tiered Aquatic Life Uses: Conceptual Framework

natural

Biological Condition

CWA Integrity Objective

Objective: Identify common pattern of biological response to

1. Encompass range of possible conditions

CWA 101(a) Uses: Aquatic Life Protection and Propagation Goals 2. Articulate scientifically defensible benchmarks - *in*

context of CWA

human disturbance

Not meeting CWA 101(a) uses for protection & propagation of aquatic life

Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers -2

(10/22 draft)

Biotic Community

Natural structural, functional, and taxonomic integrity is preserved.

Structure and function similar to natural community with some additional taxa & biomass; no or incidental anomalies; sensitive non-native taxa may be present; ecosystem level functions are fully maintained

Evident changes in structure due to loss of some rare native taxa; shifts in relative abundance; ecosystem level functions fully maintained through redundant attributes of the system.

Moderate changes in structure due to replacement of sensitive ubiquitous taxa by more tolerant taxa; overall balanced distribution of all expected taxa; ecosystem functions largely maintained.

Sensitive taxa markedly diminished; conspicuously unbalanced distribution of major groups from that expected; organism

condition shows signs of physiological stress; ecosystem function shows reduced complexity and redundancy; increased build up or export of unused materials.

Extreme changes in structure; wholesale changes in taxonomic composition; extreme alterations from normal densities; organism condition is often poor;

anomalies may be frequent; ecosystem functions are extremely altered.

HIGH

Tiers: Defined in 4 Levels of Detail

- 1. General Description
- 2. Conceptual Description
- 3. Detailed Description
- 4. Example Scenarios

Issues Integrated into TALU Framework

- What are Tiers' Benchmarks
- Method of Defining Criteria
- Method of Defining Reference Condition
- Different Expectations for Different Classes of Habitats
 - Expected Condition
 - Sensitivity of Response to Human Disturbance
- Global and Regional Extirpation of Species
- Biological versus Physical and Chemical Integrity
- Structural versus Functional Integrity
- Distinguishing "Stressors" from Human Activities

Transferability to Wetlands

- Common responses of ecosystems to human disturbance
 - Replacement of sensitive taxa with tolerant taxa
 - Change in relative abundance before loose species
 - Function preserved with moderate stress via functional redundancy of taxa
- Large number of attributes with different responses to stressors
 - Algae, plants, inverts, megafauna, water chemistry, soil chemistry, hydrology, etc.
- Functional and structural assessment part of tradition (HGM & IBI approaches)

Tiers: Defined in 4 Levels of Detail

- 1. General Description
- 2. Conceptual Description
- 3. Detailed Description (example)
- 4. Example Scenarios

- Sensitive, native taxa
- Tolerant, native taxa
- Non-native (tolerant) taxa
- Invasive taxa

Selected Plant Attributes

- Landscape Spatial Heterogeneity (zonation and patch mosaic of different plant types)
- Critical Life Support Function (submerged and emergent plant area, height, fractal dimension, open space, patchiness)
- Production/Respiration Ratios
- Other Plant Functions (nutrient retention, etc.)
- Spatial and Temporal Extent of Anthropogenic Effect
- Ecosystem Connectance

Attribute/Metric	1	2	3			
taxa	As predicted for natural occurrence, with at most minor changes from natural densities. All expected species present except those lost at global scale	As predicted for natural occurrence, with at most minor changes from natural densities. All expected species present except those lost at regional scale	Some loss of taxa, with replacement by functionally (?) equivalent tolerant taxa		See Hand WET101	
taxa	As naturally occur, with at most minor changes from natural relative abundances	As naturally present with slight increases in abundance		May be common but do not exhibit significant dominance	Can occur in high densities and can be dominant	May comprise the majority of the assemblage; often extreme departures from normal densities (high or low)
	Non-native taxa, if present, are rare and have non-detrimental effect on native taxa	May be present, but occurrence has a non-detrimental effect on native taxa	of sensitive native taxa with non-native	Non-native taxa common, but not dominant	Can occur in high densities and can be dominant	May comprise the majority of the assemblage
Landscape Spatial	None Maintained as natural	Rare Maintained as natural	Can be present Slightly altered from natural (e.g., patch size has changed or some zones have diminished in size as others expand)	Can be common Moderately Altered from natural	Can be abundant Major Alterations	Can be dominant Severe Alterations
(submerged and	Fully Maintained, e.g., open water habitat as naturally occurs	Fully Maintained	Fully Maintained	Slightly Maintained, e.g., open water habitat slightly altered from naturally occurring	Partially Maintained, e.g., open water habitat is substantially changed from naturally occurring	Not Maintained, e.g. open water habitat is gone and vertical habitat greatly altered
Production/Respirati on Ratios	As natural	May be slightly elevated	May be moderately higher than natural	May be significantly higher than natural	May be imbalanced temporally or spatially to cause mild oxygen depletion	May be highly imbalanced to cause severe oxygen depletion
Spatial and Temporal Extent of Anthropogenic Effect	N/A	Limited to short durations (a season), small wetlands, or portions of large wetlands	Limited to short durations (a season), small wetlands, or portions of large wetlands	Mild detrimental effects may be detectable in larger areas and longer durations	Detrimental effects extensive and leaving only a few regional refugia of adequate conditions; effect extends across multiple seasons	Detrimental effects may eliminate all refugia and colonization sources within the region for years
Connectance	System is highly connected in space and time to other wetlands with similar species.	Ecosystem connectance and dispersal is unimpaired.	Slight loss of connectance and dispersal, but there are adequate local recolonization	Some loss of connectance but colonization sources and refugia exist within the	Significant loss of ecosystem connectance is evident; recolonization	Complete loss of ecosystem connectance may occur and lower reproductive

Plant Attributes along BioAxis

BioAxis	Sensitive, native taxa
Level	
1	As predicted for natural occurrence,
	with at most minor changes from
	natural densities. All expected
	species present except those lost at
	global scale
2	As predicted for natural occurrence,
	with at most minor changes from
	natural densities. All expected
	species present except those lost at
	regional scale
3	Some loss of taxa, with replacement
	by functionally (?) equivalent tolerant
	taxa
4	May be markedly diminished
5	Rare
6	Absent

Tiered Uses Based on Differing Response of Plant

Differing Responses of Valued Ecological Attributes in Wetlands

- Within Assemblage Attributes (FQAI vs. % Native Taxa)
- Among Assemblages (Plants vs. Inverts and Algae)
- Between Structural vs. Functional Attributes

Tiered Criteria Based on Different Valued Ecological Attributes: MRW

Developing Tiered Uses & Criteria: Integrating Issues into a Common Framework

- Common framework 101, 303, 305, & 404
 - Standardizes approach
 - Increases transferability & comparability of results
- Multiple approaches for setting criteria:
 - Non-reference, reference, modeling and stressor-response approach
- Scientifically defensible criteria
- Defining reference condition (Pristine versus Best Attainable)
- Responses vary among types (classes) of wetlands
- Ecological and Comparative Assessments

Conclusions

- Consensus Agreement
 - Tiered ALUS was a useful concept
 - "Ecological Integrity" support of native species and most ecological function
 - Structure and function similar to natural community with some additional taxa & biomass; no or incidental anomalies; sensitive non-native taxa may be present; ecosystem level functions are fully maintained
 - Could relate 305 (b), 303(d), 404, etc.....

Conclusions, continued

- Consensus Agreement
 - Common Benchmarks
 - Plant and Invertebrate Scenarios Useful
 - Relatively Easy to Assign Ranks in Data Exercise
 - >Challenge in Streams to Assign Actual Value (e.g., 1-2-3-4 versus 2-4-5-6)

Conclusions, continued

- Issues of Concern
 - Language associated with faster change in function than structure
 - Need more "function"
 - What constitutes system that does not support fish, shellfish, and wildlife... The interim goal of the CWA
 - 5 = Sensitive taxa markedly diminished; conspicuously unbalanced distribution of major groups from that expected; organism condition shows signs of physiological stress; ecosystem function shows reduced complexity and redundancy; increased build up or export of unused materials.

Regulatory background

- 1990 U.S. EPA mandated states include water quality standards for wetlands
- 1996-1998 Ohio EPA initiates rule development process and formal regulatory negotiation stakeholder group
- May 1998 Ohio adopted initial wetland water quality standards and wetland antidegradation rule

Ohio's Wetland Water Quality Standards (WWQS) Program

- Current elements of the program in OAC Rules 3745-1-50 to 54:
 - narrative criteria
 - chemical criteria
 - "wetland" designated use
 - antidegradation rule
 - Procedural rules OAC Chapter 3745-32
 - Method to categorize wetlands (ORAM)

Current Elements in Ohio's Wetland Program

- Wetland water quality standards
 - narrative criteria and chemical criteria
 - "wetland" designated use
 - antidegradation rule
- Section 401 Certification Program
- Rapid Assessment Method for Wetlands
- Numeric biological criteria using vascular plants, amphibians, and macroinvertebrates
- Standardized mitigation wetland monitoring protocols and performance standards
- Watershed-level wetland condition assessment

Summary of numbers of sites by major hydrogeomorphic and plant community classes. Sites in parentheses sampled in 2001-2002 and data not reported here.

Hydrogeomorphic Classes	N	Plant Community Classes	N
isolated depression	59 (21)	sphagnum bog communities	6 (2)
riparian mainstem depression	8 (12)	calcareous fen communities	6 (4)
riparian headwater depression	8 (5)	mixed emergent marshes	23 (26)
slope	8 (9)	sedge-grass communities	3 (10)
fringing	2	shrub swamps	21 (9)
impoundment (beaver, human)	2 (10)	sw amp forests	29 (20)
coastal	1 (12)		
riverine	0 (2)		
TOTAL	88 (159)	TOTAL	88 (159)

Sampling methods

- plot based sampling method
- combines aspects of releves and transects and quadrats
- flexible multipurpose method for diverse plant communities
- Peet et al. (1998)
- locate plots in areas most representative of plant community of interest
- minimize environmental heterogeneity

Parameters measured

- presence/absence (~2500 vouchers collected 1996-2002, avg ~16 per plot)
- % cover herb and shrub stratum
- stem density and basal area shrub and tree stratum (shrub and forest only)
- standing biomass (emergent only)
- soil nutrients
- water chemistry
- physical parameters: water depth, depth to saturated soils, coarse woody debris, hummocks and tussocks, standing dead, etc.

Semi-qualitative disturbance gradient

- buffer width
- intensity of surrounding land use
- intactness of natural hydrology
 - ditch, tile, fill, grade, stormwater, etc.
- intactness of substrates
 - farming, off-road vehicles, grazing, sedimentation, etc.
- intactness of natural habitat
 - farming, clearcutting, nutrient entrichment, etc.

Using plant attributes to establish stressor criteria

- type of dose-response relationship
 - linear
 - "shallowly" curvilinear
 - threshold
- each type has different utility in determining acceptable level of stress on system

reference

reference

STRESSOR CRITERIA

Preliminary Wetland TALUs

- Envision 4 and perhaps ultimately 5-6 tiered system
- LQWLH limited quality wetland habitat
 - possibly split into low and very low
- RWLH restorable wetland habitat
- WLH wetland habitat
- SWLH superior wetland habitat
 - possibly split into high and very high

Modifiers

- Add modifiers for dominant plant community and landscape position (HGM)
- Multiple purposes for modifiers
- Wetland's have different functions and values based on type
- Important for IBI development and application to classify by type
- Tracking impacts
- Implementing and assessing mitigation and restoration

Modifiers cont.

Plant community wetland use designation modifiers

Use code	specific use designation	Landscape position use designation			
la	Swamp forest	modifier			
lb	Vernal pool	(1) vinavian haadustav danvaasian			
lc	Forest seeps	(1) riparian headwater depression(2) riparian mainstem, depression			
ld	Tamarack-hardwood bog	(3) isolated depression			
Ila	Mixed shrub swamp	(4) lacustrine (5) human impoundment			
Ilb	Buttonbush swamp	(6) beaver impoundment			
Ilc	Alder swamp				
Ild	Tall shrub bog				
lle	Tall shrub fen				
Illa	Marshes (includes submergent, floating-leaved, mixed emerger	nt, and cattail)			
IIIb	Sedge-grass communities (includes wet prairies, sedge meado	ws, and seep fens)			
IIIc	Riverine marsh communities (includes submergent, floating-leaved, mixed emergent and various intermixed shrub communities				
IIId	Fens (includes anquefoil-fens, tamarack fens, arbor vitae fens)				
Ille	Bogs (includes sphagnum bogs, leatherleaf bogs, but not tama tall shrub bogs (IId)	rack-hardwood bogs (lc) or			
N	Coastal marshes				

Special use modifiers

Special wetland use designations.

subscript	special uses	description
Α	recreation	wetlands with known recreational uses including hunting, fishing, birdwatching, etc. that are publicly available
В	education	wetlands with known educational uses, e.g. nature centers, schools, etc.
С	fish reproduction habitat	wetlands that provide important reproductive habitat for fish
D	bird habitat	wetlands that provide important breeding and nonbreeding habitat for birds
Е	flood storage	wetlands located in landscape positions such that they have flood retention functions
F	water quality improvement	wetlands located in landscape positions such that they can perform water quality improvement functions for streams, lakes, or other wetlands

Example

- Pumpkin ash (Fraxinus profunda) swamp in nature preserve
- Vegetation IBI score = 81 = SWLH range
- Plant community/landscape position = la3 (swamp forest-isolated depression)
- Educational uses as nature preserve
- Wetland TALU = SWLP-la3_B, where SWLH=means Superior Wetland Habitat, la3=Isolated Swamp Forest, and the subscript_B=education use.

Preliminary Wetland TALUs

Pilot numeric biological criteria for wetlands based on Vegetation IBI breakpoints for specific plant communities and landscape positions. "tbd"=to be developed.

Landscape position	plant community	specific use code(s)	LQWLH	RWLH	WLH	SWLH
Riparian mainstem depressions	swamp forests shrub swamps	la2, Ila2, Ilb2, Ilc2	0-16	17-33	34-50	51-100
All landscape positions except riparian mainstem depressions	swamp forests vernal pool shrub swamp	all use codes except la2, Ila2, Ilb2, Ilc2	0-22	23-45	46-66	67-100
All landscape positions except	marshes	Illa-ECBP	0-16	17-33	34-50	51-100
coastal and riverine		Illa-EOLP	0-20	21-41	42-62	63-100
All landscape positions	bog fen sedge-græss	ld, IId, IIe, IIIb, IIId, IIIe	0-23	24-47	48-71	72-100
Coastal	all	all use codes	tbd	tbd	tbd	tbd
Riverine	all	n⁄a	tbd	tbd	tbd	tbd

Conclusions from the Ohio Case Study

- Plants are robust indicator taxa group
- TALU concepts can be applied to actual wetland plant data
- Landscape position (HGM class) and dominant plant community affect structure and function of wetlands and should be included in any wetland TALU system

Tiered Aquatic Life Uses: Conceptual Framework

natural

Biological Condition

CWA Integrity Objective

Objective: Identify common pattern of biological response to

1. Encompass range of possible conditions

CWA 101(a) Uses: Aquatic Life Protection and Propagation Goals 2. Articulate scientifically defensible benchmarks - *in*

context of CWA

human disturbance

Not meeting CWA 101(a) uses for protection & propagation of aquatic life

Ecological Integrity for Waters

CWA Goal	Biological	Physical	Chemical	Cultural	
	fauna/flora	hydro, geo	biogeochem	socio-econ	
Integrity					
Interim					
Impairment					
	x-axis Human Disturbance Gradient				