National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

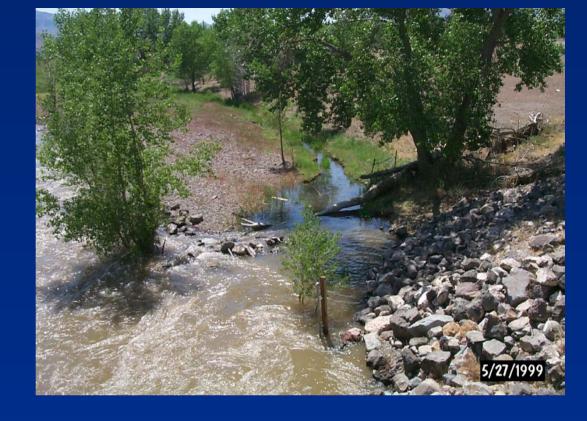
Coeur d'Alene, Idaho 31 March – 4 April, 2003

TRIBE 101

Pyramid Lake
Paiute Tribe:
Programmatic
Implementation of
Bioassessment

Presented by

Daniel Mosley, Pyramid Lake Paiute Tribe


Pyramid Lake Paiute Tribe's Key NPS concerns

- Environmental impacts to the Truckee River & Pyramid Lake aquatic life, and long term bioaccumulation of TDS and toxic substances.
- Human health impacts.
- Impacts to federally listed endangered and threatened species of fish.
- Cultural/ Social Impacts.
- Impacts from upstream sources.

NPS Assessment & Management Plan

- To identify nonpoint sources which add significant pollution to surface water bodies within the PLIR.
- Rank and prioritize.
- Conduct an assessment/ ID BMP's (WRAS)
- Develop monitoring program to evaluate the effectiveness of BMP's.
- Write an Executive Summary of the NPS assessment and management plan for the PLIR.

NPS & Agricultural Return Flows

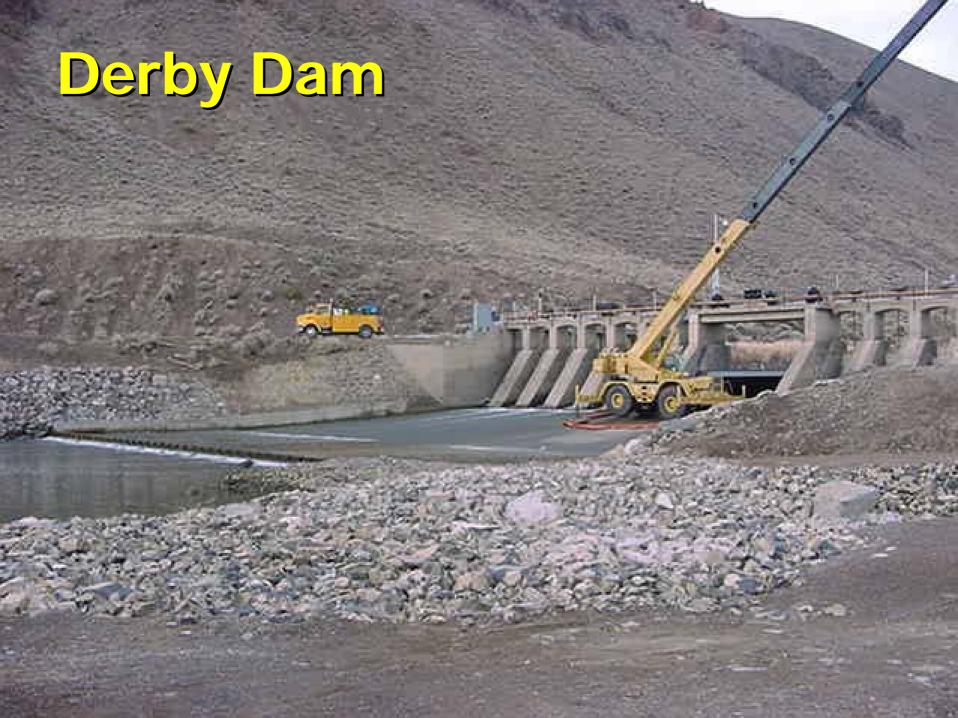
- High TP, TN (1531, 277 pounds per season)
- Low Dissolved Oxygen
- 30% return flow to river

High Temps/ Low DO's

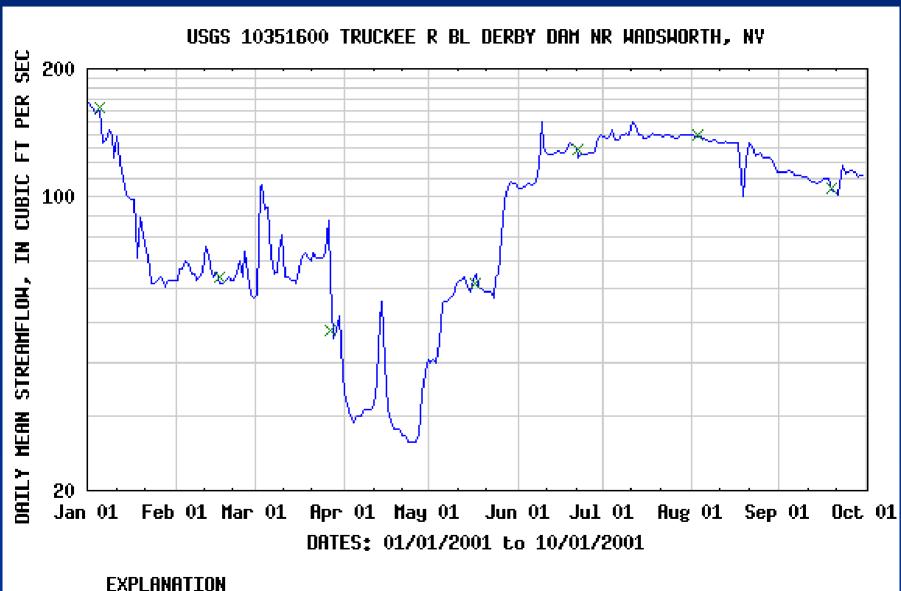
BMP's

Fencing/ Range Mgt Plan: Improves riparian/range health, shading, WQ, lowers water temps which benefits aquatic life, birds, amphibians, wildlife

Laser Leveling Ag. Fields: Increases water use efficiency, decreases runoff, improves WQ


WQ, fish, and river restoration coordination mtgs

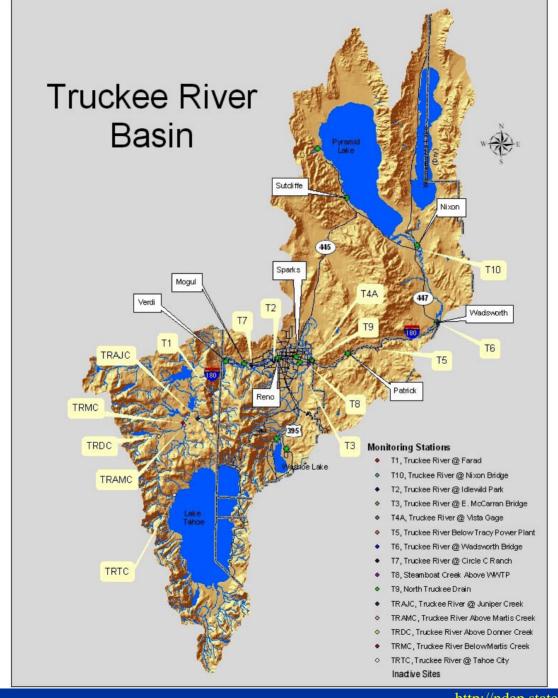
Replace open dumps with Transfer Stations


Noxious Weed/ Pesticide Program

Replace Septic Tanks w/ community sewer system

LTR Graph of Flows

- DAILY HEAN STREAMFLOA


imes measured streamflow

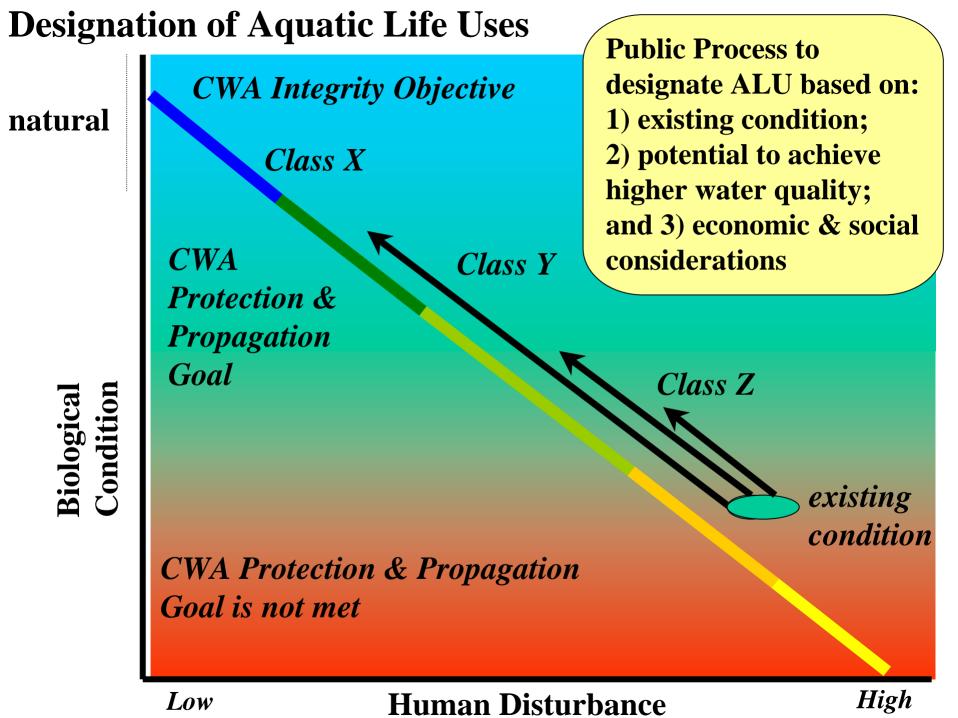
Biotic Index Values

- 0.0 3.5 Excellent (Pristine water)
- 3.5 4.5 Very Good Water Quality
- 4.5 5.5 Good WQ (some pollution)
- 5.5 7.0 Fair (Moderately polluted)
- 7.0 8.0 Poor (seriously polluted)
- 8.5 10.0 Very Poor (extremely polluted waters)

August 1994 LTR BMI data (flows 0-44 cfs)

Taxa	McCarran	Lockwood	Clark	S Bar S
Ephemeroptera	0	0	40	49
Trichoptera	0	1	66	3
Elmidae	0	3	2	13
Chironomids	0	109	12	64
Simulium	0	3	0	0
Planaria	0	1047	14	322
Oligochaeta	0	4	0	3
Gastropoda	0	227	0	16
Corbicula	0	6	3	6
Salmonids (LC	Γ) 0	0	0	3 (0)
Cyprinids/ Cato	stomids	834/ 108	404/63	290/6
EPT %	0%	0%	83%	10%
Biotic Index	0	8.57	5.63	7.75

August 1995 LTR BMI data (flows 654-712 cfs)


Taxa	McCarran	Lockwood	Clark	S Bar S
Ephemeroptera (6)	224	243	579	145 (1)
Skawla	25	76	0	0
Trichoptera (5)	17	99	247	21(2)
Elmidae	0	1	0	0
Chironomidae	18	589	581	22
Simulium	6	170	19	12
Planaria	0	2	0	0
Oligochaeta	0	4	14	0
Salmonids (LCT)		14 (0)	2 (0)	4 (0)
Cyprinids/ Catostomids	;	18/ 22	12/ 16	25/ 20
EPT %	91%	35%	57%	83%
Biotic Index	3.98	5.19	5.05	5.16

July 1999 LTR BMI data (flows 357-482 cfs)

Taxa	McCarran	Lockwood	Clark	S Bar S
Ephemeroptera	45 (4)	91 (3)	467 (3)	77 (2)
Plecoptera	19 (1)	16 (2)	2 (1)	62 (1)
Trichoptera	148 (4)	183 (4)	45 (2)	177 (1)
Chironomidae	62	92	179	31
Oligochaeta	3	0	6	0
Empididae	5	0	0	0
Salmonids (LC	T)	28 (6)	4 (1)	27 (1)
Cyprinids/Cato	stomids	0/ 0	36/ 55	0/3
EPT %	74%	76%	74%	91%
Biotic Index	2.76	4.05	4.55	3.64

Nov. 2001 LTR BMI data (flows 39-350 cfs)


<u>Taxa</u>	McCarran	Lockwood	Clark	S Bar S
Ephemeroptera	133 (2)	1247 (3)	110 (2)	96 (2)
Plecoptera	4 (1)	0 (0)	0 (0)	0 (0)
Trichoptera	150 (2)	132 (1)	14 (2)	4 (1)
Chironomids	14	19	22	6
Planaria	0	0	38	92
Oligochaeta	0	3	0	0
Elmidae	0	7	2	48
Corbicula	0	0	42	46
Salmonids (LC	T)	14 (0)	8 (0)	6 (0)
Cyprinids/ Cato	stomids	52/4	413/76	174/ 36
EPT %	89%	92%	43%	34%
Biotic Index	5.20	5.90	6.66	7.14

Next Steps:

- Continue bioassessment and WQ monitoring program
- Work with NDEP, EPA, FWS and others on a draft ALUS human disturbance gradient for the lower Truckee river
- Work with Tetra Tech on which metrics could best evaluate biological integrity, and develop numeric biocriteria standards for the river

THE CUI-UI FISH A LARGE CUMBROUS LOOKING FISH. THE HEAD IS WIDE AND FLAT, WHICH GIVES IT THE APPEARANCE OF A FISH WITH LARGE HEAD AND SLIM BODY. THE INTERORBITAL SPACE IS GREATER THAN HALF THE LENGTH OF THE HEAD. THE MOUTH IS UNSUCKER-LIKE WITH A VENTROTERMINAL POSITION. THE LIPS ARE THIN AND OBSCURELY PAPPILLOSE. THE LOWER LIP IS SOMEWHAT PENDANT AND DIVIDED BY A VERY WIDE MEDIAN NOTCH. THE CUI-UI IS COURSE SCALED WITH THE COUNTS OF 13-14 ABOVE THE LATERAL LINE, 59-66 ALONG THE LATERAL LINE, 10-12 BELOW IT, AND 28-35 BEFORE THE DORSAL FIN.

