National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Appropriate Use of Statistics

Presented by Glenn Suter II, USEPA, Office of Research & Development

SI 201

What is the Problem?

- Correlation does not prove causation
 - Except in experiments
- Practitioners often attempt to test causal hypotheses with observational data
 - t tests, ANOVA, etc. are experimental stats.
- Practitioners often mistake statistical significance for biological significance
 - Which can produce misleading results
- Practitioners often believe that regression, ordination, etc. demonstrate causation

Lessons

- Statistics cannot derive causation from observational data
 - The correlation of C and E is not the probability that C causes E
 - You can not test the hypothesis that C causes E
- Statistics can help to identify and quantify
 - Associations
 - Magnitudes of differences
 - Gradients and other patterns

Uses for Statistics in SI

- Summarize data using descriptive statistics
 - Mean, range, variance, recurrence rates, etc.
- Explore data sets
 - Multivariate correlations
- Quantification of associations
 - Correlation, regression, etc.
- Statistical modeling
 - Exposure-response relationships
- Comparison of models
 - Goodness of fit, maximum likelihood

Pitfalls for Statistics

- Few samples at few times and locations
- No replication
- No randomization
- No control of treatments
- Many confounding variables
 - Flow augmentation
 - Stream gradient
 - Julian day (seasonality)
 - Habitat structural attributes

Pfiesteria Conceptual Model

Conclusions

- Statistics can not determine the cause
 but it can help a lot
- Define needed inference first
 - then statistics
- Use statistics like a drunk uses a lamp post
 more for support than enlightenment

